Skip to main content

Advertisement

Log in

The Twentieth-Century Sea Level Budget: Recent Progress and Challenges

Surveys in Geophysics Aims and scope Submit manuscript

Abstract

For coastal areas, given the large and growing concentration of population and economic activity, as well as the importance of coastal ecosystems, sea level rise is one of the most damaging aspects of the warming climate. Huge progress in quantifying the cause of sea level rise and closure of sea level budget for the period since the 1990s has been made mainly due to the development of the global observing system for sea level components and total sea levels. We suggest that a large spread (1.2 ± 0.2–1.9 ± 0.3 mm year−1) in estimates of sea level rise during the twentieth century from several reconstructions demonstrates the need for and importance of the rescue of historical observations from tide gauges, with a focus on the beginning of the twentieth century. Understanding the physical mechanisms contributing to sea level rise and controlling the variability of sea level over the past few 100 years are a challenging task. In this study, we provide an overview of the progress in understanding the cause of sea level rise during the twentieth century and highlight the main challenges facing the interdisciplinary sea level community in understanding the complex nature of sea level changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Becker M et al (2012) Sea level variations at tropical Pacific islands since 1950. Glob Planet Change 80–81:85–98

    Article  Google Scholar 

  • Bindoff NL et al (2007) Observations: oceanic climate change and sea level. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 385–432

    Google Scholar 

  • Bjork et al (2012) An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat Geosci 5:427–432

    Article  Google Scholar 

  • Boening C et al (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39:L19602. doi:10.1029/2012GL053055

    Google Scholar 

  • Bradshaw E et al (2015) Sea level data archaeology and the Global Sea Level Observing System (GLOSS). GeoResJ 6:9–16

    Article  Google Scholar 

  • Caldwell P (2012) Tide gauge data rescue. In: Duranti L, Shaffe E (eds) Proceedings of the memory of the world in the digital age: digitization and preservation. Vancouver 2012, pp 134–149

  • Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42:RG3001. doi:10.1029/2003RG000139

    Article  Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173

    Article  Google Scholar 

  • Cazenave A et al (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65:83–88

    Article  Google Scholar 

  • Cazenave A et al (2012) Estimating ENSO influence on the global mean sea level, 1993–2010. Mar Geodesy 35:82–97. doi:10.1080/01490419.2012.718209

    Article  Google Scholar 

  • Cazenave A et al (2014) The rate of sea-level rise. Nat Clim Change 4:358–361

    Article  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi:10.1029/2005GL024826

    Article  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602

    Article  Google Scholar 

  • Church JA et al (2001) Changes in sea level. In: Houghton JT, Ding Y, Griggs DJ, Noquer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Cambridge, pp 639–693

  • Church JA et al (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. doi:10.1029/2011GL048794

    Article  Google Scholar 

  • Church JA et al (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013, the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Dieng HB et al (2015) The sea level budget Since 2003: inference on the deep ocean heat content. Surv Geophys 36:209–229

    Article  Google Scholar 

  • Domingues CM et al (2008) Improved estimates of upper-ocean warming and multi-decadal sea level rise. Nature 453:1090–1093

    Article  Google Scholar 

  • Douglas BC (1997) Global sea rise: a redetermination. Surv Geophys 18:270–292

    Article  Google Scholar 

  • Grinsted A et al (2007) Observational evidence for volcanic impact on sea level and the global water cycle. PNAS 104:19730–19734. doi:10.1073/pnas.0705825104

  • Gornitz V et al (1982) Global sea level trend in the past century. Science 215:1611–1614. doi:10.1126/science.215.4540.1611

    Article  Google Scholar 

  • Gregory JM et al (2013) Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J Clim. doi:10.1175/JCLI-D-12-00319.1

    Google Scholar 

  • Hallegatte S et al (2013) Future flood losses in major coastal cities. Nat Clim Change 3:802–806. doi:10.1038/nclimate1979

    Article  Google Scholar 

  • Hamlington B, Thompson P (2015) Considerations for estimating the 20th century trend in global mean sea level. Geophys Res Lett 42:4102–4109. doi:10.1002/2015GL064177

    Article  Google Scholar 

  • Hay C et al (2015) Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:481–484. doi:10.1038/nature14093

    Article  Google Scholar 

  • Hegerl GC et al (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 663–745

  • Holgate et al (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29:493–504

    Article  Google Scholar 

  • Houghton et al (1990) Climate change 1990: the science of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jacob T et al (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature. doi:10.1038/nature10847

    Google Scholar 

  • Jevrejeva S et al (2006) Nonlinear trends and multi-year cycle in sea level records. J Geophys Res 111 (2005JC003229). doi:10.1029/2005JC003229

  • Jevrejeva S et al (2008) Relative importance of mass and volume changes to global sea level rise. J Geophys Res 113:D08105. doi:10.1029/2007JD009208

    Article  Google Scholar 

  • Jevrejeva S et al (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07703 (2010GL042947)

    Article  Google Scholar 

  • Jevrejeva S et al (2012) Potential for bias in 21st century semiempirical sea level projections. J Geophys Res 117:D20116. doi:10.1029/2012JD017704

    Article  Google Scholar 

  • Jevrejeva S et al (2014) Upper limit for sea level projections by 2100. Environ Res Lett 9:104008

    Article  Google Scholar 

  • King MA et al (2012) Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement. Geophys Res Lett 39:L14604

    Article  Google Scholar 

  • Kjeldsen KK et al (2015) Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 528:396–400

    Article  Google Scholar 

  • Leclercq PW, Oerlemans J, Cogley JG (2011) Estimating the glacier contribution to sea-level rise over the period 1800–2005. Surv Geophys 32:519–535. doi:10.1007/s10712-011-9121-7

