Surveys in Geophysics

, Volume 38, Issue 1, pp 7–31 | Cite as

Satellite Altimetry-Based Sea Level at Global and Regional Scales

  • M. Ablain
  • J. F. Legeais
  • P. Prandi
  • M. Marcos
  • L. Fenoglio-Marc
  • H. B. Dieng
  • J. Benveniste
  • A. CazenaveEmail author


Since the beginning of the 1990s, sea level is routinely measured using high-precision satellite altimetry. Over the past ~25 years, several groups worldwide involved in processing the satellite altimetry data regularly provide updates of sea level time series at global and regional scales. Here we present an ongoing effort supported by the European Space Agency (ESA) Climate Change Initiative Programme for improving the altimetry-based sea level products. Two main objectives characterize this enterprise: (1) to make use of ESA missions (ERS-1 and 2 and Envisat) in addition to the so-called ‘reference’ missions like TOPEX/Poseidon and the Jason series in the computation of the sea level time series, and (2) to improve all processing steps in order to meet the Global Climate Observing System (GCOS) accuracy requirements defined for a set of 50 Essential Climate Variables, sea level being one of them. We show that improved geophysical corrections, dedicated processing algorithms, reduction of instrumental bias and drifts, and careful linkage between missions led to improved sea level products. Regarding the long-term trend, the new global mean sea level record accuracy now approaches the GCOS requirements (of ~0.3 mm/year). Regional trend uncertainty has been reduced by a factor of ~2, but orbital and wet tropospheric corrections errors still prevent fully reaching the GCOS accuracy requirement. Similarly at the interannual time scale, the global mean sea level still displays 2–4 mm errors that are not yet fully understood. The recent launch of new altimetry missions (Sentinel-3, Jason-3) and the inclusion of data from currently flying missions (e.g., CryoSat, SARAL/AltiKa) may provide further improvements to this important climate record.


Satellite altimetry Sea level Climate Change Initiative 



We thank G. Woppelmann and an anonymous reviewer for helpful comments on the original manuscript. M. Ablain, J.F.Legeais, P. Prandi, J. Benveniste, L. Fenoglio-Marc, H.B. Dieng and A. Cazenave acknowledge the support by ESA in the frame of the CCI project. The authors also thank all partners of the SL_cci project. M. Marcos acknowledges a ‘Ramon y Cajal’ contract funded by the Spanish Ministry of Economy. This work was supported by the research project CLIMPACT (CGL2014-54246-C2-1-R) funded by the Spanish Ministry of Economy.


  1. Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5:193–201CrossRefGoogle Scholar
  2. Ablain M, Philipps S, Urvoy M, Tran N, Picot N (2012) Detection of long-term instabilities on altimeter backscattering coefficient thanks to wind speed data comparisons from altimeters and models. Mar Geod 35(S1):42–60. doi: 10.1080/01490419.2012.718675 Google Scholar
  3. Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P, Faugère Y, Fernandes MJ, Henry O, Johannessen JA, Knudsen P, Andersen O, Legeais J, Meyssignac B, Picot N, Roca M, Rudenko S, Scharffenberg MG, Stammer D, Timms G, Benveniste J (2015) Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci 11:67–82. doi: 10.5194/os-11-67-2015 CrossRefGoogle Scholar
  4. Agreen RW (1982) The 3.5-year GEOS-3 data set. NOAA Technical Memorandum NOS NGS 33, NOAA, Rockville, MDGoogle Scholar
  5. Andersen OB (2010) The DTU10 Gravity field and mean sea surface (2010) Second international symposium of the gravity field of the earth (IGFS2), Fairbanks, Alaska, 20–22 September 2010. Access 20 June 2014
  6. Bonnefond P, Exertier P, Laurain O, Guillot A, Picot N, Cancet M, Lyard F (2015) SARAL/AltiKa absolute calibration from the multi-mission Corsica facilities. Mar Geod 38(S1):171–192CrossRefGoogle Scholar
  7. Carrere L, Lyard F, Cancet M, Guillot A, Picot N, Dupuy S (2015) FES 2014: a new global tidal model. Ocean Surface Topography Science Team, Reston, Virginia, USA, October 2015.
  8. Carrere L, Faugère Y, Ablain M (2016) Major improvement of altimetry sea level estimations using pressure derived corrections based on ERA-interim atmospheric reanalysis. Ocean Sci Discuss. doi: 10.5194/os-2015-112 Google Scholar
  9. Cartwright DE, Tayler RJ (1971) New computations of the tide-generating potential. Geophys J Int 23(1):45–73CrossRefGoogle Scholar
  10. Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys J Int 33(3):253–264CrossRefGoogle Scholar
  11. Cazenave A, Dieng H, Meyssignac B, von Schuckmann K, Decharme B, Berthier E (2014) The rate of sea level rise. Nat Clim Change 4:358–361. doi: 10.1038/NCLIMATE2159 CrossRefGoogle Scholar
  12. Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2001) Satellite altimetry. In: Fu L-L, Cazenave A (eds) Satellite altimetry and earth sciences, a handbook of techniques and applications. Academic Press, London. Int Geophys Ser 69:1–131Google Scholar
  13. Cheng Y, Andersen O, Knudsen P (2015) An improved 20-year Arctic Ocean altimetric sea level data record. Mar Geod 38(2):146–162CrossRefGoogle Scholar
  14. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett. doi: 10.1029/2011gl048794 Google Scholar
  15. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  16. Clark PU et al (2015) Recent progress in understanding and projecting regional and global mean sea level. Curr Clim Change. doi: 10.1007/s40641-015-0024-4 Google Scholar
  17. Couhert A, Luca Cerri L, Legeais JF, Ablain M, Zelensky NP, Haines BJ, Lemoine FG, Bertiger WI, Desai SD, Michiel Otten M (2015) Towards the 1 mm/y stability of the radial orbit error at regional scales. Adv Space Res 55:2–23CrossRefGoogle Scholar
  18. Dibarboure G, Pujol M-I, Briol F, Le Traon PY, Larnicol G, Picot N, Mertz F, Ablain M (2011) Jason-2 in DUACS: updated system description, first tandem results and impact on processing and products. Mar Geod 34(3–4):214–241CrossRefGoogle Scholar
  19. Dieng H, Palanisamy H, Cazenave A, Meyssignac B, von Schuckmann K (2015a) The sea level budget since 2003: inference on the deep ocean heat content. Surv Geophys 36:1. doi: 10.1007/s10712-015-9314-6 CrossRefGoogle Scholar
  20. Dieng H, Cazenave A, von Shuckmann K, Ablain M, Meyssignac B (2015b) Sea level budget over 2005–2013: missing contributions and data errors. Ocean Sci 11:789–802. doi: 10.5194/os-11-789-2015 CrossRefGoogle Scholar
  21. Dieng H, Champollion N, Cazenave A, Wada Y, Schrama E, Meyssignac B (2015c) Total land water storage change over 2003–2013 estimated from a global mass budget approach. Environ Res Lett 10:124010. doi: 10.1088/1748-9326/10/12/124010 CrossRefGoogle Scholar
  22. Ducet N, Le Traon PY, Reverdin G (2000) Global high resolution mapping of ocean circulation from the combination of TOPEX/POSEIDON and ERS-1/2. J Geophys Res (Oceans) 105(C8):19477–19498CrossRefGoogle Scholar
  23. Fenoglio-Marc L, Groten E, Dietz C (2004) Vertical land motion in the Mediterranean Sea from altimetry and tide gauge stations. Mar Geod 27(3–4):683–701CrossRefGoogle Scholar
  24. Fenoglio-Marc L, Becker M, Rietbroeck R, Kusche J, Grayek S, Stanev E (2012) Water mass variation in Mediterranean and Black Sea. J Geodyn. doi: 10.1016/j.jog.2012.04.001 Google Scholar
