Skip to main content
Log in

A Review of Recent Developments in the Study of Regional Lithospheric Electrical Structure of the Asian Continent

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

A Correction to this article was published on 27 February 2021

This article has been updated

Abstract

The Asian continent was formed through the amalgamation of several major continental blocks that were formerly separated by the Paleo-Asian and Tethyan Oceans. During this process, the Asian continent underwent a long period of continental crustal growth and tectonic deformation, making it the largest and youngest continent on Earth. This paper presents a review of the application of geophysical electromagnetic methods, mainly the magnetotelluric (MT) method, in recent investigations of the diverse tectonic features across the Asian continent. The case studies cover the major continental blocks of Asia, the Central Asian orogenic system, the Tethyan orogenic system, as well as the western Pacific subduction system. In summary, most of the major continental blocks of Asia exhibit a three-layer structure with a resistive upper crust and upper mantle and a relatively conductive mid-lower crust. Large-scale conductors in the upper mantle were interpreted as an indication of lithospheric modification at the craton margins. The electrical structure of the Central Asian orogenic system is generally more resistive than the bordering continental blocks, whereas the Tethyan orogenic system displays more conductive, with pervasive conductors in the lower crust and upper mantle. The western Pacific subduction system shows increasing complexity in its electrical structure from its northern extent to its southern extent. In general, the following areas of the Asian continent have increasingly conductive lithospheric electrical structures, which correspond to a transition from the most stable areas to the most active tectonic areas of Asia: the major continental blocks, the accretionary Central Asian orogenic system, the collisional Tethyan orogenic system, and the western Pacific subduction system. As a key part of this review, a three-dimensional (3-D) model of the lithospheric electrical structure of a large portion of the Tibetan Plateau is presented and discussed in detail; the model indicates tearing of the underthrusting Indian slab as well as complex crustal conductor geometries, which are not obviously consistent with the hypothesis of a continuous, eastward channel flow. These studies have greatly enhanced our knowledge of the formation and deformation processes of the Asian continent. Lastly, future research to expand field data coverage, improve related techniques, and integrate data from other disciplines is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Change history

References

  • Abdul Azeez KK (2016) Magnetotelluric constraints on the occurrence of lower crustal earthquakes in the intra-plate setting of central Indian tectonic zone. Acta Geologica Sinica–English Edition 90(3):884–899. doi:10.1111/1755-6724.12731

    Article  Google Scholar 

  • Abdul Azeez KK, Unsworth MJ, Patro PK, Harinarayana T, Sastry RS (2013) Resistivity structure of the Central Indian Tectonic Zone (CITZ) from multiple magnetotelluric (MT) profiles and tectonic implications. Pure Appl Geophys 170(12):2231–2256. doi:10.1007/s00024-013-0649-y

    Article  Google Scholar 

  • Abdul Azeez KK, Veeraswamy K, Gupta AK, Babu N, Chandrapuri S, Harinarayana T (2015) The electrical resistivity structure of lithosphere across the Dharwar craton nucleus and Coorg block of South Indian shield: evidence of collision and modified and preserved lithosphere. J Geophys Res Solid Earth 120(10):6698–6721. doi:10.1002/2014JB011854

    Article  Google Scholar 

  • Abdul Azeez KK, Patro PK, Harinarayana T, Sarma SVS (2017) Magnetotelluric imaging across the tectonic structures in the eastern segment of the Central Indian Tectonic Zone: preserved imprints of polyphase tectonics and evidence for suture status of the Tan Shear. Precambr Res 298:325–340. doi:10.1016/j.precamres.2017.06.018

    Article  Google Scholar 

  • Aizawa K, Yoshimura R, Oshiman N (2004) Splitting of the Philippine Sea Plate and a magma chamber beneath Mt. Fuji. Geophys Res Lett 31(9):L09603. doi:10.1029/2004GL019477

    Article  Google Scholar 

  • Aizawa K, Koyama T, Hase H, Uyeshima M, Kanda W, Utsugi M, Yoshimura R, Yamaya Y, Hashimoto T, Ki Yamazaki, Komatsu S, Watanabe A, Miyakawa K, Ogawa Y (2014) Three-dimensional resistivity structure and magma plumbing system of the Kirishima Volcanoes as inferred from broadband magnetotelluric data. J Geophys Res: Solid Earth 119(1):198–215. doi:10.1002/2013JB010682

    Article  Google Scholar 

  • Aizawa K, Sumino H, Uyeshima M, Yamaya Y, Hase H, Takahashi HA, Takahashi M, Kazahaya K, Ohno M, Rung-Arunwan T, Ogawa Y (2016) Gas pathways and remotely triggered earthquakes beneath Mount Fuji Japan. Geology 44(2):127–130. doi:10.1130/g37313.1

