Surveys in Geophysics

, Volume 38, Issue 1, pp 309–327 | Cite as

Evaluation of the Global Mean Sea Level Budget between 1993 and 2014

  • Don P. Chambers
  • Anny Cazenave
  • Nicolas Champollion
  • Habib Dieng
  • William Llovel
  • Rene Forsberg
  • Karina von Schuckmann
  • Yoshihide Wada
Article

Abstract

Evaluating global mean sea level (GMSL) in terms of its components—mass and steric—is useful for both quantifying the accuracy of the measurements and understanding the processes that contribute to GMSL rise. In this paper, we review the GMSL budget over two periods—1993 to 2014 and 2005 to 2014—using multiple data sets of both total GMSL and the components (mass and steric). In addition to comparing linear trends, we also compare the level of agreement of the time series. For the longer period (1993–2014), we find closure in terms of the long-term trend but not for year-to-year variations, consistent with other studies. This is due to the lack of sufficient estimates of the amount of natural water mass cycling between the oceans and hydrosphere. For the more recent period (2005–2014), we find closure in both the long-term trend and for month-to-month variations. This is also consistent with previous studies.

Keywords

Sea level Ocean mass Steric sea level Climate change 

References

  1. Ablain M, Cazenave A et al (2015) Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative Project. Ocean Sci 11:67–82. doi:10.5194/os-11-67-2015 CrossRefGoogle Scholar
  2. Abraham JP et al (2013) A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev Geophys 51:450–483. doi:10.1002/rog.20022 CrossRefGoogle Scholar
  3. Barletta VR, Sørensen LS, Forsberg R (2013) Scatter of mass changes estimates at basin scale for Greenland and Antarctica. Cryosphere 7:1411–1432. doi:10.5194/tc-7-1411-2013 CrossRefGoogle Scholar
  4. Calafat FM, Chambers DP (2013) Quantifying recent acceleration in sea level unrelated to internal climate variability. Geophys Res Lett. doi:10.1002/grl.50731 Google Scholar
  5. Calafat FM, Chambers DP, Tsimplis MN (2014) On the ability of global sea level reconstructions to determine trends and variability. J Geophys Res Oceans 119:1572–1592. doi:10.1002/2013JC009298 CrossRefGoogle Scholar
  6. Cazenave A, Dieng H, Meyssignac B, von Schuckmann K, Decharme B, Berthier E (2014) The rate of sea level rise. Nat Clim Chang 4:358–361. doi:10.1038/NCLIMATE2159 CrossRefGoogle Scholar
  7. Chambers DP, Merrifield MA, Nerem RS (2012) Is there a 60-year oscillation in global mean sea level? Geophys Res Lett 39:L18607. doi:10.1029/2012GL052885 CrossRefGoogle Scholar
  8. Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Ltrs 31:L13310. doi:10.1029/2004GL020461 CrossRefGoogle Scholar
  9. Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320:212–214. doi:10.1126/science.1154580 CrossRefGoogle Scholar
  10. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32(4–5):585–602. doi:10.1007/s10712-011-9119-1 CrossRefGoogle Scholar
  11. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. doi:10.1029/2011GL048794 CrossRefGoogle Scholar
  12. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  13. Dieng H, Champollion N, Cazenave A, Wada Y, Schrama E, Meyssignac B (2015a) Total land water storage change over 2003–2013 estimated from a global mass budget approach. Environ Res Lett (in press) Google Scholar
  14. Dieng H, Palanisamy H, Cazenave A, Meyssignac B, von Schuckmann K (2015b) The sea level budget since 2003: inference on the deep ocean heat content. Surv Geophys 36:1. doi:10.1007/s10712-015-9314-6 CrossRefGoogle Scholar
  15. Dieng H, Cazenave A, von Shuckmann K, Ablain M, Meyssignac B (2015c) Sea level budget over 2005–2013: missing contributions and data errors. Ocean Sci 11:789–802. doi:10.5194/os-11-789-2015 CrossRefGoogle Scholar
  16. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093CrossRefGoogle Scholar
  17. Durack PJ, Wijffels SE, Boyer TP (2013) Long-term salinity changes and implications for the global water cycle. In: Siedler G, Griffies SM, Gould J, Church JA (eds) Ocean circulation and climate, a 21st century perspective, 2nd edn. International Geophysics, Academic, Elsevier, Oxford, pp 727–757CrossRefGoogle Scholar
  18. Fasullo JT, Boening C, Landerer FW, Nerem RS (2013) Australia’s unique influence on global mean sea level in 2010–2011. Geophys Res Lett 40(16):4368–4373. doi:10.1002/grl.50834 CrossRefGoogle Scholar