  25. Fenoglio-Marc L, Dinardo S, Scharroo R, Roland A, Dutour M, Lucas B, Becker M, Benveniste J, Weiss R (2015) The German Bight: a validation of CryoSat-2 altimeter data in SAR mode. Adv Space Res. doi: 10.1016/j.asr.2015.02.014 Google Scholar
  26. Fernandes MJ, Lázaro C, Ablain M, Pires N (2015) Improved wet path delays for all ESA and reference altimetric missions. Remote Sens Environ 169(2015):50–74. doi: 10.1016/j.rse.2015.07.023 CrossRefGoogle Scholar
  27. Fu L-L, Cazenave A (2001) Satellite altimetry and earth sciences; a handbook of techniques and applications. Academic Press, San Diego. Int Geophys Ser 69Google Scholar
  28. Garcia P, Roca M (2010) ISARD_ESA_L1B_ESL_CCN_PRO_064, issue 1.b, 1 November 2010, “On-board PTR processing analysis: MSL drift differences”Google Scholar
  29. Gaspar P, Ogor F (1994) Estimation and analysis of the sea state bias of the ers-1 altimeter. Rapport technique, Report of task B1-B2 of IFREMER Contract n° 94/2.426016/C. 84Google Scholar
  30. GCOS (2011) Systematic observation requirements for satellite-based data products for climate (2011 update)—supplemental details to the satellite-based component of the “Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update)”. GCOS-154 (WMO, December 2011)Google Scholar
  31. Giles KA, Laxon SW, Ridout AL, Wingham DJ, Bacon S (2012) Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat Geosci 5(3):194–197CrossRefGoogle Scholar
  32. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118:6704–6716. doi: 10.1002/2013JC009067 CrossRefGoogle Scholar
  33. Haines BJ, Desai SD, Born GH (2010) The harvest experiment: calibration of the climate data record from TOPEX/Poseidon, Jason-1 and the ocean surface topography mission. Mar Geod 33(S1):91–113CrossRefGoogle Scholar
  34. Hay CC et al (2015) Probabilistic reanalysis of twentieth-century sea level rise. Nature 517(7535):481CrossRefGoogle Scholar
  35. Henry O, Ablain M, Meyssignac B, Cazenave A, Masters D, Nerem S, Garric G (2014) Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the Jason-1 operating period. J Geod 88:351–361. doi: 10.1007/s00190-013-0687-3 CrossRefGoogle Scholar
  36. Jalabert E, Couhert A, Moyard J, Mercier F, Houry S, Rios-Bergantinos S (2015) Jason-2, SARAL and CryoSat-2 status. Ocean surface topography science team meeting, Reston, Virginia, USA, October 2015.
  37. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35:L08715. doi: 10.1029/2008GL033611 CrossRefGoogle Scholar
  38. Jevrejeva S et al (2014) Trends and acceleration in global and regional sea levels since 1807. Glob Planet Change 113:11–22CrossRefGoogle Scholar
  39. Kaula W (1970) The terrestrial environment: solid earth and ocean physics. Williamstown report, M.I.T., Cambridge, MA, NASA CR-1579, April 1970.
  40. Labroue S, Boy F, Picot N, Urvoy M, Ablain M (2012) First quality assessment of the CryoSat-2 altimetric system over ocean. Adv Space Res 50(8):1030–1045. doi: 10.1016/j.asr.2011.11.018 CrossRefGoogle Scholar
  41. Le Traon PY, Faugère Y, Hernandez F, Dorandeu J, Mertz F, Ablain M (2003) Can we merge GEOSAT follow-on with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation? J Atmos Ocean Technol 20:889–895. doi: 10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2 CrossRefGoogle Scholar
  42. Legeais J-F, Ablain M, Thao S (2014) Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level. Ocean Sci 10:893–905. doi: 10.5194/os-10-893-2014 CrossRefGoogle Scholar
  43. Legeais J-F, Prandi P, Guinehut S (2016) Analyses of altimetry errors using Argo and GRACE data. Ocean Sci 12:647–662. doi: 10.5194/os-12-647-2016 CrossRefGoogle Scholar
  44. Lillibridge J, Smith WHF, David Sandwell D, Scharroo R, Frank G, Lemoine FG, Zelensky NP (2006) 20 years of improvements to GEOSAT altimetry. Symposium: 15 years of progress in radar altimetry, Venice, Italy, March 13–18, 2006.
  45. Masters D, Nerem RS, Choe C, Leuliette E, Beckley B, White N, Ablain M (2012) Comparison of global mean sea level time series from TOPEX/Poseidon, Jason-1, and Jason-2. Mar Geod 35(1):20–41CrossRefGoogle Scholar
  46. Mertz F, Mercier F, Labroue S, Tran N, Dorandeu J (2005) ERS-2 OPR data quality assessment; long-term monitoring—particular investigation. CLS.DOS.NT-06.001. Access 11 May 2016
  47. Mitchum GT (1998) Monitoring the stability of satellite altimeters with tide gauges. J Atmos Ocean Technol 15(3):721–730CrossRefGoogle Scholar
  48. Mitchum GT, Nerem RS, Merrifield MA, Gehrels WR (2010) Modern estimates of sea level changes. In: Church J, Woodworth P, Aarup T, Wilson WS (eds) Understanding sea level rise and variability. Wiley-Blackwell, New York, pp 122–142CrossRefGoogle Scholar
  49. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(1):435–446CrossRefGoogle Scholar