    Article  Google Scholar 

  • Avşar Ü, Türkoğlu E, Unsworth M, Çağlar İ, Kaypak B (2013) Geophysical images of the North Anatolian Fault Zone in the Erzincan Basin, Eastern Turkey, and their tectonic implications. Pure Appl Geophys 170(3):409–431. doi:10.1007/s00024-012-0521-5

    Article  Google Scholar 

  • Bai D, Unsworth MJ, Meju MA, Ma X, Teng J, Kong X, Sun Y, Sun J, Wang L, Jiang C, Zhao C, Xiao P, Liu M (2010) Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geosci 3(5):358–362 http://www.nature.com/ngeo/journal/v3/n5/suppinfo/ngeo830_S1.html

  • Bertrand E, Unsworth M, Chiang C-W, Chen C-S, Chen C-C, Wu F, Türkoğlu E, Hsu H-L, Hill G (2009) Magnetotelluric evidence for thick-skinned tectonics in central Taiwan. Geology 37(8):711–714. doi:10.1130/g25755a.1

    Article  Google Scholar 

  • Bertrand EA, Unsworth MJ, Chiang C-W, Chen C-S, Chen C-C, Wu FT, Türkoğlu E, Hsu H-L, Hill GJ (2012) Magnetotelluric imaging beneath the Taiwan orogen: an arc-continent collision. Solid Earth, J Geophys Res. doi:10.1029/2011JB008688

    Google Scholar 

  • Boonchaisuk S, Siripunvaraporn W, Ogawa Y (2013) Evidence for middle Triassic to Miocene dual subduction zones beneath the Shan-Thai terrane, western Thailand from magnetotelluric data. Gondwana Res 23(4):1607–1616. doi:10.1016/j.gr.2012.08.009

    Article  Google Scholar 

  • Cai J, Chen X, Xu X, Tang J, Wang L, Guo C, Han B, Dong Z (2017) Rupture mechanism and seismotectonics of the Ms6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging. Geophys Res Lett 44(3):1275–1285. doi:10.1002/2016GL071855

    Article  Google Scholar 

  • Chave AD, Jones AG (2012) The magnetotelluric method: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chen L, Booker JR, Jones AG, Wu N, Unsworth MJ, Wei W, Tan H (1996) Electrically conductive crust in Southern Tibet from INDEPTH Magnetotelluric Surveying. Science 274(5293):1694–1696. doi:10.1126/science.274.5293.1694

    Article  Google Scholar 

  • Dong S, Li T, Gao R, Hou H, Li Q, Li Y, Zhang S, Keller GR, Liu M (2011) A multidisciplinary Earth science research program in China. EOS Trans AGU 92(38):313–314

    Article  Google Scholar 

  • Dong S-W, Li T-D, Lü Q-T, Gao R, Yang J-S, Chen X-H, Wei W-B, Zhou Q (2013) Progress in deep lithospheric exploration of the continental China: a review of the SinoProbe. Tectonophysics 606:1–13. doi:10.1016/j.tecto.2013.05.038

    Article  Google Scholar 

  • Dong H, Wei W, Ye G, Jin S, Jones AG, Jing J, Zhang L, Xie C, Zhang F, Wang H (2014) Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: evidence of regional lithospheric modification. Geochem Geophys Geosyst 15(6):2414–2425. doi:10.1002/2014GC005270

    Article  Google Scholar 

  • Dong Z, Tang J, Unsworth M, Chen X (2015) Electrical resistivity structure of the upper mantle beneath Northeastern China: implications for rheology and the mechanism of craton destruction. J Asian Earth Sci 100:115–131. doi:10.1016/j.jseaes.2015.01.008

    Article  Google Scholar 

  • Dong H, Wei W, Jin S, Ye G, Zhang L, Je Jing, Yin Y, Xie C, Jones AG (2016) Extensional extrusion: insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data. Earth Planet Sci Lett 454:78–85. doi:10.1016/j.epsl.2016.07.043

    Article  Google Scholar 

  • Egbert GD, Kelbert A (2012) Computational recipes for electromagnetic inverse problems. Geophys J Int 189(1):251–267. doi:10.1111/j.1365-246X.2011.05347.x

    Article  Google Scholar 

  • Gokarn SG, Gupta G, Rao CK (2004) Geoelectric structure of the Dharwar Craton from magnetotelluric studies: archean suture identified along the Chitradurga-Gadag schist belt. Geophys J Int 158(2):712–728. doi:10.1111/j.1365-246X.2004.02279.x

    Article  Google Scholar 

  • Harinarayana T (2007) Comparison of electrical structure of the deep crust of the central Indian Shear Zone, Narmada-Son Lineament, Deccan Traps, Southern Granulite region and Eastern Dharwar Craton. Gondwana Res 10:251–261

    Google Scholar 

  • Hata M, Uyeshima M (2015) Temperature and melt fraction distributions in a mantle wedge determined from the electrical conductivity structure: application to one nonvolcanic and two volcanic regions in the Kyushu subduction zone, Japan. Geophys Res Lett. doi:10.1002/2015GL063308

    Google Scholar 

  • Hata M, Oshiman N, Yoshimura R, Tanaka Y, Uyeshima M (2015) Three-dimensional electromagnetic imaging of upwelling fluids in the Kyushu subduction zone, Japan. J Geophys Res: Solid Earth 120(1):1–17. doi:10.1002/2014JB011336

    Article  Google Scholar 

  • Ichihara H, Honda R, Mogi T, Hase H, Kamiyama H, Yamaya Y, Ogawa Y (2008) Resistivity structure around the focal area of the 2004 Rumoi-Nanbu earthquake (M 6.1), Northern Hokkaido, Japan. Earth, Planets Space 60(8):883–888. doi:10.1186/bf03352841

    Article  Google Scholar 

  • Ichihara H, Uyeshima M, Sakanaka S, Ogawa T, Mishina M, Ogawa Y, Nishitani T, Yamaya Y, Watanabe A, Morita Y, Yoshimura R, Usui Y (2011) A fault-zone conductor beneath a compressional inversion zone, northeastern Honshu, Japan. Geophys Res Lett 38(9):L09301. doi:10.1029/2011GL047382

    Article  Google Scholar 

  • Ichihara H, Sy Sakanaka, Mishina M, Uyeshima M, Nishitani T, Ogawa Y, Yamaya Y, Mogi T, Amita K, Miura T (2014) A 3-D electrical resistivity model beneath the focal zone of the 2008 Iwate-Miyagi Nairiku earthquake (M 7.2). Earth Planets Space. doi:10.1186/1880-5981-66-50

    Google Scholar 

  • Ichihara H, Mogi T, Tanimoto K, Yamaya Y, Hashimoto T, Uyeshima M, Ogawa Y (2016) Crustal structure and fluid distribution beneath the southern part of the Hidaka collision zone revealed by 3-D electrical resistivity modeling. Geochem Geophys Geosyst 17(4):1480–1491. doi:10.1002/2015GC006222

    Article  Google Scholar 

  • Ichiki M, Ogawa Y, Kaida T, Koyama T, Uyeshima M, Demachi T, Hirahara S, Honkura Y, Kanda W, Kono T, Matsushima M, Nakayama T, Suzuki S, Toh H (2015) Electrical image of subduction zone beneath northeastern Japan. J Geophys Res: Solid Earth 120(12):7937–7965. doi:10.1002/2015JB012028

    Article  Google Scholar 

  • Jin S, Zhang L-T, Jin Y-J, Wei W-B, Ye G-F (2012) Crustal electrical structure along the Hezuo-Dajing profile across the Northeastern Margin of the Tibetan Plateau. Chin J Geophys-Chin Ed 55(12):3979–3990

    Google Scholar 

  • Jones AG (1992) Electrical conductivity of the continental lower crust. continental lower crust. Elsevier, New York, pp 81–143

    Google Scholar 

  • Kanda W, Ogawa Y (2014) Three-dimensional electromagnetic imaging of fluids and melts beneath the NE Japan arc revisited by using geomagnetic transfer function data. Earth, Planets Space 66(1):1–8. doi:10.1186/1880-5981-66-39

    Article  Google Scholar 

  • Kaya T, Tank SB, Tunçer MK, Rokoityansky II, Tolak E, Savchenko T (2009) Asperity along the North Anatolian Fault imaged by magnetotellurics at Düzce, Turkey. Earth, Planets and Space 61(7):871–884. doi:10.1186/bf03353198

    Article  Google Scholar 

  • Kaya T, Kasaya T, Tank SB, Ogawa Y, Tunçer MK, Oshiman N, Honkura Y, Matsushima M (2013) Electrical characterization of the North Anatolian Fault Zone underneath the Marmara Sea, Turkey by ocean bottom magnetotellurics. Geophys J Int 193(2):664–677. doi:10.1093/gji/ggt025

    Article  Google Scholar 

  • Kelbert A, Meqbel N, Egbert GD, Tandon K (2014) ModEM: a modular system for inversion of electromagnetic geophysical data. Comput Geosci 66:40–53. doi:10.1016/j.cageo.2014.01.010

    Article  Google Scholar 

  • Le Pape F, Jones AG, Vozar J, Wenbo W (2012) Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nat Geosci 5(5):330–335. doi:10.1038/ngeo1449

    Article  Google Scholar 

  • Le Pape F, Jones AG, Unsworth MJ, Vozar J, Wei W, Jin S, Ye G, Jing J, Dong H, Zhang L, Xie C (2015) Constraints on the evolution of crustal flow beneath Northern Tibet. Geochem Geophys Geosyst 16(12):4237–4260. doi:10.1002/2015GC005828

    Article  Google Scholar 

  • Liang H-D, Gao R, Hou H-S, Liu G-X, Han J-T, Han S (2015) Lithospheric electrical structure of the Great Xing’an Range. J Asian Earth Sci 113:501–507. doi:10.1016/j.jseaes.2015.01.026

    Article  Google Scholar 

  • Lin C, Peng M, Tan H, Xu Z, Li Z-H, Kong W, Tong T, Wang M, Zeng W (2017) Crustal structure beneath Namche Barwa, eastern Himalayan syntaxis: new insights from three-dimensional magnetotelluric imaging. J Geophys Res: Solid Earth. doi:10.1002/2016JB013825 Inpress

    Google Scholar 

  • Liu L, Hasterok D (2016) High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging. Science 353(6307):1515–1519. doi:10.1126/science.aaf6542

    Article  Google Scholar 

  • Love JJ, Bedrosian PA, Schultz A (2017) Down to earth with an electric hazard from space. Space Weather 15(5):658–662. doi:10.1002/2017SW001622

    Article  Google Scholar 

  • Moorkamp M (2017) Integrating electromagnetic data with other geophysical observations for enhanced imaging of the earth: a tutorial and review. Surv Geophys. doi:10.1007/s10712-017-9413-7

    Google Scholar 

  • Naganjaneyulu K, Santosh M (2012) The nature and thickness of lithosphere beneath the Archean Dharwar Craton, southern India: a magnetotelluric model. J Asian Earth Sci 49:349–361. doi:10.1016/j.jseaes.2011.07.002

    Article  Google Scholar 

  • Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan H, Wei W, Jones AG, Booker J, Unsworth M, Kidd WSF, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M (1996) Partially molten middle crust beneath Southern Tibet: synthesis of project INDEPTH results. Science 274(5293):1684–1688. doi:10.1126/science.274.5293.1684

    Article  Google Scholar 

  • Ogawa Y, Honkura Y (2004) Mid-crustal electrical conductors and their correlations to seismicity and deformation at Itoigawa-Shizuoka Tectonic Line, Central Japan. Earth, Planets Space 56(12):1285–1291. doi:10.1186/bf03353352

    Article  Google Scholar 

  • Ogawa Y, Ichiki M, Kanda W, Mishina M, Asamori K (2014) Three-dimensional magnetotelluric imaging of crustal fluids and seismicity around Naruko volcano, NE Japan. Earth, Planets Space 66(1):1–13. doi:10.1186/s40623-014-0158-y

    Article  Google Scholar 

  • Oskooi B, Pedersen LB, Koyi HA (2014) Magnetotelluric signature for the Zagros collision. Geophys J Int 196(3):1299–1310. doi:10.1093/gji/ggt466

    Article  Google Scholar 

  • Oskooi B, Mansoori I, Pedersen LB, Koyi HA (2015) A Magnetotelluric Survey of Ophiolites in the Neyriz area of southwestern Iran. Pure Appl Geophys 172(2):491–502. doi:10.1007/s00024-014-0925-5

    Article  Google Scholar 

  • Patro PK, Sarma SVS (2009) Lithospheric electrical imaging of the Deccan trap covered region of western India. J Geophys Res: Solid Earth. doi:10.1029/2007JB005572

    Google Scholar 

  • Patro PK, Sarma SVS (2016) Evidence for an extensive intrusive component of the Deccan Large Igneous Province in the Narmada Son Lineament region, India from three dimensional magnetotelluric studies. Earth Planet Sci Lett 451:168–176. doi:10.1016/j.epsl.2016.07.005

    Article  Google Scholar 

  • Patro BPK, Brasse H, Sarma SVS, Harinarayana T (2005) Electrical structure of the crust below the Deccan Flood Basalts (India), inferred from magnetotelluric soundings. Geophys J Int 163(3):931–943. doi:10.1111/j.1365-246X.2005.02789.x

    Article  Google Scholar 

  • Patro PK, Sarma SVS, Naganjaneyulu K (2014) Three-dimensional lithospheric electrical structure of Southern Granulite Terrain, India and its tectonic implications. J Geophys Res: Solid Earth 119(1):71–82. doi:10.1002/2013JB010430

    Article  Google Scholar 

  • Pavan Kumar G, Manglik A, Thiagarajan S (2014) Crustal geoelectric structure of the Sikkim Himalaya and adjoining Gangetic foreland basin. Tectonophysics 637:238–250. doi:10.1016/j.tecto.2014.10.009

    Article  Google Scholar 

  • Petrishchev MS, Semenov VY (2013) Secular variations of the Earth’s apparent resistivity. Earth Planet Sci Lett 361:1–6. doi:10.1016/j.epsl.2012.11.027

    Article  Google Scholar 

  • Qiu J (2013) China’s exquisite look at earth’s rocky husk wins raves. Science 341(6141):20

    Article  Google Scholar 

  • Rawat G, Arora BR, Gupta PK (2014) Electrical resistivity cross-section across the Garhwal Himalaya: proxy to fluid-seismicity linkage. Tectonophysics 637:68–79. doi:10.1016/j.tecto.2014.09.015

    Article  Google Scholar 

  • Rippe D, Unsworth M (2010) Quantifying crustal flow in Tibet with magnetotelluric data. Phys Earth Planet Inter 179(3–4):107–121. doi:10.1016/j.pepi.2010.01.009

    Article  Google Scholar 

  • Rippe D, Unsworth MJ, Currie CA (2013) Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: implications for rheology. J Geophys Res: Solid Earth 118(10):5601–5624. doi:10.1002/jgrb.50255

    Article  Google Scholar 

  • Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66(1):174–187. doi:10.1190/1.1444893

    Article  Google Scholar 

  • Safonova I, Maruyama S (2014) Asia: a frontier for a future supercontinent Amasia. Int Geol Rev 56(9):1051–1071. doi:10.1080/00206814.2014.915586

    Article  Google Scholar 

  • Sass P, Ritter O, Ratschbacher L, Tympel J, Matiukov VE, Rybin AK, Batalev VY (2014) Resistivity structure underneath the Pamir and Southern Tian Shan. Geophys J Int 198(1):564–579. doi:10.1093/gji/ggu146

    Article  Google Scholar 

  • Siripunvaraporn W, Egbert G (2009) WSINV3DMT: vertical magnetic field transfer function inversion and parallel implementation. Phys Earth Planet Inter 173(3–4):317–329. doi:10.1016/j.pepi.2009.01.013

    Article  Google Scholar 

  • Siripunvaraporn W, Egbert G, Lenbury Y, Uyeshima M (2005) Three-dimensional magnetotelluric inversion: data-space method. Phys Earth Planet Inter 150(1–3):3–14. doi:10.1016/j.pepi.2004.08.023

    Article  Google Scholar 

  • Solon KD, Jones AG, Nelson KD, Unsworth MJ, Kidd WF, Wei W, Tan H, Jin S, Deng M, Booker JR, Li S, Bedrosian P (2005) Structure of the crust in the vicinity of the Banggong-Nujiang suture in central Tibet from INDEPTH magnetotelluric data. J Geophys Res: Solid Earth. doi:10.1029/2003JB002405

    Google Scholar 

  • Tank SB, Honkura Y, Ogawa Y, Oshiman N, Tunçer MK, Matsushima M, Çelik C, Tolak E, Işıkara AM (2003) Resistivity structure in the western part of the fault rupture zone associated with the 1999 İzmit earthquake and its seismogenic implication. Earth, Planets Space 55(7):437–442. doi:10.1186/bf03351777

    Article  Google Scholar 

  • Tank SB, Honkura Y, Ogawa Y, Matsushima M, Oshiman N, Tunçer MK, Çelik C, Tolak E, Işıkara AM (2005) Magnetotelluric imaging of the fault rupture area of the 1999 İzmit (Turkey) earthquake. Phys Earth Planet Inter 150(1–3):213–225. doi:10.1016/j.pepi.2004.08.033

    Article  Google Scholar 

  • Thiel S, Heinson G, Gray DR, Gregory RT (2009) Ophiolite emplacement in NE Oman: constraints from magnetotelluric sounding. Geophys J Int 176(3):753–766. doi:10.1111/j.1365-246X.2008.04053.x

    Article  Google Scholar 

  • Türkoğlu E, Unsworth M, Çağlar İ, Tuncer V, Avşar Ü (2008) Lithospheric structure of the Arabia-Eurasia collision zone in eastern Anatolia: magnetotelluric evidence for widespread weakening by fluids? Geology 36(8):619–622. doi:10.1130/g24683a.1

    Article  Google Scholar 

  • Türkoğlu E, Unsworth M, Bulut F, Çağlar İ (2015) Crustal structure of the North Anatolian and East Anatolian Fault Systems from magnetotelluric data. Phys Earth Planet Inter 241:1–14. doi:10.1016/j.pepi.2015.01.003

