Surveys in Geophysics

, Volume 38, Issue 1, pp 89–104 | Cite as

Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level

  • Rene ForsbergEmail author
  • Louise Sørensen
  • Sebastian Simonsen


Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.


Greenland ice sheet Antarctica mass loss GRACE Envisat CryoSat 



This paper is based on a presentation at the Workshop of the International Space Science Institute (ISSI), Bern, Switzerland, February 2015. The sea level “fingerprinting” plots in Fig. 1 was provided by V. Barletta. Johan Nilsson, former PhD student at DTU Space, now at NASA-JPL, provided the retracked CryoSat-2 data for Greenland. Torsten Mayr-Gürr, TU Graz, provided early access to the new ITSG-processed GRACE L2 data. Comments by Anny Cazenave and Nicolas Champollion improved the original manuscript.


  1. Barletta VR, Sørensen LS, Forsberg R (2013) Variability of mass changes at basin scale for Greenland and Antarctica. Cryosphere 6:3397–3446. doi: 10.5194/tcd-6-3397-2012 CrossRefGoogle Scholar
  2. Baur O, Sneeuw N (2011) Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology. J Geodesy 85:607–615. doi: 10.1007/s00190-011-0463-1 CrossRefGoogle Scholar
  3. Bettadpur S (2003) GRACE level-2 gravity field product user handbook. CSR Publ. GR-03-01, University of Texas, Austin.
  4. Boening C, Lebsock M, Landerer F, Stephens G (2012) Snowfall-driven mass change on the East Antarctic ice sheet. Cryosphere. doi: 10.1029/2012GL053316 Google Scholar
  5. Bolsch T, Sørensen LS, Simonsen SB, Mölg N, MacGuth H, Rastner P, Paul F (2013) Mass loss of Greenland’s glaciers and ice caps 2003-8 revealed from ICESat laser altimetry data. Geophys Res Lett 40(5):875–881. doi: 10.1002/grl.50270 CrossRefGoogle Scholar
  6. Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of greenland ice sheet. Science 313:1958–1960. doi: 10.1126/science.1129007 CrossRefGoogle Scholar
  7. Dieng HB, Champollion N, Wada Y, Schrama E, Meyssignac B (2015) Total land water storage change over 2003–13 estimated from a global mass budget approach. Environ Res Lett 10:124010. doi: 10.1088/1748-9326/10/12/124010 CrossRefGoogle Scholar
  8. Ewert H, Groh A, Dietrich R (2012) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J Geodyn 59–60:111–123CrossRefGoogle Scholar
  9. Forsberg, R and Reeh N (2007) Mass change of the Greenland ice sheet from Grace. In: Proceedings of the 1st international symposium of the IGFS, Harita Dergisi, Ankara, vol 18, pp 454–458Google Scholar
  10. Forsberg R, Sørensen L, Levinsen J, Nilsson J (2013) Mass loss of Greenland from GRACE, IceSat and CryoSat. In: Proceedings of the CryoSat workshop, Dresden, ESA Special Publication 717 paper S6-4Google Scholar
  11. Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr H, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gogineni P, Griggs JA, Hindmarsh R, Holmlund P, Holt J, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley K, Leitchenkov G, Leuschen C, Luyendyk B, Matsuoka K, Nogi Y, Nost O, Popov S, Rignot E, Rippin D, Riviera A, Roberts J, Ross N, Siegert M, Smith A, Steinhage D, Studinger M, Sun B, Tinto B, Welch B, Young D, Xiangbin C, Zirizzotti A (2012) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 6:4305–4361. doi: 10.5194/tcd-6-4305-2012 CrossRefGoogle Scholar
  12. Groh A, Ewert H, Fritsche M, Rülke A, Rosenau R, Scheinert M, Dietrich R (2014) Assessing the current evolution of the Greenland ice sheet by means of satellite and ground-based observations. Surv Geophys 35:1459–1480CrossRefGoogle Scholar
  13. Heiskanen W, Moritz H (1967) Physical geodesy. Wheeler, San FrancisoGoogle Scholar
  14. Helm V, Humbert A, Miller H (2014) Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 8:1539–1559CrossRefGoogle Scholar
  15. Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2012) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat Geosci. doi: 10.1038/ngeo316 Google Scholar
  16. Horwath M, Dietrich R (2006) Errors of regional mass variations inferred from GRACE monthly solutions. Geophys Res Lett 33:L07502. doi: 10.1029/2005GL025550 CrossRefGoogle Scholar
  17. Klinger B, Mayer-Gürr T, Behzadpour S, Ellmer M, Kvas A and Zehentner N (2016) The new ITSG-Grace2016 release, EGU General Assembly 2016, Vienna, Austria, doi: 10.13140/RG.2.1.1856.7280Google Scholar
  18. Krabill W, Abdalati W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2000) Greenland ice sheet: high-elevation balance and peripheral thinning. Science 289:428–430CrossRefGoogle Scholar
  19. Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE Time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geodesy 83:903–913. doi: 10.1007/s00190-009-0308-3 CrossRefGoogle Scholar
  20. Lenaerts JTM, Van Meijgaard E, Van den Broeke MR, Ligtenberg SRM, Horwath M, Isaksson E (2013) Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys Res Lett. doi: 10.1002/grl.50559 Google Scholar
  21. Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray DD, Nerem RS, Lemoine FG, McCarthy JJ, Chin DS (2006) Recent Greenland ice mass loss by drainage basin from satellite gravity observations. Science 314:1286–1289. doi: 10.1126/science.1130776 CrossRefGoogle Scholar
  22. Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, Mccarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol. doi: 10.3189/2013JoG12J147 Google Scholar
  23. Mayer-Gürr T, Zehentner N, Klinger B, Kvas A (2014) ITSG-Grace2014: a new GRACE gravity field release computed in Graz. In: GRACE Science Team Meeting (GSTM), PotsdamGoogle Scholar
  24. McMillan M, Shepherd A, Sundal A, Briggs K, Muir A, Ridout A, Hogg A, Wingham D (2014) Increased ice losses from Antarctica detected by CryoSat-2. Geophys Res Lett 41(11):899–3905. doi: 10.1002/2014GL060111 CrossRefGoogle Scholar
  25. Nghiem SV, Hall DK, Mote TL, Tedesco M, Albert MR, Keegan K, Shuman CA, DiGirolamo NE, Neumann G (2012) The extreme melt across the Greenland ice sheet in 2012. Geophys Res Lett. doi: 10.1029/2012GL053611 Google Scholar
  26. Nilsson J, Vallelonga PT, Simonsen SB, Sørensen LS, Forsberg R, Dahl-Jensen D, Hirabayashi M, Goto-Azuma K, Hvidberg CS, Kjær HA, Satow K (2015) Greenland 2012 melt event effects on CryoSat-2 radar altimetry. Geophys Res Lett 42:3919–3926. doi: 10.1002/2015GL063296 CrossRefGoogle Scholar
  27. Nilsson J, Gardner A, Sørensen LS, Forsberg R (2016) Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland ice sheet. Cryosphere 10:2953–2969. doi: 10.5194/tc-10-2953-2016 CrossRefGoogle Scholar
  28. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32:111CrossRefGoogle Scholar
  29. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990CrossRefGoogle Scholar
  30. Sasgen I, van den Broeke M, Bamber JL, Rignot E, Sørensen LS, Wouters B, Martinec Z, Velicogna I, Simonsen SB (2012) Timing and origin of recent regional ice-mass loss in Greenland Earth Planet. Sci Lett 333–334:293–303Google Scholar
  31. Shepherd A, Ivins E, Geruo A et al (2012) A reconciled estimate of ice sheet mass balance. Science 338(6111):1183–1189. doi: 10.1126/science.1228102 CrossRefGoogle Scholar
  32. Simonsen SB, Stenseng L, Adalgeirsdottir G, Fausto R, Hvidberg CS, Lucas-Picher P (2013) Assessing a multilayered dynamic firn-compaction model for Greenland with ASIRAS radar measurements. J Glaciol 59(215):545–558CrossRefGoogle Scholar
  33. Sørensen LS, Simonsen SB, Nielsen K, Lucas-Picher P, Spada G, Adalgeirsdottir G, Forsberg R, Hvidberg C (2010) Mass balance of the Greenland ice sheet—a study of ICESat data, surface density and firn compaction modelling. Cryosphere 5:173–186. doi: 10.5194/tcd-4-2103-2010 CrossRefGoogle Scholar
  34. Sørensen LS, Simonsen SB, Meister R, Forsberg R, Levinsen J, Flament T (2015) Envisat-derived elevation changes of the Greenland ice sheet, and a comparison with ICESat results in the accumulation area. Remote Sens Environ 160:56–62. doi: 10.1016/j.rse.2014.12.022 CrossRefGoogle Scholar
  35. Swenson SC, Chambers DP, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth 113(B8), Article B08410. doi: 10.1029/2007JB005338
  36. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  37. Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331. doi: 10.1038/nature05168 CrossRefGoogle Scholar
  38. Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40:3055–3063CrossRefGoogle Scholar
  39. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earths gravity field: hydrological and oceanographic effects and their possible detection by GRACE. J Geophys Res 103:30205–30229. doi: 10.1029/98JB02844 CrossRefGoogle Scholar
  40. Whitehouse PL, Bentley MJ, Le Brocq AM (2012) A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat Sci Rev 32:1CrossRefGoogle Scholar
  41. Zwally HJ et al (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–2007 versus 1992–2002. J Glaciol 57:88–102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rene Forsberg
    • 1
    Email author
  • Louise Sørensen
    • 1
  • Sebastian Simonsen
    • 1
  1. 1.National Space InstituteTechnical University of Denmark (DTU Space)LyngbyDenmark

Personalised recommendations