Surveys in Geophysics

, Volume 38, Issue 2, pp 407–441 | Cite as

On the Use of VLF Narrowband Measurements to Study the Lower Ionosphere and the Mesosphere–Lower Thermosphere

  • Israel SilberEmail author
  • Colin Price


The ionospheric D-region (~60 km up to ~95 km) and the corresponding neutral atmosphere, often referred to as the mesosphere–lower thermosphere (MLT), are challenging and costly to probe in situ. Therefore, remote sensing techniques have been developed over the years. One of these is based on very low frequency (VLF, 3–30 kHz) electromagnetic waves generated by various natural and man-made sources. VLF waves propagate within the Earth–ionosphere waveguide and are extremely sensitive to perturbations occurring in the D-region along their propagation path. Hence, measurements of these signals serve as an inexpensive remote sensing technique for probing the lower ionosphere and the MLT region. This paper reviews the use of VLF narrowband (NB) signals (generated by man-made transmitters) in the study of the D-region and the MLT for over 90 years. The fields of research span time scales from microseconds to decadal variability and incorporate lightning-induced short-term perturbations; extraterrestrial radiation bursts; energetic particle precipitation events; solar eclipses; lower atmospheric waves penetrating into the D-region; sudden stratospheric warming events; the annual oscillation; the solar cycle; and, finally, the potential use of VLF NB measurements as an anthropogenic climate change monitoring technique.


VLF Narrowband measurements D-region Mesosphere–lower thermosphere Ionosphere Ground-based measurements Remote sensing 



The authors wish to thank the World Wide Lightning Location Network (, a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. We thank Maayan Harel (, for the design and illustration of Fig. 2.


  1. Abdu MA, Batista IS, Piazza LR, Massambani O (1981) Magnetic storm associated enhanced particle precipitation in the South Atlantic anomaly: evidence from VLF phase measurements. J Geophys Res Space Phys 86(A9):7533–7542. doi: 10.1029/JA086iA09p07533 CrossRefGoogle Scholar
  2. Albee PR, Bates HF (1965) VLF observations at college, Alaska, of various D-region disturbance phenomena. Planet Space Sci 13(3):175–206. doi: 10.1016/0032-0633(65)90069-3 CrossRefGoogle Scholar
  3. Ananthakrishnan S, Abdu MA, Piazza LR (1973) D-region recombination coefficients and the short wavelength X-ray flux during a solar flare. Planet Space Sci 21(3):367–375. doi: 10.1016/0032-0633(73)90035-4 CrossRefGoogle Scholar
  4. Andersson ME, Verronen PT, Wang S, Rodger CJ, Clilverd MA, Carson BR (2012) Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004–2009. J Geophys Res 117(D9):D09304. doi: 10.1029/2011JD017246 CrossRefGoogle Scholar
  5. Armstrong WC (1983) Recent advances from studies of the Trimpi effect. Antarct JUS 18:281–283Google Scholar
  6. Austin LW (1932) Solar activity and radiotelegraphy. Radio Eng Proc Inst 20(2):280–285Google Scholar
  7. Austin LW, Wymore IJ (1928) On the influence of solar activity on radio transmission. Radio Eng Proc Inst 16(2):166–173Google Scholar
  8. Austin LW, Judson EB, Wymore-Shiel IJ (1930) Solar and magnetic activity and radio transmission. Radio Eng Proc Inst 18(12):1995–2002Google Scholar
  9. Bailey A, Thomson HM (1935) Transatlantic long-wave radio telephone transmission and related phenomena from 1923 to 1933. Bell Syst Tech J 14(4):680–697CrossRefGoogle Scholar
  10. Bain W, Hammond E (1975) Ionospheric solar flare effect observations. J Atmos Terr Phys 37(3):573–574. doi: 10.1016/0021-9169(75)90185-3 CrossRefGoogle Scholar
  11. Bain WC, Bracewell RN, Straker TW, Westcott CH (1952) The ionospheric propagation of radio waves of frequency 16 kc/s over distances of about 540 km. Proc IEE Part IV Inst Monogr 99(3):250–259. doi: 10.1049/pi-4.1952.0026 Google Scholar
  12. Barr R (1971) The propagation of ELF and VLF radio waves beneath an inhomogeneous anisotropic ionosphere. J Atmos Terr Phys 33(3):343–353CrossRefGoogle Scholar
  13. Barr R, Jones DL, Rodger CJ (2000) ELF and VLF radio waves. J Atmos Solar Terr Phys 62(17–18):1689–1718CrossRefGoogle Scholar
  14. Barrington-Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res Space Phys 106(A2):1741–1750. doi: 10.1029/2000JA000073 CrossRefGoogle Scholar
  15. Basak T, Chakrabarti SK (2013) Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares. Astrophys Space Sci 348(2):315–326. doi: 10.1007/s10509-013-1597-9 CrossRefGoogle Scholar
  16. Bates HF (1962) Very-low-frequency effects from the November 10, 1961, polar-cap absorption event. J Geophys Res 67(7):2745–2751. doi: 10.1029/JZ067i007p02745 CrossRefGoogle Scholar
  17. Bates HF, Albee PR (1965) General VLF phase variations observed at College, Alaska. J Geophys Res 70(9):2187–2208. doi: 10.1029/JZ070i009p02187 CrossRefGoogle Scholar
  18. Beloglazov MI, Beloglazova GP, Vashenyuk EV, Petrova GA, Shumilov OI, Shishaev VA, Zabavina IN, Nesterov VI (1990) The ionospheric effects in D-layer and solar proton precipitation zones during the 16 February 1984 event. Planet Space Sci 38(12):1479–1486. doi: 10.1016/0032-0633(90)90154-I CrossRefGoogle Scholar
  19. Belrose JS (1967) The “Berlin” warming. Nature 214:660–664CrossRefGoogle Scholar
  20. Belrose JS, Thomas L (1968) Ionization changes in the middle latitude D-region associated with geomagnetic storms. J Atmos Terr Phys 30(7):1397–1413. doi: 10.1016/S0021-9169(68)91260-9 CrossRefGoogle Scholar
  21. Benhabiles B, Lacour P, Pellet M, Pichot C, Papiernik A (1996) A study of VLF antennas immersed in sea water: theoretical, numerical, and experimental results. Antennas Propag Mag IEEE 38(5):19–29. doi: 10.1109/74.544398 CrossRefGoogle Scholar
  22. Bernhardt PA, Price KM, Crary JH (1981) Periodic fluctuations in the Earth–ionosphere waveguide. J Geophys Res 86(A4):2461. doi: 10.1029/JA086iA04p02461 CrossRefGoogle Scholar
  23. Bertoni FCP, Raulin J-P, Gavilán HR, Kaufmann P, Rodriguez R, Clilverd M, Cardenas JS, Fernandez G (2013) Lower ionosphere monitoring by the South America VLF Network (SAVNET): C region occurrence and atmospheric temperature variability. J Geophys Res Space Phys 118(10):6686–6693. doi: 10.1002/jgra.50559 CrossRefGoogle Scholar
  24. Blanc E, Le Pichon A, Ceranna L, Farges T, Marty J, Herry P (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 647–664CrossRefGoogle Scholar
  25. Bortnik J, Thorne RM, Meredith NP (2008) The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452(7183):62–66CrossRefGoogle Scholar
  26. Bracewell RN (1952) Theory of formation of an ionospheric layer below E layer based on eclipse and solar flare effects at 16 kc/sec. J Atmos Terr Phys 2(4):226–235CrossRefGoogle Scholar
  27. Bracewell RN, Budden KG, Ratcliffe JA, Straker TW, Weekes K (1951) The ionospheric propagation of low-and very-low-frequency radio waves over distances less than 1000 km. Proc IEE Part III Radio Commun Eng 98(53):221–236CrossRefGoogle Scholar
  28. Bracewell RN, Harwood J, Steaker TW (1954) The ionospheric propagation of radio waves of frequency 30{Â}? 65 kc/s over short distances. Proc IEE Part IV Inst Monogr 101(6):154–162Google Scholar
  29. Brady AH, Crombie DD (1963) Studying the lunar tidal variations in the D region of the ionosphere by means of very-low-frequency phase observations. J Geophys Res 68(19):5437–5442. doi: 10.1029/JZ068i019p05437 CrossRefGoogle Scholar
  30. Budden KG (1988) The propagation of radio waves: the theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge University Press, New-YorkGoogle Scholar
  31. Burgess WC, Inan US (1990) Simultaneous disturbance of conjugate ionospheric regions in association with individual lightning flashes. Geophys Res Lett 17(3):259–262. doi: 10.1029/GL017i003p00259 CrossRefGoogle Scholar
  32. Cavalier DJ, Deland RJ (1975) Traveling planetary scale waves in the ionosphere. J Atmos Terr Phys 37(2):297–309CrossRefGoogle Scholar
  33. Cavalieri DJ, Deland RJ, Potemra TA, Gavin RF (1974) The correlation of VLF propagation variations with atmospheric planetary-scale waves. J Atmos Terr Phys 36(4):561–574CrossRefGoogle Scholar
  34. Chakrabarti SK, Mandal SK, Sasmal S, Bhowmick D, Choudhury AK, Patra NN (2010a) First VLF detections of ionospheric disturbances due to Soft Gamma Ray Repeater SGR J1550-5418 and Gamma Ray Burst GRB 090424. Indian J Phys 84(11):1461–1466. doi: 10.1007/s12648-010-0145-5 CrossRefGoogle Scholar
  35. Chakrabarti SK, Sasmal S, Chakrabarti S (2010b) Ionospheric anomaly due to seismic activities—part 2: evidence from D-layer preparation and disappearance times. Nat Hazard Earth Syst Sci 10:1751–1757. doi: 10.5194/nhess-10-1751-2010 CrossRefGoogle Scholar
  36. Chakrabarti SK, Pal S, Sasmal S, Mondal SK, Ray S, Basak T, Maji SK, Khadka B, Bhowmick D, Chowdhury AK (2012) VLF campaign during the total eclipse of July 22nd, 2009: observational results and interpretations. J Atmos Solar Terr Phys 86:65–70. doi: 10.1016/j.jastp.2012.06.006 CrossRefGoogle Scholar
  37. Chakraborty S, Palit S, Ray S, Chakrabarti SK (2016) Modeling of the lower ionospheric response and VLF signal modulation during a total solar eclipse using ionospheric chemistry and LWPC. Astrophys Space Sci 361(2):1–15. doi: 10.1007/s10509-016-2660-0 CrossRefGoogle Scholar
  38. Cheng K, Huang Y-N, Chen S-W (1992) Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region. J Geophys Res 97(A1):103. doi: 10.1029/91JA02409 CrossRefGoogle Scholar
  39. Chernogor LF (2010) Variations in the amplitude and phase of VLF radiowaves in the ionosphere during the August 1, 2008, solar eclipse. Geomagn Aeron 50(1):96–106. doi: 10.1134/S0016793210010111 CrossRefGoogle Scholar
  40. Chilton CJ, Conner JP, Steele FK (1965) A comparison between solar X-ray emission and VLF sudden phase anomalies. Proc IEEE 53(12):2018–2026. doi: 10.1109/PROC.1965.4478 CrossRefGoogle Scholar
  41. Clilverd MA, Rodger CJ, Thomson NR (1999a) Investigating seismoionospheric effects on a long subionospheric path. J Geophys Res Space Phys 104(A12):28171–28179. doi: 10.1029/1999JA900285 CrossRefGoogle Scholar
  42. Clilverd MA, Yeo RF, Nunn D, Smith AJ (1999b) Latitudinally dependent Trimpi effects: modeling and observations. J Geophys Res Space Phys 104(A9):19881–19887. doi: 10.1029/1999JA900108 CrossRefGoogle Scholar
  43. Clilverd MA, Rodger CJ, Thomson NR, Lichtenberger J, Steinbach P, Cannon P, Angling MJ (2001) Total solar eclipse effects on VLF signals: observations and modeling. Radio Sci 36(4):773–788. doi: 10.1029/2000RS002395 CrossRefGoogle Scholar
  44. Clilverd MA, Rodger CJ, Nunn D (2004) Radiation belt electron precipitation fluxes associated with lightning. J Geophys Res 109(A12):A12208. doi: 10.1029/2004JA010644 CrossRefGoogle Scholar
  45. Clilverd MA, Rodger CJ, Ulich T, Seppälä A, Turunen E, Botman A, Thomson NR (2005) Modeling a large solar proton event in the southern polar atmosphere. J Geophys Res Space Phys. doi: 10.1029/2004JA010922 Google Scholar
  46. Clilverd MA, Seppälä A, Rodger CJ, Thomson NR, Verronen PT, Turunen E, Ulich T, Lichtenberger J, Steinbach P (2006a) Modeling polar ionospheric effects during the October–November 2003 solar proton events. Radio Sci. doi: 10.1029/2005RS003290 Google Scholar
  47. Clilverd MA, Rodger CJ, Ulich T (2006b) The importance of atmospheric precipitation in storm-time relativistic electron flux drop outs. Geophys Res Lett. doi: 10.1029/2005GL024661 Google Scholar
  48. Clilverd MA, Rodger CJ, Thomson NR, Brundell JB, Ulich T, Lichtenberger J, Cobbett N, Collier AB, Menk FW, Seppälä A, Verronen PT, Turunen E (2009) Remote sensing space weather events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network. Space Weather. doi: 10.1029/2008SW000412 Google Scholar
  49. Clilverd MA, Rodger CJ, Gamble RJ, Ulich T, Raita T, Seppälä A, Green JC, Thomson NR, Sauvaud J-A, Parrot M (2010) Ground-based estimates of outer radiation belt energetic electron precipitation fluxes into the atmosphere. J Geophys Res Space Phys. doi: 10.1029/2010JA015638 Google Scholar
  50. Clilverd MA, Duthie R, Hardman R, Hendry AT, Rodger CJ, Raita T, Engebretson M, Lessard MR, Danskin D, Milling DK (2015) Electron precipitation from EMIC waves: a case study from 31 May 2013. J Geophys Res Space Phys 120(5):3618–3631. doi: 10.1002/2015JA021090 CrossRefGoogle Scholar
  51. Cohen MB, Marshall RA (2012) ELF/VLF recordings during the 11 March 2011 Japanese Tohoku earthquake. Geophys Res Lett. doi: 10.1029/2012GL052123 Google Scholar
  52. Corcuff Y (1998) VLF signatures of ionospheric perturbations caused by lightning discharges in an underlying and moving thunderstorm. Geophys Res Lett 25(13):2385–2388. doi: 10.1029/98GL01521 CrossRefGoogle Scholar
  53. Correia E, Kaufmann P, Raulin J-P, Bertoni F, Gavilan HR (2011) Analysis of daytime ionosphere behavior between 2004 and 2008 in Antarctica. J Atmos Solar Terr Phys 73(16):2272–2278. doi: 10.1016/j.jastp.2011.06.008 CrossRefGoogle Scholar
  54. Cotts BRT, Inan US (2007) VLF observation of long ionospheric recovery events. Geophys Res Lett 34(14):L14809. doi: 10.1029/2007GL030094 CrossRefGoogle Scholar
  55. Crary JH, Diede AH (1969) Early detection at low latitudes of a polar cap event by its effect on VLF propagation. J Geophys Res 74(1):362–365. doi: 10.1029/JA074i001p00362 CrossRefGoogle Scholar
  56. Crary JH, Schneible DE (1965) Effect of the eclipse of 20 July 1963 on VLF signals propagating over short paths. Radio Sci 69(7):947–957Google Scholar
  57. Croom DL (1964) The frequency spectra and attenuation of atmospherics in the range 1–15 kc/s. J Atmos Terr Phys 26(11):1015–1046. doi: 10.1016/0021-9169(64)90089-3 CrossRefGoogle Scholar
  58. Cummer SA (1997) Lightning and ionospheric remote sensing using VLF/ELF radio atmospherics. Department of Electrical Engineering, Stanford UniversityGoogle Scholar
  59. Cummer SA, Bell TF, Inan US, Chenette DL (1997) VLF remote sensing of high-energy auroral particle precipitation. J Geophys Res Space Phys 102(A4):7477–7484. doi: 10.1029/96JA03721 CrossRefGoogle Scholar
  60. Decaux B, Gabry A (1964) Some particular observations on diurnal phase variations of VLF transmissions received in Paris. Radio Sci 68(1):21–25Google Scholar
  61. Deshpande SD, Subrahmanyam CV, Mitra AP (1972) Ionospheric effects of solar flares—I. The statistical relationship between X-ray flares and SID’s. J Atmos Terr Phys 34(2):211–227. doi: 10.1016/0021-9169(72)90165-1 CrossRefGoogle Scholar
  62. Doherty RH (1971) Observations suggesting particle precipitation at latitudes below 40°N. Radio Sci 6(6):639–646. doi: 10.1029/RS006i006p00639 CrossRefGoogle Scholar
  63. Dowden RL, Adams CDD (1989) Phase and amplitude perturbations on the NWC Signal at Dunedin from lightning-induced electron precipitation. J Geophys Res 94(A1):497. doi: 10.1029/JA094iA01p00497 CrossRefGoogle Scholar
  64. Dowden RL, Adams CDD (1990) Location of lightning-induced electron precipitation from measurement of VLF phase and amplitude perturbations on spaced antennas and on two frequencies. J Geophys Res 95(A4):4135–4145. doi: 10.1029/JA095iA04p04135 CrossRefGoogle Scholar
  65. Dowden RL, Rodger CJ (1997) A vertical-plasma-slab model for determining the lower limit to plasma density in sprite columns from VLF scatter measurements. Antennas Propag Mag IEEE 39(2):44–53CrossRefGoogle Scholar
  66. Dowden RL, Adams CDD, Brundell JB, Dowden PE (1994) Rapid onset, rapid decay (RORD), phase and amplitude perturbations of VLF subionospheric transmissions. J Atmos Terr Phys 56(11):1513–1527CrossRefGoogle Scholar
  67. Dowden RL, Brundell JB, Lyons WA (1996) Are VLF rapid onset, rapid decay perturbations produced by scattering off sprite plasma? J Geophys Res 101(D14):19–175CrossRefGoogle Scholar
  68. Dowden RL, Brundell JB, Rodger CJ (1997) Temporal evolution of very strong Trimpis observed at Darwin, Australia. Geophys Res Lett 24(19):2419–2422. doi: 10.1029/97GL02357 CrossRefGoogle Scholar
  69. Dowden R, Rodger C, Brundell J, Clilverd M (2001) Decay of whistler-induced electron precipitation and cloud-ionosphere electrical discharge Trimpis: observations and analysis. Radio Sci 36(1):151–169. doi: 10.1029/1999RS002297 CrossRefGoogle Scholar
  70. Dowden RL, Brundell JB, Rodger CJ (2002) VLF lightning location by time of group arrival (TOGA) at multiple sites. J Atmos Solar Terr Phys 64(7):817–830. doi: 10.1016/S1364-6826(02)00085-8 CrossRefGoogle Scholar
  71. Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res Atmos. doi: 10.1029/2002JD003307 Google Scholar
  72. Dwyer JR, Smith DM, Cummer SA (2012) High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci Rev 173(1):133–196. doi: 10.1007/s11214-012-9894-0 CrossRefGoogle Scholar
  73. Espenschied L, Anderson CN, Bailey A (1926) Transatlantic radio telephone transmission. Radio Eng Proc Inst 14(1):7–56. doi: 10.1109/JRPROC.1926.221006 Google Scholar
  74. Evers L, Haak H (2010) The characteristics of infrasound, its propagation and some early history. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 3–27CrossRefGoogle Scholar
  75. Ferguson JA (1980) Ionospheric profiles for predicting nighttime VLF/LF propagation. Naval Ocean Systems Center Technical Representative NOSC/TR 530, NTIS Access. ADA085399Google Scholar
  76. Ferguson JA (1989) Long wave propagation model, in military communications conference, 1989. In: MILCOM’89. Conference record. Bridging the gap. Interoperability, survivability, security, 1989 IEEE, pp 593–597Google Scholar
  77. Ferguson JA (1998) Computer programs for assessment of long-wavelength radio communications, version 2.0: user’s guide and source files, space and naval warfare system center. San Diego, CA 92152–5001Google Scholar
  78. Ferguson JA, Snyder FP (1987) The segmented waveguide program for long wavelength propagation calculations. No. NOSC/TD-1071, Naval Ocean System Center. San Diego, CAGoogle Scholar
  79. Fishman GJ, Inan US (1988) Observation of an ionospheric disturbance caused by a gamma-ray burst. Nature 331(6155):418–420CrossRefGoogle Scholar
  80. Forbes JM (1981) Tidal effects on D and E region ion chemistries. J Geophys Res 86(A3):1551. doi: 10.1029/JA086iA03p01551 CrossRefGoogle Scholar
  81. Forbes JM (1982) Atmospheric tides: 1. Model description and results for the solar diurnal component. J Geophys Res 87(A7):5222. doi: 10.1029/JA087iA07p05222 CrossRefGoogle Scholar
  82. Forbes JM (1995) Tidal and planetary waves. The upper mesosphere and lower thermosphere: a review of experiment and theory. American Geophysical Union, Washington, pp 67–88CrossRefGoogle Scholar
  83. Forbes JM, Garrett HB (1979) Theoretical studies of atmospheric tides. Rev Geophys 17(8):1951–1981CrossRefGoogle Scholar
  84. Francis SH (1975) Global propagation of atmospheric gravity waves: a review. J Atmos Terr Phys 37(6–7):1011–1054. doi: 10.1016/0021-9169(75)90012-4 CrossRefGoogle Scholar
  85. Fritts D, Alexander M (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003. doi: 10.1029/2001RG000106 CrossRefGoogle Scholar
  86. Gamble RJ, Rodger CJ, Clilverd MA, Sauvaud J-A, Thomson NR, Stewart SL, McCormick RJ, Parrot M, Berthelier J-J (2008) Radiation belt electron precipitation by man-made VLF transmissions. J Geophys Res Space Phys. doi: 10.1029/2008JA013369 Google Scholar
  87. Garcia RR, Solomon S, Avery SK, Reid GC (1987) Transport of nitric oxide and the D region winter anomaly. J Geophys Res 92(D1):977. doi: 10.1029/JD092iD01p00977 CrossRefGoogle Scholar
  88. Glukhov VS, Pasko VP, Inan US (1992) Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts. J Geophys Res Space Phys 97(A11):16971–16979CrossRefGoogle Scholar
  89. Gołkowski M, Gross NC, Moore RC, Cotts BRT, Mitchell M (2014) Observation of local and conjugate ionospheric perturbations from individual oceanic lightning flashes. Geophys Res Lett 41(2):273–279. doi: 10.1002/2013GL058861 CrossRefGoogle Scholar
  90. Gordillo-Vázquez FJ, Luque A, Haldoupis C (2016) Upper D region chemical kinetic modeling of LORE relaxation times. J Geophys Res Space Phys 121(4):3525–3544. doi: 10.1002/2015JA021408 CrossRefGoogle Scholar
  91. Grubor DP, Šulić DM, Žigman V (2008) Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile. Ann Geophys 26(7):1731–1740. doi: 10.5194/angeo-26-1731-2008 CrossRefGoogle Scholar
  92. Guha, A., B. K. De, R. Roy, and A. Choudhury (2010), Response of the equatorial lower ionosphere to the total solar eclipse of 22 July 2009 during sunrise transition period studied using VLF signal, J Geophys Res Space Phys, 115(A11302), doi: 10.1029/2009JA015101
  93. Haldoupis C, Neubert T, Inan US, Mika A, Allin TH, Marshall RA (2004) Subionospheric early VLF signal perturbations observed in one-to-one association with sprites. J Geophys Res 109(A10):A10303. doi: 10.1029/2004JA010651 CrossRefGoogle Scholar
  94. Haldoupis C, Mika Á, Shalimov S (2009) Modeling the relaxation of early VLF perturbations associated with transient luminous events. J Geophys Res Space Phys. doi: 10.1029/2009JA014313 Google Scholar
  95. Haldoupis C, Amvrosiadi N, Cotts BRT, van der Velde OA, Chanrion O, Neubert T (2010) More evidence for a one-to-one correlation between sprites and early VLF perturbations. J Geophys Res Space Phys. doi: 10.1029/2009JA015165 Google Scholar
  96. Haldoupis C, Cohen M, Cotts B, Arnone E, Inan U (2012) Long-lasting D-region ionospheric modifications, caused by intense lightning in association with elve and sprite pairs. Geophys Res Lett. doi: 10.1029/2012GL052765 Google Scholar
  97. Haldoupis C, Cohen M, Arnone E, Cotts B, Dietrich S (2013) The VLF fingerprint of elves: step-like and long-recovery early VLF perturbations caused by powerful ± CG lightning EM pulses. J Geophys Res Space Phys 118(8):5392–5402. doi: 10.1002/jgra.50489 CrossRefGoogle Scholar
  98. Hargreaves JK (1992) The solar-terrestrial environment an introduction to geospace—the science of the terrestrial upper atmosphere, ionosphere, and magnetosphere. Cambridge University Press, New YorkCrossRefGoogle Scholar
  99. Hargreaves JK, Roberts R (1962) The propagation of very low frequency radio waves over distances up to 2000 km. J Atmos Terr Phys 24(6):435–450CrossRefGoogle Scholar
  100. Hauser JP, Garner WE, Rhoads FJ (1969) A VLF effective ground conductivity map of Canada and Greenland with revisions derived from propagation data, No. NRL-6893, Naval Research Lab Washington, DCGoogle Scholar
  101. Hayakawa M (1996) The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J Commun Res Lab 43:169–180Google Scholar
  102. Hayakawa M (2011) Probing the lower ionospheric perturbations associated with earthquakes by means of subionospheric VLF/LF propagation. Earthq Sci 24(6):609–637. doi: 10.1007/s11589-011-0823-1 CrossRefGoogle Scholar
  103. Hayakawa M, Molchanov OA, Ondoh T, Kawai E (1996) Anomalies in the sub-ionospheric VLF signals for the 1995 Hyogo-ken Nanbu earthquake. J Phys Earth 44(4):413–418. doi: 10.4294/jpe1952.44.413 CrossRefGoogle Scholar
  104. Helliwell RA (1965) Whistlers and related ionospheric phenomena. Stanford University Press, StanfordGoogle Scholar
  105. Helliwell RA, Katsufrakis JP, Trimpi ML (1973) Whistler-induced amplitude perturbation in VLF propagation. J Geophys Res 78(22):4679–4688. doi: 10.1029/JA078i022p04679 CrossRefGoogle Scholar
  106. Hines CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(11):1441–1481. doi: 10.1139/p60-150 CrossRefGoogle Scholar
  107. Hollingworth J (1926) The propagation of radio waves. Wirel Sect Inst Electr Eng 1(2):57–67Google Scholar
  108. Holton JR, Hakim GJ (2004) An introduction to dynamic meteorology, 4th edn. Academic press, San-DiegoGoogle Scholar
  109. Hoy RD (1969) The effect of a total solar eclipse on the phase of long path v.l.f. transmissions. J Atmos Terr Phys 31(7):1027–1028. doi: 10.1016/0021-9169(69)90149-4 CrossRefGoogle Scholar
  110. Hsu C-PF (1980) Air parcel motions during a numerically simulated sudden stratospheric warming. J Atmos Sci 37(12):2768–2792. doi: 10.1175/1520-0469(1980)037<2768:APMDAN>2.0.CO;2 CrossRefGoogle Scholar
  111. Hunsucker RD, Hargreaves JK (2002) The high-latitude ionosphere and its effects on radio propagation. Cambridge University Press, New YorkCrossRefGoogle Scholar
  112. Inan US, Carpenter DL (1987) Lightning-induced electron precipitation events observed at L of about 2. 4 as phase and amplitude perturbations on subionospheric VLF signals. J Geophys Res 92:3293–3303CrossRefGoogle Scholar
  113. Inan US, Inan AS (2000) Electromagnetic waves. Prentice-Hall, New JerseyGoogle Scholar
  114. Inan US, Chang HC, Helliwell RA, Imhof WL, Reagan JB, Walt M (1985a) Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J Geophys Res Space Phys 90(A1):359–369. doi: 10.1029/JA090iA01p00359 CrossRefGoogle Scholar
  115. Inan US, Carpenter DL, Helliwell RA, Katsufrakis JP (1985b) Subionospheric VLF/LF phase perturbations produced by lightning-whistler induced particle precipitation. J Geophys Res 90(A8):7457–7469CrossRefGoogle Scholar
  116. Inan US, Burgess WC, Wolf TG, Shater DC, Orville RE (1988a) Lightning-associated precipitation of MeV electrons from the inner radiation belt. Geophys Res Lett 15(2):172–175. doi: 10.1029/GL015i002p00172 CrossRefGoogle Scholar
  117. Inan US, Shafer DC, Yip WY, Orville RE (1988b) Subionospheric VLF signatures of nighttime D region perturbations in the vicinity of lightning discharges. J Geophys Res 93(A10):11455. doi: 10.1029/JA093iA10p11455 CrossRefGoogle Scholar
  118. Inan US, Rodriguez JV, Idone VP (1993) VLF signatures of lightning-induced heating and ionization of the nighttime D-region. Geophys Res Lett 20(21):2355–2358. doi: 10.1029/93GL02620 CrossRefGoogle Scholar
  119. Inan US, Bell TF, Pasko VP, Sentman DD, Wescott EM, Lyons WA (1995) VLF signatures of ionospheric disturbances associated with sprites. Geophys Res Lett 22(24):3461–3464. doi: 10.1029/95GL03507 CrossRefGoogle Scholar
  120. Inan US, Pasko VP, Bell TF (1996) Sustained heating of the ionosphere above thunderstorms as evidenced in “early/fast” VLF events. Geophys Res Lett 23(10):1067–1070. doi: 10.1029/96GL01360 CrossRefGoogle Scholar
  121. Inan US, Lehtinen NG, Lev-Tov SJ, Johnson MP, Bell TF, Hurley K (1999) Ionization of the lower ionosphere by γ-rays from a magnetar: detection of a low energy (3–10 keV) component. Geophys Res Lett 26(22):3357–3360. doi: 10.1029/1999GL010690 CrossRefGoogle Scholar
  122. Inan US, Lehtinen NG, Moore RC, Hurley K, Boggs S, Smith DM, Fishman GJ (2007a) Massive disturbance of the daytime lower ionosphere by the giant γ-ray flare from magnetar SGR 1806-20. Geophys Res Lett. doi: 10.1029/2006GL029145 Google Scholar
  123. Inan US, Golkowski M, Casey MK, Moore RC, Peter W, Kulkarni P, Kossey P, Kennedy E, Meth S, Smit P (2007b) Subionospheric VLF observations of transmitter-induced precipitation of inner radiation belt electrons. Geophys Res Lett 34(2):L02106. doi: 10.1029/2006GL028494 CrossRefGoogle Scholar
  124. Inan US, Cummer SA, Marshall RA (2010) A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J Geophys Res 115:A00E36. doi: 10.1029/2009JA014775 CrossRefGoogle Scholar
  125. Ishii T, Sakurazawa A (1964) Long-term amplitude variation of the NPG-18.6 Kc/s signal on the transpacific transmission. J Radio Res Lab 10(54):63–74Google Scholar
  126. Jackson JD (1962) Classical Electrodynamics. Wiley, New YorkGoogle Scholar
  127. Johnson MP, Inan US, Bell TF (1999) Disturbances associated with early/fast VLF events. Geophys Res Lett 26(15):2363–2366CrossRefGoogle Scholar
  128. Jones TB (1971) VLF phase anomalies due to a solar X-ray flare. J Atmos Terr Phys 33(6):963–965. doi: 10.1016/0021-9169(71)90096-1 CrossRefGoogle Scholar
  129. Kamada T (1985) Synoptic report of VLF sudden phase anomalies observed at Toyokawa, Japan. J Geomagn Geoelectr 37(7):667–699. doi: 10.5636/jgg.37.667 CrossRefGoogle Scholar
  130. Kaufmann P, de Barros MH (1969) Some relationships between solar X-ray bursts and SPA’s produced on VLF propagation in the lower ionosphere. Sol Phys 9(2):478–486. doi: 10.1007/BF02391673 CrossRefGoogle Scholar
  131. Kaufmann P, Mendes AM (1968) Relative changes on lower ionosphere conductivity gradients during SID events. J Geophys Res 73(7):2487–2493. doi: 10.1029/JA073i007p02487 CrossRefGoogle Scholar
  132. Kaufmann P, Schaal RE (1968) The effect of a total solar eclipse on long path VLF transmission. J Atmos Terr Phys 30(3):469–471. doi: 10.1016/0021-9169(68)90119-0 CrossRefGoogle Scholar
  133. Kaufmann P, Rizzo Piazza L, Fernandez JH, Rocha da Silva M (2002) Solar flares not producing sudden phase advances. J Geophys Res Space Phys 107(A8):SIA 30-1-SIA 30-4. doi: 10.1029/2001JA000292
  134. Kelley MC (2009) The earth’s ionosphere: plasma physics & electrodynamics. Academic Press, San-DiegoGoogle Scholar
  135. Kelly FJ, Hauser JP, Rhoads FJ (1981) Computer-program model for predicting horizontally and vertically polarized VLF atmospheric radio noise at elevated receivers. NRL Rep 8479, (ADA109448)Google Scholar
  136. Khan I, Devi MI, Arunamani T, Madhusudhana Rao DN (2005) A synoptic study of VLF sudden phase anomalies recorded at Visakhapatnam. Earth Planets Sp 57(11):1073–1081. doi: 10.1186/BF03351886 CrossRefGoogle Scholar
  137. Kikuchi T, Evans DS (1983) Quantitative study of substorm-associated VLF phase anomalies and precipitating energetic electrons on November 13, 1979. J Geophys Res 88(A2):871. doi: 10.1029/JA088iA02p00871 CrossRefGoogle Scholar
  138. Kiplinger AL, Garcia HA (2004) Soft X-ray parameters of the great flares of active region 486. Bull Am Astron Soc 36:739Google Scholar
  139. Kolarski A, Grubor D (2014) Sensing the Earth’s low ionosphere during solar flares using VLF signals and goes solar X-ray data. Adv Space Res 53(11):1595–1602. doi: 10.1016/j.asr.2014.02.022 CrossRefGoogle Scholar
  140. Kolarski A, Grubor D (2015) Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares. J Astrophys Astron 36(4):565–579. doi: 10.1007/s12036-015-9361-x CrossRefGoogle Scholar
  141. Kossey PA, Turtle JP, Pagliarulo RP, Klemetti WI, Rasmussen JE (1983) VLF reflection properties of the normal and disturbed polar ionosphere in northern Greenland. Radio Sci 18(6):907–916. doi: 10.1029/RS018i006p00907 CrossRefGoogle Scholar
  142. Kotovsky DA, Moore RC (2015) Classifying onset durations of early VLF events: scattered field analysis and new insights. J Geophys Res Space Phys 120(8):6661–6668. doi: 10.1002/2015JA021370 CrossRefGoogle Scholar
  143. Kotovsky DA, Moore RC (2016) Photochemical response of the nighttime mesosphere to electric field heating—recovery of electron density enhancements. Geophys Res Lett. doi: 10.1002/2015GL067014 Google Scholar
  144. Kotovsky DA, Moore RC, Zhu Y, Tran MD, Rakov VA, Pilkey JT, Caicedo JA, Hare B, Jordan DM, Uman MA (2016) Initial breakdown and fast leaders in lightning discharges producing long lasting disturbances of the lower ionosphere. J Geophys Res Space Phys. doi: 10.1002/2015JA022266 Google Scholar
  145. Kreplin RW, Chubb TA, Friedman H (1962) X-ray and Lyman-alpha emission from the Sun as measured from the NRL SR-1 satellite. J Geophys Res 67(6):2231–2253. doi: 10.1029/JZ067i006p02231 CrossRefGoogle Scholar
  146. Krucker S, Lin RP (2000) Two classes of solar proton events derived from onset time analysis. Astrophys J Lett 542(1):L61CrossRefGoogle Scholar
  147. Kumar S, Kumar A (2013) Lightning-associated VLF perturbations observed at low latitude: occurrence and scattering characteristics. Earth Planets Sp 65(1):25–37. doi: 10.5047/eps.2012.05.019 CrossRefGoogle Scholar
  148. Kumar S, Kumar A, Maurya AK, Singh R (2016) Changes in the D-region associated with three recent solar eclipses in the South Pacific Region. J Geophys Res Space Phys. doi: 10.1002/2016JA022695 Google Scholar
  149. Kuntz VL, Piazza L, Kaufmann P (1991) C-layer dependence on solar cycle and southern latitude observed by VLF propagation. J Atmos Terr Phys 53(5):419–423. doi: 10.1016/0021-9169(91)90036-7 CrossRefGoogle Scholar
  150. Laby TH, McNeill JJ, Nicholls FG, Nickson AFB (1940) Wave form, energy and reflexion by the ionosphere, of atmospherics. Proc R Soc Lond A Math Phys Sci 174(1):145–163Google Scholar
  151. Larsen T (1971) Short path VLF phase and amplitude measurements during a stratospheric warming in February 1969. J Atmos Terr Phys 33(8):1251–1256. doi: 10.1016/0021-9169(71)90111-5 CrossRefGoogle Scholar
  152. Larsen TR, Potemra TA, Imhof WL, Reagan JB (1977) Energetic electron precipitation and vlf phase disturbances at middle latitudes following the magnetic storm of December 16, 1971. J Geophys Res 82(10):1519–1524. doi: 10.1029/JA082i010p01519 CrossRefGoogle Scholar
  153. Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT (2006) Global change in the upper atmosphere. Science (80-.) 314(5803):1253–1254Google Scholar
  154. Lehtinen NG, Inan US (2007) Possible persistent ionization caused by giant blue jets. Geophys Res Lett. doi: 10.1029/2006GL029051 Google Scholar
  155. Lindzen RS, Chapman S (1969) Atmospheric tides. Space Sci Rev 10(1):3–188CrossRefGoogle Scholar
  156. Lohrey B, Kaiser AB (1979) Whistler-induced anomalies in VLF propagation. J Geophys Res 84(A9):5122. doi: 10.1029/JA084iA09p05122 CrossRefGoogle Scholar
  157. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39(2):447–462CrossRefGoogle Scholar
  158. Lynn KJW (1981) The total solar eclipse of 23 October 1976 observed at VLF. J Atmos Terr Phys 43(12):1309–1316. doi: 10.1016/0021-9169(81)90156-2 CrossRefGoogle Scholar
  159. Marshall RA, Inan US (2010) Two-dimensional frequency domain modeling of lightning EMP-induced perturbations to VLF transmitter signals. J Geophys Res 115:A00E29. doi: 10.1029/2009JA014761 Google Scholar
  160. Marshall RA, Snively JB (2014) Very low frequency subionospheric remote sensing of thunderstorm-driven acoustic waves in the lower ionosphere. J Geophys Res Atmos 119(9):5037–5045CrossRefGoogle Scholar
  161. Marshall RA, Inan US, Lyons WA (2006) On the association of early/fast very low frequency perturbations with sprites and rare examples of VLF backscatter. J Geophys Res 111(D19):D19108. doi: 10.1029/2006JD007219 CrossRefGoogle Scholar
  162. Marshall RA, Inan US, Chevalier TW (2008) Early VLF perturbations caused by lightning EMP-driven dissociative attachment. Geophys Res Lett 35(21):L21807. doi: 10.1029/2008GL035358 CrossRefGoogle Scholar
  163. Marshall RA, Inan US, Glukhov VS (2010) Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges. J Geophys Res Space Phys. doi: 10.1029/2009JA014469 Google Scholar
  164. Marshall RA, Adachi T, Hsu R-R, Chen AB (2014) Rare examples of early VLF events observed in association with ISUAL-detected gigantic jets. Radio Sci 49(1):36–43. doi: 10.1002/2013RS005288 CrossRefGoogle Scholar
  165. Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28(8):1479–1494CrossRefGoogle Scholar
  166. Maurya AK, Phanikumar DV, Singh R, Kumar S, Veenadhari B, Kwak Y-S, Kumar A, Singh AK, Niranjan Kumar K (2014) Low-mid latitude D region ionospheric perturbations associated with 22 July 2009 total solar eclipse: wave-like signatures inferred from VLF observations. J Geophys Res Space Phys 119(10):8512–8523. doi: 10.1002/2013JA019521 CrossRefGoogle Scholar
  167. McRae WM, Thomson NR (2004) Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations. J Atmos Solar Terr Phys 66(1):77–87. doi: 10.1016/j.jastp.2003.09.009 CrossRefGoogle Scholar
  168. Meisel DD, Duke B, Aguglia RC, Goldblatt NR (1976) Solar eclipse effects on HF and VLF propagation. J Atmos Terr Phys 38(5):495–502. doi: 10.1016/0021-9169(76)90006-4 CrossRefGoogle Scholar
  169. Mendes A, Ananthakrishnan S (1972) VLF phase changes produced by particle precipitation into the geomagnetic anomaly during solar proton events. Radio Sci 7(4):465–468. doi: 10.1029/RS007i004p00465 CrossRefGoogle Scholar
  170. Mendes da Costa A, Rizzo Piazza L (1995) Night-time D-region electron density variations observed in the South Atlantic geomagnetic anomaly in association with solar-proton events. J Atmos Terr Phys 57(8):899–904. doi: 10.1016/0021-9169(94)00068-Y CrossRefGoogle Scholar
  171. Mendes Da Costa A, Paes Leme NM, Rizzo Piazza L (1995) Lower ionosphere effect observed during the 30 June 1992 total solar eclipse. J Atmos Terr Phys 57(1):13–17. doi: 10.1016/0021-9169(93)E0021-Z CrossRefGoogle Scholar
  172. Mitra A, Rowe J (1972) Ionospheric effects of solar flares—VI. Changes in D-region ion chemistry during solar flares. J Atmos Terr Phys 34(5):795–806. doi: 10.1016/0021-9169(72)90112-2 CrossRefGoogle Scholar
  173. Molchanov OA, Hayakawa M (1998) Subionospheric VLF signal perturbations possibly related to earthquakes. J Geophys Res Space Phys 103(A8):17489–17504. doi: 10.1029/98JA00999 CrossRefGoogle Scholar
  174. Mondal SK, Chakrabarti SK, Sasmal S (2012) Detection of ionospheric perturbation due to a soft gamma ray repeater SGR J1550-5418 by very low frequency radio waves. Astrophys Space Sci 341(2):259–264. doi: 10.1007/s10509-012-1131-5 CrossRefGoogle Scholar
  175. Moore RC, Barrington-Leigh CP, Inan US, Bell TF (2003) Early/fast VLF events produced by electron density changes associated with sprite halos. J Geophys Res 108(A10):1363. doi: 10.1029/2002JA009816 CrossRefGoogle Scholar
  176. Muraoka Y (1979) Lower ionospheric disturbances observed in long-distance VLF transmission at middle latitude. J Atmos Terr Phys 41(9):1031–1042CrossRefGoogle Scholar
  177. Muraoka Y (1983) Winter anomalous effects of mode conversion observed in mid-latitude VLF transmission. J Geophys Res Space Phys 88(A1):311–317CrossRefGoogle Scholar
  178. Muraoka Y (1985) The D-region winter anomaly and dynamical effects of atmospheric planetary-scale waves. J Geomagn Geoelectr 37(5):509–530CrossRefGoogle Scholar
  179. Muraoka Y, Murata H, Sato T (1977) The quantitative relationship between VLF phase deviations and 1–8 Å solar X-ray fluxes during solar flares. J Atmos Terr Phys 39(7):787–792. doi: 10.1016/0021-9169(77)90140-4 CrossRefGoogle Scholar
  180. Muraoka Y, Petzoldt K, Labitzke K (1986) The role of atmospheric planetary-scale waves in the D region winter anomaly. J Geophys Res Space Phys 91(A1):329–338CrossRefGoogle Scholar
  181. NaitAmor S, Cohen MB, Cotts BRT, Ghalila H, AlAbdoadaim MA, Graf K (2013) Characteristics of long recovery early VLF events observed by the North African AWESOME Network. J Geophys Res Space Phys 118(8):5215–5222. doi: 10.1002/jgra.50448 CrossRefGoogle Scholar
  182. Neal JJ, Rodger CJ, Green JC (2013) Empirical determination of solar proton access to the atmosphere: impact on polar flight paths. Sp Weather 11(7):420–433. doi: 10.1002/swe.20066 CrossRefGoogle Scholar
  183. Neal JJ, Rodger CJ, Thomson NR, Clilverd MA, Raita T, Ulich T (2015) Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations. J Geophys Res Space Phys. doi: 10.1002/2014JA020689 Google Scholar
  184. Nina A, Čadež VM (2013) Detection of acoustic-gravity waves in lower ionosphere by VLF radio waves. Geophys Res Lett 40(18):4803–4807. doi: 10.1002/grl.50931 CrossRefGoogle Scholar
  185. Nina A, Simić S, Srećković VA, Popović LČ (2015) Detection of short-term response of the low ionosphere on gamma ray bursts. Geophys Res Lett 42(19):8250–8261. doi: 10.1002/2015GL065726 CrossRefGoogle Scholar
  186. Noonkester VR, Sailors DB (1971) Observed and predicted VLF phase behavior for the solar eclipses of September 11, 1969, and March 7, 1970. Radio Sci 6(10):871–878. doi: 10.1029/RS006i010p00871 CrossRefGoogle Scholar
  187. Offermann D (1979) Recent advances in the study of the D-region winter anomaly. J Atmos Terr Phys 41(7–8):735–752. doi: 10.1016/0021-9169(79)90121-1 CrossRefGoogle Scholar
  188. Pacini AA, Raulin J-P (2006) Solar X-ray flares and ionospheric sudden phase anomalies relationship: a solar cycle phase dependence. J Geophys Res 111(A9):A09301. doi: 10.1029/2006JA011613 CrossRefGoogle Scholar
  189. Pal S, Hobara Y (2016) Mid-latitude atmosphere and ionosphere connection as revealed by very low frequency signals. J Atmos Solar Terr Phys 138–139:227–232. doi: 10.1016/j.jastp.2015.12.008 CrossRefGoogle Scholar
  190. Pal S, Chakrabarti SK, Mondal SK (2012) Modeling of sub-ionospheric VLF signal perturbations associated with total solar eclipse, 2009 in Indian subcontinent. Adv Space Res 50(2):196–204. doi: 10.1016/j.asr.2012.04.007 CrossRefGoogle Scholar
  191. Pal S, Chakraborty S, Chakrabarti SK (2015) On the use of very low frequency transmitter data for remote sensing of atmospheric gravity and planetary waves. Adv Space Res 55(4):1190–1198CrossRefGoogle Scholar
  192. Pandey U, Singh B, Singh OP, Saraswat VK (2015) Solar flare induced ionospheric D-region perturbation as observed at a low latitude station Agra, India. Astrophys Space Sci 357(1):1–11. doi: 10.1007/s10509-015-2279-6 CrossRefGoogle Scholar
  193. Pant P (1993) Relation between VLF phase deviations and solar X-ray fluxes during solar flares. Astrophys Space Sci 209(2):297–306. doi: 10.1007/BF00627449 CrossRefGoogle Scholar
  194. Parrot M, Inan US, Lehtinen NG (2008) V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms. J Geophys Res Space Phys. doi: 10.1029/2008JA013336 Google Scholar
  195. Pasko VP, Inan US, Taranenko YN, Bell TF (1995) Heating, ionization and upward discharges in the mesosphere, due to intense quasi-electrostatic thundercloud fields. Geophys Res Lett 22(4):365–368. doi: 10.1029/95GL00008 CrossRefGoogle Scholar
  196. Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci Rev 168(1–4):475–516. doi: 10.1007/s11214-011-9813-9 CrossRefGoogle Scholar
  197. Pavlov AV (2014) Photochemistry of Ions at D-region altitudes of the ionosphere: a review. Surv Geophys 35(2):259–334CrossRefGoogle Scholar
  198. Peter WB, Inan US (2004) On the occurrence and spatial extent of electron precipitation induced by oblique nonducted whistler waves. J Geophys Res 109(A12):A12215. doi: 10.1029/2004JA010412 CrossRefGoogle Scholar
  199. Peters DHW, Entzian G (2015) Long-term variability of 50 years of standard phase-height measurement at K{ü}hlungsborn, Mecklenburg, Germany. Adv Space Res 55(7):1764–1774CrossRefGoogle Scholar
  200. Phanikumar DV, Kwak Y-S, Patra AK, Maurya AK, Singh R, Park S-M (2014) Response of the mid-latitude D-region ionosphere to the total solar eclipse of 22 July 2009 studied using VLF signals in South Korean peninsula. Adv Space Res 54(6):961–968. doi: 10.1016/j.asr.2014.06.005 CrossRefGoogle Scholar
  201. Pickard GW (1927) The correlation of radio reception with solar activity and terrestrial magnetism—II, Eos. Trans Am Geophys Union 8(1):133–145CrossRefGoogle Scholar
  202. Pierce JA (1956) VLF phase shifts associated with the disturbance of February 23. J Geophys Res 61(3):475–483. doi: 10.1029/JZ061i003p00475 CrossRefGoogle Scholar
  203. Pintado OI, Radicella SM, Fernández PM (1987) Experimental estimates of electron density variations at the reflection height of VLF signals. J Atmos Terr Phys 49(2):129–133CrossRefGoogle Scholar
  204. Pinto O, Gonzalez WD, Leme NMP (1990) VLF disturbances at the south Atlantic magnetic anomaly following magnetic storms. Planet Space Sci 38(5):633–636. doi: 10.1016/0032-0633(90)90069-3 CrossRefGoogle Scholar
  205. Potemra TA, Rosenberg TJ (1973) VLF propagation disturbances and electron precipitation at mid-latitudes. J Geophys Res 78(10):1572–1580. doi: 10.1029/JA078i010p01572 CrossRefGoogle Scholar
  206. Potemra TA, Zmuda AJ, Haave CR, Shaw BW (1967) VLF phase perturbations produced by solar protons in the event of February 5, 1965. J Geophys Res 72(23):6077–6089. doi: 10.1029/JZ072i023p06077 CrossRefGoogle Scholar
  207. Potemra TA, Zmuda AJ, Haave CR, Shaw BW (1969) VLF phase disturbances, HF absorption, and solar protons in the events of August 28 and September 2, 1966. J Geophys Res 74(26):6444–6458. doi: 10.1029/JA074i026p06444 CrossRefGoogle Scholar
  208. Potemra TA, Zmuda AJ, Shaw BW, Haave CR (1970) VLF phase disturbances, HF absorption, and solar protons in the PCA events of 1967. Radio Sci 5(8–9):1137–1145. doi: 10.1029/RS005i008p01137 CrossRefGoogle Scholar
  209. Poulsen WL, Bell TF, Inan US (1993) The scattering of VLF waves by localized ionospheric disturbances produced by lightning-induced electron precipitation. J Geophys Res 98(A9):15553. doi: 10.1029/93JA01201 CrossRefGoogle Scholar
  210. Press WH, Rybicki GB (1989) Fast algorithm for spectral analysis of unevenly sampled data. Astrophys J 338:277–280CrossRefGoogle Scholar
  211. Pulinets S, Boyarchuk K (2005) Ionospheric precursors of earthquakes. Springer, BerlinGoogle Scholar
  212. Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, New YorkCrossRefGoogle Scholar
  213. Rasmussen JE, Kossey PA, Lewis EA (1980) Evidence of an ionospheric reflecting layer below the classical D region. J Geophys Res 85(A6):3037. doi: 10.1029/JA085iA06p03037 CrossRefGoogle Scholar
  214. Raulin J-P, Abe Pacini A, Kaufmann P, Correia E, Aparecida M, Martinez G (2006) On the detectability of solar X-ray flares using very low frequency sudden phase anomalies. J Atmos Solar Terr Phys 68(9):1029–1035. doi: 10.1016/j.jastp.2005.11.004 CrossRefGoogle Scholar
  215. Raulin J-P, Bertoni FCP, Gavilán HR, Day WG, Rodriguez R, Fernandez G, Correia E, Kaufmann P, Pacini A, Stekel TRC, Lima WLC, Schuch NJ, Fagundes PR, Hadano R (2010) Solar flare detection sensitivity using the South America VLF Network (SAVNET). J Geophys Res 115(A7):A07301. doi: 10.1029/2009JA015154 CrossRefGoogle Scholar
