Satellite Altimetry-Based Sea Level at Global and Regional Scales

Abstract

Since the beginning of the 1990s, sea level is routinely measured using high-precision satellite altimetry. Over the past ~25 years, several groups worldwide involved in processing the satellite altimetry data regularly provide updates of sea level time series at global and regional scales. Here we present an ongoing effort supported by the European Space Agency (ESA) Climate Change Initiative Programme for improving the altimetry-based sea level products. Two main objectives characterize this enterprise: (1) to make use of ESA missions (ERS-1 and 2 and Envisat) in addition to the so-called ‘reference’ missions like TOPEX/Poseidon and the Jason series in the computation of the sea level time series, and (2) to improve all processing steps in order to meet the Global Climate Observing System (GCOS) accuracy requirements defined for a set of 50 Essential Climate Variables, sea level being one of them. We show that improved geophysical corrections, dedicated processing algorithms, reduction of instrumental bias and drifts, and careful linkage between missions led to improved sea level products. Regarding the long-term trend, the new global mean sea level record accuracy now approaches the GCOS requirements (of ~0.3 mm/year). Regional trend uncertainty has been reduced by a factor of ~2, but orbital and wet tropospheric corrections errors still prevent fully reaching the GCOS accuracy requirement. Similarly at the interannual time scale, the global mean sea level still displays 2–4 mm errors that are not yet fully understood. The recent launch of new altimetry missions (Sentinel-3, Jason-3) and the inclusion of data from currently flying missions (e.g., CryoSat, SARAL/AltiKa) may provide further improvements to this important climate record.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5:193–201

    Article  Google Scholar 

  2. Ablain M, Philipps S, Urvoy M, Tran N, Picot N (2012) Detection of long-term instabilities on altimeter backscattering coefficient thanks to wind speed data comparisons from altimeters and models. Mar Geod 35(S1):42–60. doi:10.1080/01490419.2012.718675

    Google Scholar 

  3. Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P, Faugère Y, Fernandes MJ, Henry O, Johannessen JA, Knudsen P, Andersen O, Legeais J, Meyssignac B, Picot N, Roca M, Rudenko S, Scharffenberg MG, Stammer D, Timms G, Benveniste J (2015) Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci 11:67–82. doi:10.5194/os-11-67-2015

    Article  Google Scholar 

  4. Agreen RW (1982) The 3.5-year GEOS-3 data set. NOAA Technical Memorandum NOS NGS 33, NOAA, Rockville, MD

  5. Andersen OB (2010) The DTU10 Gravity field and mean sea surface (2010) Second international symposium of the gravity field of the earth (IGFS2), Fairbanks, Alaska, 20–22 September 2010. http://www.space.dtu.dk/english/~/media/Institutter/Space/English/scientific_data_and_models/global_marine_gravity_field/dtu10.ashx. Access 20 June 2014

  6. Bonnefond P, Exertier P, Laurain O, Guillot A, Picot N, Cancet M, Lyard F (2015) SARAL/AltiKa absolute calibration from the multi-mission Corsica facilities. Mar Geod 38(S1):171–192

    Article  Google Scholar 

  7. Carrere L, Lyard F, Cancet M, Guillot A, Picot N, Dupuy S (2015) FES 2014: a new global tidal model. Ocean Surface Topography Science Team, Reston, Virginia, USA, October 2015. http://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/OSTST2015/TIDE-01-Carrere.pdf

  8. Carrere L, Faugère Y, Ablain M (2016) Major improvement of altimetry sea level estimations using pressure derived corrections based on ERA-interim atmospheric reanalysis. Ocean Sci Discuss. doi:10.5194/os-2015-112

    Google Scholar 

  9. Cartwright DE, Tayler RJ (1971) New computations of the tide-generating potential. Geophys J Int 23(1):45–73

    Article  Google Scholar 

  10. Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys J Int 33(3):253–264

    Article  Google Scholar 

  11. Cazenave A, Dieng H, Meyssignac B, von Schuckmann K, Decharme B, Berthier E (2014) The rate of sea level rise. Nat Clim Change 4:358–361. doi:10.1038/NCLIMATE2159

    Article  Google Scholar 

  12. Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2001) Satellite altimetry. In: Fu L-L, Cazenave A (eds) Satellite altimetry and earth sciences, a handbook of techniques and applications. Academic Press, London. Int Geophys Ser 69:1–131

  13. Cheng Y, Andersen O, Knudsen P (2015) An improved 20-year Arctic Ocean altimetric sea level data record. Mar Geod 38(2):146–162

    Article  Google Scholar 

  14. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett. doi:10.1029/2011gl048794

    Google Scholar 

  15. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  16. Clark PU et al (2015) Recent progress in understanding and projecting regional and global mean sea level. Curr Clim Change. doi:10.1007/s40641-015-0024-4

    Google Scholar 

  17. Couhert A, Luca Cerri L, Legeais JF, Ablain M, Zelensky NP, Haines BJ, Lemoine FG, Bertiger WI, Desai SD, Michiel Otten M (2015) Towards the 1 mm/y stability of the radial orbit error at regional scales. Adv Space Res 55:2–23

    Article  Google Scholar 

  18. Dibarboure G, Pujol M-I, Briol F, Le Traon PY, Larnicol G, Picot N, Mertz F, Ablain M (2011) Jason-2 in DUACS: updated system description, first tandem results and impact on processing and products. Mar Geod 34(3–4):214–241

    Article  Google Scholar 

  19. Dieng H, Palanisamy H, Cazenave A, Meyssignac B, von Schuckmann K (2015a) The sea level budget since 2003: inference on the deep ocean heat content. Surv Geophys 36:1. doi:10.1007/s10712-015-9314-6

    Article  Google Scholar 

  20. Dieng H, Cazenave A, von Shuckmann K, Ablain M, Meyssignac B (2015b) Sea level budget over 2005–2013: missing contributions and data errors. Ocean Sci 11:789–802. doi:10.5194/os-11-789-2015

    Article  Google Scholar 

  21. Dieng H, Champollion N, Cazenave A, Wada Y, Schrama E, Meyssignac B (2015c) Total land water storage change over 2003–2013 estimated from a global mass budget approach. Environ Res Lett 10:124010. doi:10.1088/1748-9326/10/12/124010

    Article  Google Scholar 

  22. Ducet N, Le Traon PY, Reverdin G (2000) Global high resolution mapping of ocean circulation from the combination of TOPEX/POSEIDON and ERS-1/2. J Geophys Res (Oceans) 105(C8):19477–19498

    Article  Google Scholar 

  23. Fenoglio-Marc L, Groten E, Dietz C (2004) Vertical land motion in the Mediterranean Sea from altimetry and tide gauge stations. Mar Geod 27(3–4):683–701

    Article  Google Scholar 

  24. Fenoglio-Marc L, Becker M, Rietbroeck R, Kusche J, Grayek S, Stanev E (2012) Water mass variation in Mediterranean and Black Sea. J Geodyn. doi:10.1016/j.jog.2012.04.001

    Google Scholar 

  25. Fenoglio-Marc L, Dinardo S, Scharroo R, Roland A, Dutour M, Lucas B, Becker M, Benveniste J, Weiss R (2015) The German Bight: a validation of CryoSat-2 altimeter data in SAR mode. Adv Space Res. doi:10.1016/j.asr.2015.02.014

    Google Scholar 

  26. Fernandes MJ, Lázaro C, Ablain M, Pires N (2015) Improved wet path delays for all ESA and reference altimetric missions. Remote Sens Environ 169(2015):50–74. doi:10.1016/j.rse.2015.07.023

    Article  Google Scholar 

  27. Fu L-L, Cazenave A (2001) Satellite altimetry and earth sciences; a handbook of techniques and applications. Academic Press, San Diego. Int Geophys Ser 69

  28. Garcia P, Roca M (2010) ISARD_ESA_L1B_ESL_CCN_PRO_064, issue 1.b, 1 November 2010, “On-board PTR processing analysis: MSL drift differences”

  29. Gaspar P, Ogor F (1994) Estimation and analysis of the sea state bias of the ers-1 altimeter. Rapport technique, Report of task B1-B2 of IFREMER Contract n° 94/2.426016/C. 84

  30. GCOS (2011) Systematic observation requirements for satellite-based data products for climate (2011 update)—supplemental details to the satellite-based component of the “Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update)”. GCOS-154 (WMO, December 2011)

  31. Giles KA, Laxon SW, Ridout AL, Wingham DJ, Bacon S (2012) Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat Geosci 5(3):194–197

    Article  Google Scholar 

  32. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118:6704–6716. doi:10.1002/2013JC009067

    Article  Google Scholar 

  33. Haines BJ, Desai SD, Born GH (2010) The harvest experiment: calibration of the climate data record from TOPEX/Poseidon, Jason-1 and the ocean surface topography mission. Mar Geod 33(S1):91–113

    Article  Google Scholar 

  34. Hay CC et al (2015) Probabilistic reanalysis of twentieth-century sea level rise. Nature 517(7535):481

    Article  Google Scholar 

  35. Henry O, Ablain M, Meyssignac B, Cazenave A, Masters D, Nerem S, Garric G (2014) Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the Jason-1 operating period. J Geod 88:351–361. doi:10.1007/s00190-013-0687-3