    Article  Google Scholar 

  • Leuliette EW, Scharroo R (2010) Integrating Jason-2 into a multiple-altimeter climate data record. Mar Geodesy 33:504

    Article  Google Scholar 

  • Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24:122–129

    Article  Google Scholar 

  • Marcos M et al (2011) The long sea level record at Cadiz (southern Spain) from 1880 to 2009. J Geophys Res 116(C12):1978–2012

    Article  Google Scholar 

  • Marzeion B et al (2012) Past and future sea-level changes from the surface mass balance of glaciers. Cryosphere 6:1295–1322

    Article  Google Scholar 

  • Marzeion B, Leclercq PW, Cogley JG, Jarosch AH (2015) Brief communication: global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere 9:2399–2404. doi:10.5194/tc-9-2399-2015

    Article  Google Scholar 

  • Meehl GA et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge

  • Merrifield MA et al (2009) An anomalous recent acceleration of global sea level rise. J Clim 22:5772–5781. doi:10.1175/2009JCLI2985.1

    Article  Google Scholar 

  • Mitrovica JX et al (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029

    Article  Google Scholar 

  • Mitrovica JX et al (2015) Reconciling past changes in Earth rotation with 20th century global sea-level rise: resolving Munk’s enigma. Sci Adv 1(11), Article e1500679

  • Moore JC et al (2011) The historical sea level budget. Ann Glac 52:59

    Article  Google Scholar 

  • Moore JC et al (2013) Semi-empirical and process-based global sea level projections. Rev Geophys. doi:10.1002/rog.20015

    Google Scholar 

  • Munk W (2002) Twentieth century sea level: an enigma. Proc Natl Acad Sci USA 99:6550–6555

    Article  Google Scholar 

  • Neckel et al (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ Res Lett 9:014009. doi:10.1088/1748-9326/9/1/014009

    Article  Google Scholar 

  • Peltier WR (2001) Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In: Douglas BC, Kearney MS, Leatherman SP (eds) Sea level rise. Elsevier, New York, pp 65–93

    Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Peltier WR et al (2015) Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth. doi:10.1002/2014JB011176

    Google Scholar 

  • Pouvreau N (2008) Trois cents ans de mesures marégraphiques en France: outils, méthodes et tendances des composantes du niveau de la mer au port de Brest. Université de La Rochelle. Ph.D. thesis

  • Ray RD, Douglas BC (2011) Experiments in reconstructing twentieth-century sea levels. Prog Oceanogr 91:496–515. doi:10.1016/j.pocean.2011.07.021

    Article  Google Scholar 

  • Schutz BE et al (2005) Overview of the ICESat Mission. Geophys Res Lett 32:L21S01. doi:10.1029/2005GL024009

    Article  Google Scholar 

  • Shepherd A et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189

    Article  Google Scholar 

  • Slangen A et al (2016) Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat Clim Change 6:701–705. doi:10.1038/NCLIMATE2991

    Article  Google Scholar 

  • Talke SA, Jay DA (2013) Nineteenth century North American and Pacific tidal data: lost or just forgotten? J Coast Res 29(6a):118–127

    Article  Google Scholar 

  • Testut L, Miguez BM, Wöppelmann G, Tiphaneau P, Pouvreau N, Karpytchev M (2010) Sea level at Saint Paul Island, southern Indian Ocean, from 1874 to the present. J Geophys Res (1978–2012) 115(C12028). doi:10.1029/2010JC006404

  • Thompson et al (2016) Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys Res Lett. doi:10.1002/2016GL070552

    Google Scholar 

  • von Schuckmann K, Le Traon PY (2011) How well can we derive Global Ocean Indicators from Argo data? Ocean Sci 7:783–791

    Article  Google Scholar 

  • Warrick RA, Oerlemans J (1990) Sea level rise. In: Climate change, The IPCC Scientific Assessment, pp 260–281

  • Warrick RA et al (1996) Changes in sea level. In: Houghton JT, Meira LG, Callander A, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 359–405

  • Wenzel M, Schroter J (2010) Reconstruction of regional mean sea level anomalies from tide gauges using neural networks. J Geophys Res. doi:10.1029/2009JC005630

    Google Scholar 

  • Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys 54:64–92. doi:10.1002/2015RG000502

    Article  Google Scholar 

  • Wöppelmann G et al (2008) Tide gauge datum continuity at Brest since 1711: France’s longest sea-level record. Geophys Res Lett 35:L22605. doi:10.1029/2008GLO35783

    Article  Google Scholar 

  • Wöppelmann G et al (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607. doi:10.1029/2009GL038720

    Article  Google Scholar 

  • Wöppelmann G et al (2014) Rescue of the historical sea level record of Marseille (France) from 1885 to 1988, and its extension back to 1849–1851. J Geodesy 88:869–885

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a result of the ISSI Workshop on Integrative Study of Sea Level, held in Bern, Switzerland, February 2–6, 2015. We would like to thank anonymous reviewers for helpful comments that improved our manuscript. This publication has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No: FP7-ENV-2013-Two-Stage-603396-RISES-AM. A. M. and S. J. partially supported by the Natural Environment Research Council National Capability funding. A. S. was supported by the NWO-Netherlands Polar Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jevrejeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jevrejeva, S., Matthews, A. & Slangen, A. The Twentieth-Century Sea Level Budget: Recent Progress and Challenges. Surv Geophys 38, 295–307 (2017). https://doi.org/10.1007/s10712-016-9405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9405-z

Keywords

Navigation