  216. Raulin J-P, Bertoni FCP, Kaufmann P, Gavilán HR, Correia E, Hadano R, Schuch NJ (2011) Solar–terrestrial, ionospheric and natural phenomena studies using the South America VLF network (SAVNET). J Atmos Solar Terr Phys 73(11–12):1581–1586. doi: 10.1016/j.jastp.2010.11.029 CrossRefGoogle Scholar
  217. Raulin J-P, Trottet G, Giménez de Castro CG, Correia E, Macotela EL (2014) Nighttime sensitivity of ionospheric VLF measurements to X-ray bursts from a remote cosmic source. J Geophys Res Space Phys 119(6):4758–4766. doi: 10.1002/2013JA019670 CrossRefGoogle Scholar
  218. Ray S, Chakrabarti SK, Mondal SK, Sasmal S (2011) Ionospheric anomaly due to seismic activities-III: correlation between night time VLF amplitude fluctuations and effective magnitudes of earthquakes in Indian sub-continent. Nat Hazards Earth Syst Sci 11(10):2699–2704CrossRefGoogle Scholar
  219. ReVelle DO (2010) Acoustic-gravity waves from impulsive sources in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 305–359CrossRefGoogle Scholar
  220. Roble RG, Dickinson RE (1989) How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys Res Lett 16(12):1441–1444. doi: 10.1029/GL016i012p01441 CrossRefGoogle Scholar
  221. Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37(3):317–336. doi: 10.1029/1999RG900006 CrossRefGoogle Scholar
  222. Rodger CJ (2003) Subionospheric VLF perturbations associated with lightning discharges. J Atmos Solar Terr Phys 65(5):591–606. doi: 10.1016/S1364-6826(02)00325-5 CrossRefGoogle Scholar
  223. Rodger C, McCormick RJ (2006) Remote sensing of the upper atmosphere by VLF. In: Füllekrug M, Mareev E, Rycroft M (eds) Sprites, elves and intense lightning discharges. Springer, Netherlands, pp 167–190CrossRefGoogle Scholar
  224. Rodger CJ, Thomson NR, Dowden RL (1996) A search for ELF/VLF activity associated with earthquakes using ISIS satellite data. J Geophys Res Space Phys 101(A6):13369–13378. doi: 10.1029/96JA00078 CrossRefGoogle Scholar
  225. Rodger CJ, Cho M, Clilverd MA, Rycroft MJ (2001) Lower ionospheric modification by lightning-EMP: simulation of the night ionosphere over the United States. Geophys Res Lett 28(2):199–202. doi: 10.1029/2000GL011951 CrossRefGoogle Scholar
  226. Rodger CJ, Brundell JB, Dowden RL, Thomson NR (2004) Location accuracy of long distance VLF lightning location network. Ann Geophys 22(3):747–758CrossRefGoogle Scholar
  227. Rodger CJ, Clilverd MA, Verronen PT, Ulich T, Jarvis MJ, Turunen E (2006) Dynamic geomagnetic rigidity cutoff variations during a solar proton event. J Geophys Res 111(A4):A04222. doi: 10.1029/2005JA011395 CrossRefGoogle Scholar
  228. Rodger CJ, Clilverd MA, Thomson NR, Gamble RJ, Seppälä A, Turunen E, Meredith NP, Parrot M, Sauvaud J-A, Berthelier J-J (2007) Radiation belt electron precipitation into the atmosphere: recovery from a geomagnetic storm. J Geophys Res 112:A11307. doi: 10.1029/2007JA012383
  229. Rodger CJ, Clilverd MA, Seppälä A, Thomson NR, Gamble RJ, Parrot M, Sauvaud J-A, Ulich T (2010) Radiation belt electron precipitation due to geomagnetic storms: significance to middle atmosphere ozone chemistry. J Geophys Res Space Phys. doi: 10.1029/2010JA015599 Google Scholar
  230. Rodger CJ, Clilverd MA, Kavanagh AJ, Watt CEJ, Verronen PT, Raita T (2012) Contrasting the responses of three different ground-based instruments to energetic electron precipitation. Radio Sci. doi: 10.1029/2011RS004971 Google Scholar
  231. Rozhnoi A, Solovieva MS, Molchanov OA, Hayakawa M (2004) Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed geomagnetic conditions. Phys Chem Earth Parts A/B/C 29(4–9):589–598. doi: 10.1016/j.pce.2003.08.061 CrossRefGoogle Scholar
  232. Rozhnoi A, Solovieva M, Levin B, Hayakawa M, Fedun V (2014) Meteorological effects in the lower ionosphere as based on VLF/LF signal observations. Nat Hazards Earth Syst Sci 14(10):2671–2679CrossRefGoogle Scholar
  233. Rudlosky SD, Shea DT (2013) Evaluating WWLLN performance relative to TRMM/LIS. Geophys Res Lett 40(10):2344–2348. doi: 10.1002/grl.50428 CrossRefGoogle Scholar
  234. Salut MM, Abdullah M, Graf KL, Cohen MB, Cotts BRT, Kumar S (2012) Long recovery VLF perturbations associated with lightning discharges. J Geophys Res 117(A8):A08311. doi: 10.1029/2012JA017567 CrossRefGoogle Scholar
  235. Salut MM, Cohen MB, Ali MAM, Graf KL, Cotts BRT, Kumar S (2013) On the relationship between lightning peak current and Early VLF perturbations. J Geophys Res Space Phys 118(11):7272–7282. doi: 10.1002/2013JA019087 CrossRefGoogle Scholar
  236. Sasmal S, Chakrabarti SK (2009) Ionosperic anomaly due to seismic activities &ndash; Part 1: calibration of the VLF signal of VTX 18.2 KHz station from Kolkata and deviation during seismic events. Nat Hazards Earth Syst Sci 9(4):1403–1408. doi: 10.5194/nhess-9-1403-2009 CrossRefGoogle Scholar
  237. Scargle JD (1982) Studies in astronomical time series analysis. II-statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853CrossRefGoogle Scholar
  238. Schmitter ED (2011) Remote sensing planetary waves in the midlatitude mesosphere using low frequency transmitter signals. Ann Geophys 29(7):1287–1293. doi: 10.5194/angeo-29-1287-2011 CrossRefGoogle Scholar
  239. Schmitter ED (2012) Data analysis of low frequency transmitter signals received at a midlatitude site with regard to planetary wave activity. Adv. Radio Sci. 10:279–284. doi: 10.5194/ars-10-279-2012 CrossRefGoogle Scholar
  240. Schmitter ED (2013) Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site. Ann Geophys 31(4):765–773. doi: 10.5194/angeo-31-765-2013 CrossRefGoogle Scholar
  241. Schmitter ED (2014) Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation. Adv Radio Sci 12:241–250. doi: 10.5194/ars-12-241-2014 CrossRefGoogle Scholar
  242. Schonland BFJ, Elder JS, Hodges DB, Phillips WE, van Wyk JW (1940) The wave form of atmospherics at night. Proc R Soc Lond Ser A Math Phys Sci 176(965):180–202. doi: 10.1098/rspa.1940.0085 CrossRefGoogle Scholar
  243. Sechrist CF (1968) Interpretation of pre-sunrise electron densities and negative ions in the D-region. J Atmos Terr Phys 30(3):371–389. doi: 10.1016/0021-9169(68)90109-8 CrossRefGoogle Scholar
  244. Sechrist CF, Mechtly EA, Shirke JS, Theon JS (1969) Coordinated rocket measurements on the D-region winter anomaly—I. Experimental results. J Atmos Terr Phys 31(1):145–153. doi: 10.1016/0021-9169(69)90088-9 CrossRefGoogle Scholar
  245. Selvakumaran R, Maurya AK, Gokani SA, Veenadhari B, Kumar S, Venkatesham K, Phanikumar DV, Singh AK, Siingh D, Singh R (2015) Solar flares induced D-region ionospheric and geomagnetic perturbations. J Atmos Solar Terr Phys 123:102–112. doi: 10.1016/j.jastp.2014.12.009 CrossRefGoogle Scholar
  246. Sen Gupta A, Goel GK, Mathur BS (1980) Effect of the 16 February 1980 solid eclipse on VLF propagation. J Atmos Terr Phys 42(11):907–909. doi: 10.1016/0021-9169(80)90107-5 CrossRefGoogle Scholar
  247. Seppälä A, Clilverd MA, Rodger CJ, Verronen PT, Turunen E (2008) The effects of hard-spectra solar proton events on the middle atmosphere. J Geophys Res Space Phys. doi: 10.1029/2008JA013517 Google Scholar
  248. Shapley AH, Beynon WJG (1965) ‘Winter anomaly’ in ionospheric absorption and stratospheric warmings. Nature 206(4990):1242–1243CrossRefGoogle Scholar
  249. Shea MA, Smart DF (1990) A summary of major solar proton events. Sol Phys 127(2):297–320. doi: 10.1007/BF00152170 CrossRefGoogle Scholar