    Article  Google Scholar 

  36. Jalabert E, Couhert A, Moyard J, Mercier F, Houry S, Rios-Bergantinos S (2015) Jason-2, SARAL and CryoSat-2 status. Ocean surface topography science team meeting, Reston, Virginia, USA, October 2015. http://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/OSTST2015/POD-01-Jalabert.pdf

  37. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35:L08715. doi:10.1029/2008GL033611

    Article  Google Scholar 

  38. Jevrejeva S et al (2014) Trends and acceleration in global and regional sea levels since 1807. Glob Planet Change 113:11–22

    Article  Google Scholar 

  39. Kaula W (1970) The terrestrial environment: solid earth and ocean physics. Williamstown report, M.I.T., Cambridge, MA, NASA CR-1579, April 1970. http://ilrs.gsfc.nasa.gov/docs/williamstown_1968.pdf

  40. Labroue S, Boy F, Picot N, Urvoy M, Ablain M (2012) First quality assessment of the CryoSat-2 altimetric system over ocean. Adv Space Res 50(8):1030–1045. doi:10.1016/j.asr.2011.11.018

    Article  Google Scholar 

  41. Le Traon PY, Faugère Y, Hernandez F, Dorandeu J, Mertz F, Ablain M (2003) Can we merge GEOSAT follow-on with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation? J Atmos Ocean Technol 20:889–895. doi:10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2

    Article  Google Scholar 

  42. Legeais J-F, Ablain M, Thao S (2014) Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level. Ocean Sci 10:893–905. doi:10.5194/os-10-893-2014

    Article  Google Scholar 

  43. Legeais J-F, Prandi P, Guinehut S (2016) Analyses of altimetry errors using Argo and GRACE data. Ocean Sci 12:647–662. doi:10.5194/os-12-647-2016

    Article  Google Scholar 

  44. Lillibridge J, Smith WHF, David Sandwell D, Scharroo R, Frank G, Lemoine FG, Zelensky NP (2006) 20 years of improvements to GEOSAT altimetry. Symposium: 15 years of progress in radar altimetry, Venice, Italy, March 13–18, 2006. http://earth.esa.int/workshops/venice06/participants/509/paper_509_lillibridge.pdf

  45. Masters D, Nerem RS, Choe C, Leuliette E, Beckley B, White N, Ablain M (2012) Comparison of global mean sea level time series from TOPEX/Poseidon, Jason-1, and Jason-2. Mar Geod 35(1):20–41

    Article  Google Scholar 

  46. Mertz F, Mercier F, Labroue S, Tran N, Dorandeu J (2005) ERS-2 OPR data quality assessment; long-term monitoring—particular investigation. CLS.DOS.NT-06.001. http://www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/E2/annual_report_e2_2005.pdf. Access 11 May 2016

  47. Mitchum GT (1998) Monitoring the stability of satellite altimeters with tide gauges. J Atmos Ocean Technol 15(3):721–730

    Article  Google Scholar 

  48. Mitchum GT, Nerem RS, Merrifield MA, Gehrels WR (2010) Modern estimates of sea level changes. In: Church J, Woodworth P, Aarup T, Wilson WS (eds) Understanding sea level rise and variability. Wiley-Blackwell, New York, pp 122–142

    Google Scholar 

  49. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(1):435–446

    Article  Google Scholar 

  50. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  51. Prandi P, Ablain M, Cazenave A, Picot N (2012) A new estimation of mean sea level in the arctic ocean from satellite altimetry. Mar Geod 35(1):61–81

    Article  Google Scholar 

  52. Pujol M-I, Faugère Y, Taburet G, Dupuy S, Pelloquin C, Ablain M, Picot N (2016) DUACS DT2014: the new multimission altimeter dataset reprocessed over 20 years. Ocean Sci Discuss. doi:10.5194/os-2015-110 (in review)

    Google Scholar 

  53. Ray RD (2013) Precise comparisons of bottom-pressure and altimetric ocean tides. J Geophys Res Oceans 118:4570–4584. doi:10.1002/jgrc.20336

    Article  Google Scholar 

  54. Ray C, Martin-Puig C, Clarizia MP, Ruffini G, Dinardo S, Gommenginger C, Benveniste J (2014) SAR altimeter backscattered waveform model. IEEE Trans Geosci Remote Sens 53(2):911–919. doi:10.1109/TGRS.2014.2330423

    Article  Google Scholar 

  55. Roemmich D, Johnson GC, Riser S, Davis R, Gilson J, Owens WB, Garzoli SL, Schmid C, Ignaszewski M (2009) The Argo program: observing the global ocean with profiling floats. Oceanography 22:34–43

    Article  Google Scholar 

  56. Rudenko S, Otten M, Visser P, Scharroo R, Schöne T, Esselborn S (2012) New improved orbit solutions for the ERS-1 and ERS-2 satellites. Adv Space Res 49(8):1229–1244

    Article  Google Scholar 

  57. Rudenko S, Dettmering D, Esselborn S, Schöne T, Förste Ch, Lemoine J-M, Ablain M, Alexandre D, Neumayer K-H (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv Space Res 54(1):92–118. doi:10.1016/j.asr.2014.03.010

    Article  Google Scholar 

  58. Rudenko R, Neumayer K-H, Dettmering D, Esselborn S, Schöne T (2015) Improvements in precise orbit determination of altimetry satellites. Ocean Surface Topography Science Team meeting, Reston, Virginia, USA, October 2015. http://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/OSTST2015/POD-04-Rudenko_OSTST2015_20151021new.pdf

  59. Santamaría-Gómez A, Gravelle M, Collilieux X, Guichard M, Martín Míguez B, Tiphaneau P, Wöppelmann G (2012) Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Glob Planet Change 98–99:6–17

    Article  Google Scholar 

  60. Santamaría-Gómez A, Gravelle M, Wöppelmann G (2014) Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data. J Geod 88:207–222. doi:10.1007/s00190-013-0677-5

    Article  Google Scholar 

  61. Thibaut P, Poisson J-C, Roca M, Nilo Garcia P (2012) WP2100 altimeter instrumental processing: RRDP and validation reports, sea level climate change initiative project, phase I. Algorithm selection meeting, Toulouse, 2 May 2012. http://www.esa-sealevel-cci.org/webfm_send/77

  62. Tran N, Labroue S, Philipps S, Bronner E, Picot N (2010) Overview and update of the sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Mar Geod 33(S1):348–362. doi:10.1080/01490419.2010.487788

    Article  Google Scholar 

  63. Tran N, Philipps S, Poisson J-C, Urien S, Bronner E, Picot N (2012) Oral: impact of GDR-D standards on SSB corrections. Aviso, OSTST. http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2012/oral/02_friday_28/01_instr_processing_I/01_IP1_Tran.pdf

  64. Valladeau G, Legeais JF, Ablain M, Guinehut S, Picot N (2012) Comparing altimetry with tide gauges and argo profiling floats for data quality assessment and mean sea level studies. Mar Geod 35(1):42–60

    Article  Google Scholar 

  65. Von Schukmann K, Palmer MD, Trenberth KE, Cazenave A, Chambers D, Champollion N (2016) An imperative to monitor Earth’s energy imbalance. Nat Clim Change 6:138–144

    Article  Google Scholar 

  66. Wahr JM (1985) Deformation induced by polar motion. J Geophys Res 90(B11):9363–9368. doi:10.1029/JB090iB11p09363

    Article  Google Scholar 

  67. Watson C, White N, Church J, Burgette R, Tregoning P, Coleman R (2011) Absolute calibration in bass strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2. Mar Geod 34(3–4):242–260

    Article  Google Scholar 

  68. Watson CS, White NJ, Church JA, King MA, Burgette RJ, Legresy B (2015) Unabated global mean sea-level rise over the satellite altimeter era. Nat Clim Change. doi:10.1038/nclimate2635

    Google Scholar 

  69. Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys. doi:10.1002/2015RG000502

    Google Scholar 

  70. Woppelmann G, Letetrel C, Santamaria A, Bouin MN, Collilieux X, Altamimi Z, Williams SDP, Miguez BM (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett. doi:10.1029/2009gl038720

    Google Scholar 

  71. Zawadzki L, Ablain M (2016) Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a. Ocean Sci 12:9–18. doi:10.5194/os-12-9-2016

    Article  Google Scholar 

Download references

Acknowledgments

We thank G. Woppelmann and an anonymous reviewer for helpful comments on the original manuscript. M. Ablain, J.F.Legeais, P. Prandi, J. Benveniste, L. Fenoglio-Marc, H.B. Dieng and A. Cazenave acknowledge the support by ESA in the frame of the CCI project. The authors also thank all partners of the SL_cci project. M. Marcos acknowledges a ‘Ramon y Cajal’ contract funded by the Spanish Ministry of Economy. This work was supported by the research project CLIMPACT (CGL2014-54246-C2-1-R) funded by the Spanish Ministry of Economy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Cazenave.

Additional information

This paper is an outcome of the workshop on “Integrative Study of Sea Level Budget”, International Space Science Institute Workshop, Bern, 2–6 February 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ablain, M., Legeais, J.F., Prandi, P. et al. Satellite Altimetry-Based Sea Level at Global and Regional Scales. Surv Geophys 38, 7–31 (2017). https://doi.org/10.1007/s10712-016-9389-8

Download citation

Keywords

  • Satellite altimetry
  • Sea level
  • Climate Change Initiative