    Article  Google Scholar 

  • Unsworth M (2010) Magnetotelluric studies of active continent-continent collisions. Surv Geophys 31(2):137–161. doi:10.1007/s10712-009-9086-y

    Article  Google Scholar 

  • Unsworth M, Wenbo W, Jones AG, Li S, Bedrosian P, Booker J, Sheng J, Ming D, Handong T (2004) Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. J Geophys Res: Solid Earth. doi:10.1029/2002JB002305

    Google Scholar 

  • Unsworth M, Jones AG, Wei W, Marquis G, Gokarn SG, Spratt JE (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438(7064):78–81. doi:10.1038/nature04154

    Article  Google Scholar 

  • Uyeshima M (2007) EM Monitoring of crustal processes including the use of the network-MT Observations. Surv Geophys 28(2):199–237. doi:10.1007/s10712-007-9023-x

    Article  Google Scholar 

  • Uyeshima M, Ogawa Y, Honkura Y, Koyama S, Ujihara N, Mogi T, Yamaya Y, Harada M, Yamaguchi S, Shiozaki I, Noguchi T, Kuwaba Y, Tanaka Y, Mochido Y, Manabe N, Nishihara M, Saka M, Serizawa M (2005) Resistivity imaging across the source region of the 2004 Mid-Niigata Prefecture earthquake (M6.8), central Japan. Earth, Planets Space 57(5):441–446. doi:10.1186/bf03351831

    Article  Google Scholar 

  • Vozar J, Jones AG, Fullea J, Agius MR, Lebedev S, Le Pape F, Wei W (2014) Integrated geophysical-petrological modeling of lithosphere-asthenosphere boundary in central Tibet using electromagnetic and seismic data. Geochem Geophys Geosyst 15(10):3965–3988. doi:10.1002/2014GC005365

    Article  Google Scholar 

  • Wang X, Zhang G, Fang H, Luo W, Zhang W, Zhong Q, Cai X, Luo H (2014) Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau. Tectonophysics 619–620:143–148. doi:10.1016/j.tecto.2013.09.011

    Article  Google Scholar 

  • Wang G, Wei W, Ye G, Jin S, Jing J, Zhang L, Dong H, Xie C, Omisore BO, Guo Z (2017) 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet. Earth Planet Sci Lett 474:172–179. doi:10.1016/j.epsl.2017.06.027

    Article  Google Scholar 

  • Wei W, Unsworth M, Jones A, Booker J, Tan H, Nelson D, Chen L, Li S, Solon K, Bedrosian P, Jin S, Deng M, Ledo J, Kay D, Roberts B (2001) Detection of widespread fluids in the tibetan crust by magnetotelluric studies. Science 292(5517):716–719. doi:10.1126/science.1010580

    Article  Google Scholar 

  • Wei W, Ye G, Jin S, Deng M, Je Jing, Peng Z, Lin X, Song S, Tang B, Qu S, Chen K, Yang H, Li G (2008) Geoelectric structure of lithosphere beneath Eastern North China: features of thinned lithosphere from magnetotelluric soundings. Earth Sci Front 15(4):204–216. doi:10.1016/S1872-5791(08)60055-X

    Article  Google Scholar 

  • Wei W, Jin S, Ye G, Deng M, Jing J, Unsworth M, Jones AG (2010) Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super-broadband magnetotelluric sounding. Sci China Earth Sci 53(2):189–202. doi:10.1007/s11430-010-0001-7

    Article  Google Scholar 

  • Wei WB, Le Pape F, Jones AG, Vozar J, Dong H, Unsworth MJ, Jin S, Ye GF, Jing JN, Zhang LT, Xie CL (2014) Northward channel flow in northern Tibet revealed from 3D magnetotelluric modelling. Phys Earth Planet Inter 235:13–24. doi:10.1016/j.pepi.2014.07.004

    Article  Google Scholar 

  • Wu C, Yin A, Zuza AV, Zhang J, Liu W, Ding L (2016) Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere 8(3):254–292. doi:10.1130/l494.1

    Article  Google Scholar 

  • Xiao Q, Zhao G, Dong Z (2011) Electrical resistivity structure at the northern margin of the Tibetan Plateau and tectonic implications. J Geophys Res: Solid Earth. doi:10.1029/2010JB008163

    Google Scholar 

  • Xiao Q, Zhang J, Wang J, Zhao G, Tang J (2012) Electrical resistivity structures between the Northern Qilian Mountains and Beishan Block, NW China, and tectonic implications. Phys Earth Planet Inter 200–201:92–104. doi:10.1016/j.pepi.2012.04.008

    Article  Google Scholar 

  • Xiao Q, Zhang J, Zhao G, Wang J (2013) Electrical resistivity structures northeast of the Eastern Kunlun Fault in the Northeastern Tibet: tectonic implications. Tectonophysics 601:125–138. doi:10.1016/j.tecto.2013.05.003

    Article  Google Scholar 

  • Xiao Q, Shao G, Liu-Zeng J, Oskin ME, Zhang J, Zhao G, Wang J (2015a) Eastern termination of the Altyn Tagh Fault, western China: Constraints from a magnetotelluric survey. J Geophys Res: Solid Earth:2014. doi:10.1002/2014JB011363

  • Xiao W, Windley BF, Sun S, Li J, Huang B, Han C, Yuan C, Sun M, Chen H (2015b) A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences 43(1):16.11–31

  • Xiao Q, Shao G, Yu G, Cai J, Wang J (2016) Electrical resistivity structures of the Kunlun–Qaidam–Qilian system at the northern Tibet and their tectonic implications. Phys Earth Planet Inter 255:1–17. doi:10.1016/j.pepi.2016.03.011

    Article  Google Scholar 

  • Xiao Q, Yu G, Liu-Zeng J, Oskin ME, Shao G (2017) Structure and geometry of the Aksay restraining double bend along the Altyn Tagh Fault, northern Tibet, imaged using magnetotelluric method. Geophys Res Lett 44(9):4090–4097. doi:10.1002/2017GL072581

    Article  Google Scholar 

  • Xie C, Jin S, Wei W, Ye G, Jing J, Zhang L, Dong H, Yin Y, Wang G, Xia R (2016) Crustal electrical structures and deep processes of the eastern Lhasa terrane in the south Tibetan plateau as revealed by magnetotelluric data. Tectonophysics 675:168–180. doi:10.1016/j.tecto.2016.03.017

    Article  Google Scholar 

  • Xiong X, Gao R, Li Y, Hou H, Liang H, Li W, Guo L, Lu Z (2015) The lithosphere structure of the Great Xing’an Range in the eastern Central Asian Orogenic Belt: constrains from the joint geophysical profiling. J Asian Earth Sci 113:481–490. doi:10.1016/j.jseaes.2015.06.006

    Article  Google Scholar 

  • Xu GJ, Tang J, Huang QH, Makoto U (2015) Study on the conductivity structure of the upper mantle and transition zone beneath North China. Chinese Journal of Geophysics- Chinese Edition 58(2):566–575

    Google Scholar 

  • Xu Y, Yang B, Zhang S, Liu Y, Zhu L, Huang R, Chen C, Li Y, Luo Y (2016a) Magnetotelluric imaging of a fossil paleozoic intraoceanic subduction zone in western Junggar, NW China. J Geophys Res: Solid Earth doi:10.1002/2015JB012394

  • Xu Y, Zhang S, Griffin WL, Yang Y, Yang B, Luo Y, Zhu L, Afonso JC, Lei B (2016b) How did the Dabie Orogen Collapse? Insights from 3D Magnetotelluric Imaging of Profile Data. J Geophys Res: Solid Earth doi:10.1002/2015JB012717

  • Yin A (2010) Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488(1–4):293–325. doi:10.1016/j.tecto.2009.06.002

    Article  Google Scholar 

  • Yin Y, Jin S, Wei W, Santosh M, Dong H, Xie C (2016) Construction and destruction of the North China Craton with implications for metallogeny: magnetotelluric evidence from the Hengshan–Wutai–Fuping region within Trans-North China Orogen. Gondwana Res 40:21–42. doi:10.1016/j.gr.2016.08.001

    Article  Google Scholar 

  • Yin Y, Wei W, Jin S, Santosh M (2017) Fossil oceanic subduction zone beneath the western margin of the Trans-North China orogen: magnetotelluric evidence from the Lüliang Complex. Precambrian Research:Inpress doi:https://doi.org/10.1016/j.precamres.2017.01.012

  • Yoshimura R, Oshiman N, Uyeshima M, Ogawa Y, Mishina M, Toh H, Sakanaka Sy, Ichihara H, Shiozaki I, Ogawa T, Miura T, Koyama S, Fujita Y, Nishimura K, Takagi Y, Imai M, Honda R, Yabe S, Nagaoka S, Tada M, Mogi T (2008) Magnetotelluric observations around the focal region of the 2007 Noto Hanto Earthquake (Mj 6.9), Central Japan. Earth, Planets and Space 60(2):117–122 doi:10.1186/bf03352771

  • Yoshimura R, Oshiman N, Uyeshima M, Toh H, Uto T, Kanezaki H, Mochido Y, Aizawa K, Ogawa Y, Nishitani T, Sakanaka S, Mishina M, Satoh H, Goto T, Kasaya T, Yamaguchi S, Murakami H, Mogi T, Yamaya Y, Harada M, Shiozaki I, Honkura Y, Koyama S, Nakao S, Wada Y, Fujita Y (2009) Magnetotelluric transect across the Niigata-Kobe Tectonic Zone, central Japan: A clear correlation between strain accumulation and resistivity structure. Geophys Res Lett. doi:10.1029/2009GL040016

    Google Scholar 

  • Zeng S, Hu X, Li J, Xu S, Fang H, Cai J (2015) Detection of the deep crustal structure of the Qiangtang terrane using magnetotelluric imaging. Tectonophysics 661:180–189. doi:10.1016/j.tecto.2015.08.038

    Article  Google Scholar 

  • Zhan Y, Zhao G, Unsworth M, Wang L, Chen X, Li T, Xiao Q, Wang J, Tang J, Cai J, Wang Y (2013) Deep structure beneath the southwestern section of the Longmenshan fault zone and seimogenetic context of the 4.20 Lushan M S7.0 earthquake. Chin Sci Bull 58(28):3467–3474. doi:10.1007/s11434-013-6013-x

    Article  Google Scholar 

  • Zhang L-T, Jin S, Wei W-B, Ye G-F, Duan S-X, Dong H, Zhang F, Xie C-L (2012) Electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau and the Sichuan basin. Chin J Geophys-Chin Ed 55(12):4126–4137

    Google Scholar 

  • Zhang L, Jin S, Wei W, Ye G, Jing J, Dong H, Xie C (2015a) Lithospheric electrical structure of South China imaged by magnetotelluric data and its tectonic implications. J Asian Earth Sci 98:178–187. doi:10.1016/j.jseaes.2014.10.034

    Article  Google Scholar 

  • Zhang L, Unsworth M, Jin S, Wei W, Ye G, Jones AG, Jing J, Dong H, Xie C, Le Pape F, Vozar J (2015b) Structure of the Central Altyn Tagh Fault revealed by magnetotelluric data: new insights into the structure of the northern margin of the India-Asia collision. Earth Planet Sci Lett 415:67–79. doi:10.1016/j.epsl.2015.01.025

    Article  Google Scholar 

  • Zhang L, Ye G, Jin S, Wei W, Unsworth M, Jones AG, Jing J, Dong H, Xie C, Le Pape F, Vozar J (2015c) Lithospheric electrical structure across the Eastern segment of the Altyn Tagh fault on the Northern margin of the Tibetan Plateau. Acta Geologica Sinica–English Ed 89(1):90–104. doi:10.1111/1755-6724.12397

    Article  Google Scholar 

  • Zhang H, Huang Q, Zhao G, Guo Z, Chen YJ (2016) Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: evidence for a mantle source of Datong volcanoes. Earth Planet Sci Lett 453:182–192. doi:10.1016/j.epsl.2016.08.025

    Article  Google Scholar 

  • Zhao G, Unsworth MJ, Zhan Y, Wang L, Chen X, Jones AG, Tang J, Xiao Q, Wang J, Cai J, Li T, Wang Y, Zhang J (2012) Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology 40(12):1139–1142. doi:10.1130/g33703.1

    Article  Google Scholar 

  • Zheng T, Zhao L, Zhu R (2009) New evidence from seismic imaging for subduction during assembly of the North China craton. Geology 37(5):395–398. doi:10.1130/g25600a.1

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Prof. Ian Ferguson and the program committee of 23rd EMIW for their kind invitation to present this review. The author would also like to thank Prof. Wenbo Wei, Prof. Sheng Jin, Prof. Gaofeng Ye and other colleagues from the CUGB MT group for their support in finishing this review. Dr. Abdul Azeez, Prof. Alan Jones, Prof. Behrooz Oskooi, Prof. Gary Egbert, Dr. Makoto Uyeshima, Prof. Martyn Unsworth, Prof. Oliver Ritter, Dr. Prasanta Patro, Dr. Stephan Thiel, Dr. Ted Bertrand, Prof. Vladimir Semenov, Prof. Yasuo Ogawa, as well as many other colleagues whose work have been cited in this review, are highly appreciated for their contribution to this paper. Sincere thanks to Dr. Kiyoshi Baba and the other two anonymous reviewers, whose detailed comments and constructive suggestions helped to make the manuscript more comprehensive and solid. This work was jointly supported by Project SinoProbe (SinoProbe-01, SinoProbe-02-04), National Natural Science Foundation of China (41774087, 41404060, 41404059), Fundamental Research Funds for the Central Universities (2652017417), and Open Fund of Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education (GDL1501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L. A Review of Recent Developments in the Study of Regional Lithospheric Electrical Structure of the Asian Continent. Surv Geophys 38, 1043–1096 (2017). https://doi.org/10.1007/s10712-017-9424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-017-9424-4

Keywords

Navigation