  50. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  51. Prandi P, Ablain M, Cazenave A, Picot N (2012) A new estimation of mean sea level in the arctic ocean from satellite altimetry. Mar Geod 35(1):61–81CrossRefGoogle Scholar
  52. Pujol M-I, Faugère Y, Taburet G, Dupuy S, Pelloquin C, Ablain M, Picot N (2016) DUACS DT2014: the new multimission altimeter dataset reprocessed over 20 years. Ocean Sci Discuss. doi: 10.5194/os-2015-110 (in review) Google Scholar
  53. Ray RD (2013) Precise comparisons of bottom-pressure and altimetric ocean tides. J Geophys Res Oceans 118:4570–4584. doi: 10.1002/jgrc.20336 CrossRefGoogle Scholar
  54. Ray C, Martin-Puig C, Clarizia MP, Ruffini G, Dinardo S, Gommenginger C, Benveniste J (2014) SAR altimeter backscattered waveform model. IEEE Trans Geosci Remote Sens 53(2):911–919. doi: 10.1109/TGRS.2014.2330423 CrossRefGoogle Scholar
  55. Roemmich D, Johnson GC, Riser S, Davis R, Gilson J, Owens WB, Garzoli SL, Schmid C, Ignaszewski M (2009) The Argo program: observing the global ocean with profiling floats. Oceanography 22:34–43CrossRefGoogle Scholar
  56. Rudenko S, Otten M, Visser P, Scharroo R, Schöne T, Esselborn S (2012) New improved orbit solutions for the ERS-1 and ERS-2 satellites. Adv Space Res 49(8):1229–1244CrossRefGoogle Scholar
  57. Rudenko S, Dettmering D, Esselborn S, Schöne T, Förste Ch, Lemoine J-M, Ablain M, Alexandre D, Neumayer K-H (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv Space Res 54(1):92–118. doi: 10.1016/j.asr.2014.03.010 CrossRefGoogle Scholar
  58. Rudenko R, Neumayer K-H, Dettmering D, Esselborn S, Schöne T (2015) Improvements in precise orbit determination of altimetry satellites. Ocean Surface Topography Science Team meeting, Reston, Virginia, USA, October 2015.
  59. Santamaría-Gómez A, Gravelle M, Collilieux X, Guichard M, Martín Míguez B, Tiphaneau P, Wöppelmann G (2012) Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Glob Planet Change 98–99:6–17CrossRefGoogle Scholar
  60. Santamaría-Gómez A, Gravelle M, Wöppelmann G (2014) Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data. J Geod 88:207–222. doi: 10.1007/s00190-013-0677-5 CrossRefGoogle Scholar
  61. Thibaut P, Poisson J-C, Roca M, Nilo Garcia P (2012) WP2100 altimeter instrumental processing: RRDP and validation reports, sea level climate change initiative project, phase I. Algorithm selection meeting, Toulouse, 2 May 2012.
  62. Tran N, Labroue S, Philipps S, Bronner E, Picot N (2010) Overview and update of the sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Mar Geod 33(S1):348–362. doi: 10.1080/01490419.2010.487788 CrossRefGoogle Scholar
  63. Tran N, Philipps S, Poisson J-C, Urien S, Bronner E, Picot N (2012) Oral: impact of GDR-D standards on SSB corrections. Aviso, OSTST.
  64. Valladeau G, Legeais JF, Ablain M, Guinehut S, Picot N (2012) Comparing altimetry with tide gauges and argo profiling floats for data quality assessment and mean sea level studies. Mar Geod 35(1):42–60CrossRefGoogle Scholar
  65. Von Schukmann K, Palmer MD, Trenberth KE, Cazenave A, Chambers D, Champollion N (2016) An imperative to monitor Earth’s energy imbalance. Nat Clim Change 6:138–144CrossRefGoogle Scholar
  66. Wahr JM (1985) Deformation induced by polar motion. J Geophys Res 90(B11):9363–9368. doi: 10.1029/JB090iB11p09363 CrossRefGoogle Scholar
  67. Watson C, White N, Church J, Burgette R, Tregoning P, Coleman R (2011) Absolute calibration in bass strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2. Mar Geod 34(3–4):242–260CrossRefGoogle Scholar
  68. Watson CS, White NJ, Church JA, King MA, Burgette RJ, Legresy B (2015) Unabated global mean sea-level rise over the satellite altimeter era. Nat Clim Change. doi: 10.1038/nclimate2635 Google Scholar
  69. Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys. doi: 10.1002/2015RG000502 Google Scholar
  70. Woppelmann G, Letetrel C, Santamaria A, Bouin MN, Collilieux X, Altamimi Z, Williams SDP, Miguez BM (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett. doi: 10.1029/2009gl038720 Google Scholar
  71. Zawadzki L, Ablain M (2016) Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a. Ocean Sci 12:9–18. doi: 10.5194/os-12-9-2016 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Ablain
    • 1
  • J. F. Legeais
    • 1
  • P. Prandi
    • 1
  • M. Marcos
    • 2
  • L. Fenoglio-Marc
    • 3
    • 4
  • H. B. Dieng
    • 5
  • J. Benveniste
    • 6
  • A. Cazenave
    • 5
    • 7
    Email author
  1. 1.CLSToulouseFrance
  2. 2.IMEDEA (UIB-CSIC)EsporlesSpain
  3. 3.Technical University DarmstadtDarmstadtGermany
  4. 4.University of BonnBonnGermany
  5. 5.LEGOSToulouseFrance
  6. 6.ESA-ESRINFrascatiItaly
  7. 7.ISSIBernSwitzerland

Personalised recommendations