  250. Siingh D, Singh RP, Kumar S, Dharmaraj T, Singh AK, Singh AK, Patil MN, Singh S (2015) Lightning and middle atmospheric discharges in the atmosphere. J Atmos Solar Terr Phys 134:78–101. doi: 10.1016/j.jastp.2015.10.001 CrossRefGoogle Scholar
  251. Silber I, Price C, Rodger CJ, Haldoupis C (2013) Links between mesopause temperatures and ground-based VLF narrowband radio signals. J Geophys Res Atmos 118(10):4244–4255. doi: 10.1002/jgrd.50379 CrossRefGoogle Scholar
  252. Silber I, Price C, Galanti E, Shuval A (2015) Anomalously strong vertical magnetic fields from distant ELF/VLF sources. J Geophys Res Space Phys 120(7):6036–6044. doi: 10.1002/2015JA021141 CrossRefGoogle Scholar
  253. Silber I, Price C, Rodger CJ (2016) Semi-annual oscillation (SAO) of the nighttime ionospheric D-region as detected through ground-based VLF receivers. Atmos Chem Phys 16(5):3279–3288. doi: 10.5194/acp-16-3279-2016 CrossRefGoogle Scholar
  254. Singh AK, Singh R, Veenadhari B, Singh AK (2012) Response of low latitude D-region ionosphere to the total solar eclipse of 22 July 2009 deduced from ELF/VLF analysis. Adv Space Res 50(10):1352–1361. doi: 10.1016/j.asr.2012.07.005 CrossRefGoogle Scholar
  255. Singh AK, Singh AK, Singh R, Singh RP (2014) Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements. Astrophys Space Sci 350(1):1–9. doi: 10.1007/s10509-013-1699-4 CrossRefGoogle Scholar
  256. Smith AK (2004) Physics and chemistry of the mesopause region. J Atmos Solar Terr Phys 66(10):839–857. doi: 10.1016/j.jastp.2004.01.032 CrossRefGoogle Scholar
  257. Solomon S, Reid GC, Roble RG, Crutzen PJ (1982) Photochemical coupling between the thermosphere and the lower atmosphere: 2 D. region ion chemistry and the winter anomaly. J Geophys Res Ocean 87(C9):7221–7227CrossRefGoogle Scholar
  258. Solovieva MS, Rozhnoi AA (2015) Disturbances of VLF/LF signals on Far East paths on December 27, 2004, caused by the gamma-ray flare of magnetar SGR 1806-20. Geomagn Aeron 55(6):805–810. doi: 10.1134/S0016793215060158 CrossRefGoogle Scholar
  259. Spanswick E, Donovan E, Baker G (2005) Pc5 modulation of high energy electron precipitation: particle interaction regions and scattering efficiency. Ann Geophys 23(5):1533–1542CrossRefGoogle Scholar
  260. Straker TW (1955) The ionospheric propagation of radio waves of frequency 16 kc/s over short distances. Proc IEE Part C Monogr 102(1):122–133CrossRefGoogle Scholar
  261. Šulić DM, Srećković VA, Mihajlov AA (2016) A study of VLF signals variations associated with the changes of ionization level in the D-region in consequence of solar conditions. Adv Space Res 57(4):1029–1043. doi: 10.1016/j.asr.2015.12.025 CrossRefGoogle Scholar
  262. Tanaka YT, Terasawa T, Yoshida M, Horie T, Hayakawa M (2008) Ionospheric disturbances caused by SGR 1900 + 14 giant gamma ray flare in 1998: constraints on the energy spectrum of the flare. J Geophys Res Space Phys. doi: 10.1029/2008JA013119 Google Scholar
  263. Tanaka YT, Raulin J-P, Bertoni FCP, Fagundes PR, Chau J, Schuch NJ, Hayakawa M, Hobara Y, Terasawa T, Takahashi T (2010) First very low frequency detection of short repeated bursts from magnetar SGR J1550–5418. Astrophys J Lett 721(1):L24CrossRefGoogle Scholar
  264. Taubenheim J (1983) Meteorological control of the D region. Space Sci Rev 34(4):397–411CrossRefGoogle Scholar
  265. Taubenheim J, Entzian G, Berendorf K (1997) Long-term decrease of mesospheric temperature, 1963–1995, inferred from radiowave reflection heights. Adv Space Res 20(11):2059–2063. doi: 10.1016/S0273-1177(97)00596-6 CrossRefGoogle Scholar
  266. Thomson NR (1993) Experimental daytime VLF ionospheric parameters. J Atmos Terr Phys 55:173–184CrossRefGoogle Scholar
  267. Thomson NR, Clilverd MA (2000) Solar cycle changes in daytime VLF subionospheric attenuation. J Atmos Solar Terr Phys 62:601–608CrossRefGoogle Scholar
  268. Thomson NR, Clilverd MA (2001) Solar flare induced ionospheric D-region enhancements from VLF amplitude observations. J Atmos Solar Terr Phys 63(16):1729–1737. doi: 10.1016/S1364-6826(01)00048-7 CrossRefGoogle Scholar
  269. Thomson NR, Rodger CJ, Dowden RL (2004) Ionosphere gives size of greatest solar flare. Geophys Res Lett. doi: 10.1029/2003GL019345 Google Scholar
  270. Thomson NR, Rodger CJ, Clilverd MA (2005) Large solar flares and their ionospheric D region enhancements. J Geophys Res 110(A6):A06306. doi: 10.1029/2005JA011008 CrossRefGoogle Scholar
  271. Thomson NR, Clilverd MA, McRae WM (2007) Nighttime ionospheric D region parameters from VLF phase and amplitude. J Geophys Res Space Phys. doi: 10.1029/2007JA012271 Google Scholar
  272. Thomson NR, Clilverd MA, Rodger CJ (2014) Low-latitude ionospheric D region dependence on solar zenith angle. J Geophys Res Space Phys 119(8):6865–6875. doi: 10.1002/2014JA020299 CrossRefGoogle Scholar
  273. Thorne RM, Kennel CF (1971) Relativistic electron precipitation during magnetic storm main phase. J Geophys Res 76(19):4446–4453. doi: 10.1029/JA076i019p04446 CrossRefGoogle Scholar
  274. Thorne RM, Smith EJ, Burton RK, Holzer RE (1973) Plasmaspheric hiss. J Geophys Res 78(10):1581–1596. doi: 10.1029/JA078i010p01581 CrossRefGoogle Scholar
  275. Tolstoy A, Rosenberg TJ, Inan US, Carpenter DL (1986) Model predictions of subionospheric VLF signal perturbations resulting from localized, electron precipitation-induced ionization enhancement regions. J Geophys Res 91(A12):13473–13482. doi: 10.1029/JA091iA12p13473 CrossRefGoogle Scholar
  276. Verronen PT, Turunen E, Ulich T, Kyrölä E (2002) Modelling the effects of the October 1989 solar proton event on mesospheric odd nitrogen using a detailed ion and neutral chemistry model. Ann Geophys 20(12):1967–1976. doi: 10.5194/angeo-20-1967-2002 CrossRefGoogle Scholar
  277. Verronen PT, Seppälä A, Clilverd MA, Rodger CJ, Kyrölä E, Enell C-F, Ulich T, Turunen E (2005) Diurnal variation of ozone depletion during the October–November 2003 solar proton events. J Geophys Res Space Phys. doi: 10.1029/2004JA010932 Google Scholar
  278. Wait JR (1957a) The attenuation vs frequency characteristics of VLF radio waves. Proc IRE 45(6):768–771. doi: 10.1109/JRPROC.1957.278470 CrossRefGoogle Scholar
  279. Wait JR (1957b) The mode theory of VLF ionospheric propagation for finite ground conductivity. Proc IRE 45(6):760–767CrossRefGoogle Scholar
  280. Wait JR (1958) A study of VLF field strength data: both old and new. Geofis Pura e Appl 41(1):73–85. doi: 10.1007/BF01981861 CrossRefGoogle Scholar
  281. Wait JR, Spies KP (1964) Characteristics of the Earth–ionosphere waveguide for VLF radio waves. US Dept. of Commerce, National Bureau of StandardsGoogle Scholar
  282. Watt AD (1967) VLF radio engineering. Pergamon, GlasgowGoogle Scholar
  283. Westerlund S, Reder FH, Åbom C (1969) Effects of polar cap absorption events on VLF transmissions. Planet Space Sci 17(7):1329–1374. doi: 10.1016/0032-0633(69)90203-7 CrossRefGoogle Scholar
  284. Wheeler HA (1958) Fundamental limitations of a small VLF antenna for submarines. Antennas Propag IRE Trans 6(1):123–125. doi: 10.1109/TAP.1958.1144550 CrossRefGoogle Scholar
  285. Žigman V, Grubor D, Šulić D (2007) D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J Atmos Solar Terr Phys 69(7):775–792. doi: 10.1016/j.jastp.2007.01.012 CrossRefGoogle Scholar
  286. Zong Q-G, Zhou X-Z, Wang YF, Li X, Song P, Baker DN, Fritz TA, Daly PW, Dunlop M, Pedersen A (2009) Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res Space Phys. doi: 10.1029/2009JA014393 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of GeosciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Meteorology and Atmospheric SciencePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations