Skip to main content

GOCO05c: A New Combined Gravity Field Model Based on Full Normal Equations and Regionally Varying Weighting


GOCO05c is a gravity field model computed as a combined solution of a satellite-only model and a global data set of gravity anomalies. It is resolved up to degree and order 720. It is the first model applying regionally varying weighting. Since this causes strong correlations among all gravity field parameters, the resulting full normal equation system with a size of 2 TB had to be solved rigorously by applying high-performance computing. GOCO05c is the first combined gravity field model independent of EGM2008 that contains GOCE data of the whole mission period. The performance of GOCO05c is externally validated by GNSS–levelling comparisons, orbit tests, and computation of the mean dynamic topography, achieving at least the quality of existing high-resolution models. Results show that the additional GOCE information is highly beneficial in insufficiently observed areas, and that due to the weighting scheme of individual data the spectral and spatial consistency of the model is significantly improved. Due to usage of fill-in data in specific regions, the model cannot be used for physical interpretations in these regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. Andersen OB, Knudsen P, Berry PAM (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199. doi:10.1007/s00190-009-0355-9

    Article  Google Scholar 

  2. Andersen OB, Knudsen P, Kenyon SC, Factor JK, Holmes S (2013) The DTU13 Global marine gravity field—first evaluation. OSTST Meeting, Boulder, CO.

  3. Anderson OB, Knudsen P, Stenseng L (2015) The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 years of satellite altimetry. In: International association of geodesy symposia. Springer, pp 1–10. doi:10.1007/1345-2015_1

  4. Bingham RJ, Haines K, Hughes CW (2008) Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid. J Atmos Ocean Technol 25(10):1808–1822. doi:10.1175/2008JTECHO568.1

    Article  Google Scholar 

  5. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett. doi:10.1029/2010GL045633

    Google Scholar 

  6. Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh W-D (2014) EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41:8089–8099. doi:10.1002/2014GL061904

    Article  Google Scholar 

  7. Colombo O (1981) Numerical methods for harmonic analysis on the sphere. Department of Geodetic Science, Report No. 310, The Ohio State University, Columbus, Ohio

  8. Denker H, Barriot JP, Barzaghi R, Fairhead D, Forsberg R, Ihde J (2008) A new European gravimetric quasigeoid EGG2008. In: International symposium on ‘gravity, geoid and earth observation 2008’, Chania, Greece

  9. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G et al (eds) Earth gravity field from space—from sensors to earth science, space sciences series of ISSI, vol 18. Kluwer Academic Publishers, Dordrecht, pp 419–432. ISBN 1-4020-1408-2

    Chapter  Google Scholar 

  10. Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Geod 63(3):281–296. doi:10.1007/BF02520477

    Article  Google Scholar 

  11. Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian Height Datum. J Geod 85(3):133–150. doi:10.1007/s00190-010-0422-2

    Article  Google Scholar 

  12. Fecher T (2015) Globale kombinierte Schwerefeldmodellierung auf Basis voller Normalgleichungssysteme. Dissertation, Technical University of Munich, Munich, Germany

  13. Fecher T, Pail R, Gruber T (2015) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs 35:120–127. doi:10.1016/j.jag.2013.10.005

    Article  Google Scholar 

  14. Forsberg R, Kenyon SC (2004) Gravity and geoid in the Arctic region—The Northern Polar Gap now filled. In: GOCE, the geoid and oceanography. ESA/ESRIN, Frascati, Italy

  15. Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Schaller T, Götze H-J, Ebbing J, Marty JC, Flechtner F, Balmino G, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. In: The 5th GOCE user workshop, 25–28 Nov 2014, Paris, France

  16. Grombein T, Seitz K, Heck B (2013) Topographic-isostatic reduction of GOCE gravity gradients. In: Proceedings of the XXV general assembly of the international union of geodesy and geophysics. Melbourne, Australia

  17. Gruber T (2001) High-resolution gravity field modeling with full variance-covariance matrices. J Geod 75(9):505–514. doi:10.1007/s001900100202

    Article  Google Scholar 

  18. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85(11):845–860. doi:10.1007/s00190-011-0486-7

    Article  Google Scholar 

  19. Gruber T, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci. doi:10.2478/v10156-012-0001-y

    Google Scholar 

  20. Hirt C, Kuhn M (2014) Band-limited topographic mass distribution generates full-spectrum gravity field: gravity forward modeling in the spectral and spatial domains revisited. J Geophy Res Solid Earth 119(4):3646–3661. doi:10.1002/2013JB010900

    Article  Google Scholar 

  21. Kenyon SC, Pavlis NK (1996) The development of a global surface gravity data base to be used in the joint DMA/GSFC geopotential model. In: Proceedings of IAG symposium No. 116, global gravity field and its temporal variations. Springer, Berlin

  22. Knudsen P, Bingham R, Andersen O, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879. doi:10.1007/s00190-011-0485-8

    Article  Google Scholar 

  23. Koch K-R, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76(5):259–268. doi:10.1007/s00190-002-0245-x

    Article  Google Scholar 

  24. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imaery and Mapping Agency (NIMA) geopotential model EGM96. Greenbelt, MD

    Google Scholar 

  25. Maximenko N, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Tech 26(9):1910–1919

    Article  Google Scholar 

  26. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, Universität Bonn, Bonn, Germany

  27. Mayer-Gürr T, the GOCO Team (2015) The combined satellite gravity field model GOCO05s. EGU2015-12364, EGU General Assembly, Vienna, Austria

  28. Mayer-Gürr T, Zehentner N, Klinger B, Kvas A (2014) ITSG-Grace2014: a new GRACE gravity field release computed in Graz. GRACE Science Team Meeting (GSTM), Potsdam, Germany

  29. McKenzie D, Yi W, Rummel R (2014) Estimates of Te from GOCE data. Earth Planet Sci Lett 399:116–127. doi:10.1016/j.epsl.2014.05.003

    Article  Google Scholar 

  30. Moritz H (1980) Advanced physical geodesy. Wichmann, Karlsruhe. ISBN 3879071063

    Google Scholar 

  31. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett. doi:10.1029/2010GL044906

    Google Scholar 

  32. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  33. Pavlis NK (1988) Modeling and estimation of a low degree geopotential model from terrestrial gravity data. OSU Report No. 386, The Ohio State University, Columbus, Ohio

  34. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res. doi:10.1029/2011JB008916

    Google Scholar 

  35. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2013) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)—erratum. J Geophys Res. doi:10.1002/jgrb.50167

    Google Scholar 

  36. Rapp RH, Pavlis NK (1990) The development and analysis of geopotential coefficient models to spherical harmonic degree 360. J Geophys Res 95(B13):21885–21911. doi:10.1029/JB095iB13p21885

    Article  Google Scholar 

  37. Rummel R (2012) Height unification using GOCE. J Geod Sci. doi:10.2478/v10156-011-0047-2

    Google Scholar 

  38. Schneider M (1967) Lösungsvorschlag zum Bahnbestimmungsproblem. Forschungsbericht FB W 67-35, Deutsche Gesellschaft für Flugwissenschaften

  39. Siegismund F (2013) Assessment of optimally filtered recent geodetic mean dynamic topographies. J Geophy Res Oceans 118(1):108–117. doi:10.1029/2012JC008149

    Article  Google Scholar 

  40. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett. doi:10.1029/2004GL019920

    Google Scholar 

  41. Torge W, Müller J (2012) Geodesy, 4th edn. De Gruyter, Berlin. ISBN 978-3-11-025000-8

    Book  Google Scholar 

  42. van der Meijde M, Julià J, Assumpção M (2013) Gravity derived Moho for South America. Tectonophysics 609:456–467. doi:10.1016/j.tecto.2013.03.023

    Article  Google Scholar 

  43. Wenzel HG (1985) Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde. Universität Hannover, Hannover

    Google Scholar 

  44. Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci. doi:10.2478/v10156-012-0004-8

    Google Scholar 

Download references


We acknowledge the provision of regional terrestrial and altimetric data sets by the institutions mentioned in Sect. 2, and the provision of extensive supercomputing resources by the Leibniz Supercomputing Centre (LRZ; Address: Boltzmannstraße 1, 85748 Garching bei München, Germany). We also thank two anonymous reviewers; their comments and suggestions helped to improve the paper significantly.

Author information




Corresponding author

Correspondence to T. Fecher.

Additional information

The names of members of the GOCO Consortium are given in Appendix



GOCO Consortium Comprises: W-D Schuh, J Kusche, JM Brockmann, I Loth, S Müller, A Eicker, J Schall (University of Bonn, Institute of Geodesy and Geoinformation), T Mayer-Gürr, A Kvas, B Klinger, D Rieser, N Zehentner (Graz University of Technology, Institute of Geodesy), O Baur, E Höck, S Krauss (Austrian Academy of Sciences, Space Research Institute), A Jäggi, U Meyer, L Prange, A Maier (University of Bern, Astronomical Institute).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fecher, T., Pail, R., Gruber, T. et al. GOCO05c: A New Combined Gravity Field Model Based on Full Normal Equations and Regionally Varying Weighting. Surv Geophys 38, 571–590 (2017).

Download citation


  • Gravity
  • Combined gravity field model
  • Full normal equation systems
  • High-performance computing
  • Stochastic model