  19. Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857CrossRefGoogle Scholar
  20. Gouretski VV, Koltermann KP (2007) How much is the ocean really warming? Geophys Res Lett. doi:10.1029/2006GL027834 Google Scholar
  21. Gregory JM, Lowe JA (2000) Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment. Geophys Res Lett 27:3069–3072CrossRefGoogle Scholar
  22. Henry O, Ablain M, Meyssignac B, Cazenave A, Masters D, Nerem S, Leuliette E, Garric G (2014) Investigating and reducing differences between the satellite altimetry-based global mean sea level time series provided by different processing groups. J Geod 88:351–361. doi:10.1007/s00190-013-0687-3 CrossRefGoogle Scholar
  23. Hosoda S et al (2008) A monthly mean dataset of global oceanic temperature and salinity derived 344 from Argo float observations. JAMSTEC Rep Res Dev 8:47–59CrossRefGoogle Scholar
  24. Johnson GF, Chambers DP (2013) Ocean bottom pressure seasonal cycles and decadal trends from GRACE release-05: ocean circulation implications. J Geophys Res Oceans. doi:10.1002/jgrc.20307 Google Scholar
  25. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:L17401. doi:10.1029/2011GL048604 CrossRefGoogle Scholar
  26. Kouketsu S et al (2011) Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J Geophys Res Oceans 116:C03012CrossRefGoogle Scholar
  27. Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39:L10603. doi:10.1019/2012GL051106 CrossRefGoogle Scholar
  28. Llovel W, Becker M, Cazenave A, Jevrejeva S, Alkama R, Decharme B, Douville H, Ablain M, Beckley B (2011) Terrestrial waters and sea level variations on interannual time scale. Glob Planet Chang 75:76–82. doi:10.1016/j.gloplacha.2010.10.008 CrossRefGoogle Scholar
  29. Llovel W, Willis JK, Landerer FW, Fukumori I (2014) Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat Clim Chang. doi:10.1038/NCLIMATE2387 Google Scholar
  30. Lyman JM, Johnson GC (2008) Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling. J Clim 21:5629–5641CrossRefGoogle Scholar
  31. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DA, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi:10.1038/nature09043 CrossRefGoogle Scholar
  32. Marzeion B, Leciercq PW, Cogley JG, Jarosch AH (2015) Brief communication: global glacier mass loss reconstructions during the 20th century are consistent. Cryosphere Discuss 9:3807–3820. doi:10.5194/tcd-9-3807-2015. www.the-cryosphere-discuss.net/9/3807/2015/
  33. Masters D, Nerem RS, Choe C, Leuliette E, Beckley B, White N, Ablain M (2012) Comparison of global mean sea level time series from TOPEX/Poseidon, Jason-1, and Jason-2. Mar Geod 35:20–41CrossRefGoogle Scholar
  34. Miller L, Douglas BC (2007) Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophys Res Lett 34:L16602. doi:10.1029/2007GL030862 Google Scholar
  35. Mitchum GT (2000) An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. Marine Geodesy 23:145–166CrossRefGoogle Scholar
  36. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(Supplement 1):435–446. doi:10.1080/01490419.2010.491031 CrossRefGoogle Scholar
  37. Nerem RS, Chambers DP, Leuliette E, Mitchum GT, Giese BS (1999) Variations in global mean sea level during the 1997–98 ENSO event. Geophys Res Ltrs 26:3005–3008CrossRefGoogle Scholar
  38. Ngo-Duc T, Laval K, Polcher J, Lombard A, Cazenave A (2005) Effects of land water storage on global mean sea level over the past 50 years. Geophys Res Lett 32:L09704. doi:10.1029/2005GL022719 CrossRefGoogle Scholar
  39. Palanisamy H, Cazenave A, Delcroix T, Meyssignac B (2015) Spatial trend patterns in Pacific Ocean sea level during the altimetry era : the contribution of thermocline depth change and internal climate variability. Ocean Dyn. doi:10.1007/s10236-014-0805-7 Google Scholar
  40. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  41. Pokhrel YN, Hanasaki N, Yeh PJ-F, Yamada T, Kanae S, Oki T (2012) Model estimates of sea level change due to anthropogenic impacts on terrestrial water storage. Nat Geosci 5:389–392. doi:10.1038/ngeo1476 CrossRefGoogle Scholar
  42. Purkey SG, Johnson GC (2010) Warming of global abyssal and deep Southern Ocean waters between the 1990 s and 2000 s: contributions to global heat and sea level rise budgets. J Clim 23:6336–6351CrossRefGoogle Scholar
  43. Reager JT, Gardner AS, Famiglietti JS, Wiese DN, Eicker A, Lo M-H (2016) A decade of sea level rise slowed by climate driven hydrology. Science 351:699–703. doi:10.1126/science.aad8386 CrossRefGoogle Scholar
  44. Rietbroek R, Brunnabend SE, Kushche J, Schröter J, Dahle C (2016) Revisiting the contemporary sea-level budget on global and regional scales. Proc Natl Acad Sci 113:1504–1509. doi:10.1073/pnas.1519132113 CrossRefGoogle Scholar
  45. Roemmich D, Johnson GC, Riser S, Davis R, Gilson J, Owens WB, Garzoli SL, Schmid C, Ignaszewski M (2009) The Argo program: observing the global ocean with profiling floats. Oceanography 22(2):34–43. doi:10.5670/oceanog.2009.36 CrossRefGoogle Scholar
  46. Roemmich D, Church J, Gilson J, Monselesan D, Sutton P, Wijffels S (2015) Unabated planetary warming and its ocean structure since 2006. Nat Clim Chang 5:240–245CrossRefGoogle Scholar
  47. Schrama EJO, Wouters B, Rietbroek R (2014) A mascon approach to assess ice shett and glacier mass balance and their uncertainties from GRACE data. J Geophys Res Solid Earth 119:6048–6066. doi:10.1002/2013JB010923 CrossRefGoogle Scholar
  48. Shepherd A et al (2012) A reconciled estimate of ice-sheet mass balance. Sci 338(6111):1183–1189CrossRefGoogle Scholar
  49. Sørensen LS, Forsberg R (2010) Greenland ice sheet mass loss from GRACE monthly models. In: Gravity, Geoid and Earth Observation. Springer. (International Association of Geodesy Symposia; No. 135), pp 527–532. doi:10.1007/978-3-642-10634-7_70
  50. Sturges W, Douglas BC (2011) Wind effects on estimates of sea level rise. J Geophys Res 116:C06008. doi:10.1029/2010JC006492 CrossRefGoogle Scholar
  51. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920 CrossRefGoogle Scholar
  52. Velicogna I, Sutterley TC, van den Broeke MR (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using Grace time variable gravity data. Res Lett Geophys. doi:10.1002/2014GL061052 Google Scholar
  53. Von Schuckmann K, Le Traon PY (2011) How well can we derive Global Ocean indicators from Argo data? Ocean Sci 7(6):783–791. doi:10.5194/os-7-783-2011 CrossRefGoogle Scholar
  54. Von Schuckmann K, Gaillard F, Le Traon P-Y (2009) Global hydrographic variability patterns during 2003–2008. J Geophys Res 114:C09007. doi:10.1029/2008JC005237 Google Scholar
  55. Von Schuckmann K, Sallée JB, Chambers D, Le Traon PY, Cabanes C, Gaillard C, Speich S, Hamon M (2014) Consistency of the current global ocean observing systems from an Argo perspective. Ocean Sci 10:547–557. doi:10.5194/os-10-547-2014 CrossRefGoogle Scholar
  56. Wada Y (2015) Modelling groundwater depletion at regional and global scales: Present state and future prospects. Surv Geophys. doi:10.1007/s10712-015-9347-x, Special Issue: ISSI Workshop on Remote Sensing and Water Resources
  57. Wada Y, van Beek LPH, Sperna-Weiland FC, Chao BF, Wu Y-H, Bierkens MFP (2012) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett 39:L09402. doi:10.1029/2012GL051230 CrossRefGoogle Scholar
  58. Watkins MM, Wiese DN, Yuan D-N, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE. J Geophys Res Solid Earth. doi:10.1002/2014JB011547 Google Scholar
  59. Watson CS, White NJ, Church JA, King MA, Burgette RJ, Legresy B (2015) Unabated global mean sea-level rise over the satellite altimeter era. Nat Clim Chang 5(6):565. doi:10.1038/nclimate2635 CrossRefGoogle Scholar
  60. Wijffels SE, Willis J, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church JA (2008) Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J Clim 21:56575672. doi:10.1175/2008JCLI2290.1 CrossRefGoogle Scholar
  61. Yi S, Sun W, Heki K, Qian A (2015) An increase in the rate of global mean sea level rise since 2010. Geophys Res Lett. doi:10.1002/2015GL063902 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Don P. Chambers
    • 1
  • Anny Cazenave
    • 2
    • 3
  • Nicolas Champollion
    • 3
  • Habib Dieng
    • 2
  • William Llovel
    • 4
  • Rene Forsberg
    • 5
  • Karina von Schuckmann
    • 6
  • Yoshihide Wada
    • 7
  1. 1.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA
  2. 2.Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)Toulouse Cedex 9France
  3. 3.International Space Science Institute (ISSI)BernSwitzerland
  4. 4.Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), URA1875Toulouse Cedex 1France
  5. 5.Division of GeodynamicsTechnical University of DenmarkLyngbyDenmark
  6. 6.MERCATOR-OceanRamonville-Saint-AgneFrance
  7. 7.Department of Physical GeographyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations