Skip to main content

Advertisement

Log in

Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview

Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Glacial isostatic adjustment (GIA) encompasses a suite of geophysical phenomena accompanying the waxing and waning of continental-scale ice sheets. These involve the solid Earth, the oceans and the cryosphere both on short (decade to century) and on long (millennia) timescales. In the framework of contemporary sea-level change, the role of GIA is particular. In fact, among the processes significantly contributing to contemporary sea-level change, GIA is the only one for which deformational, gravitational and rotational effects are simultaneously operating, and for which the rheology of the solid Earth is essential. Here, I review the basic elements of the GIA theory, emphasizing the connections with current sea-level changes observed by tide gauges and altimetry. This purpose is met discussing the nature of the “sea-level equation” (SLE), which represents the basis for modeling the sea-level variations of glacial isostatic origin, also giving access to a full set of geodetic variations associated with GIA. Here, the SLE is employed to characterize the remarkable geographical variability of the GIA-induced sea-level variations, which are often expressed in terms of “fingerprints”. Using harmonic analysis, the spatial variability of the GIA fingerprints is compared to that of other components of contemporary sea-level change. In closing, some attention is devoted to the importance of the “GIA corrections” in the context of modern sea-level observations, based on tide gauges or satellite altimeters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. https://en.wikipedia.org/wiki/Post-glacial_rebound.

  2. http://www.atmosp.physics.utoronto.ca/~peltier/data.php.

  3. http://geodynamics.org/cig/software/selen/.

  4. http://rses.anu.edu.au/highlights/view.php?article=188.

  5. http://www.psmsl.org.

  6. http://www.aviso.oceanobs.com.

References

  • Bamber J, Riva R (2010) The sea level fingerprint of recent ice mass fluxes. Cryosphere 4(4):621

    Article  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory JM, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, et al (2007) In: Solomon S (ed) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (Cambridge University Press, Cambridge)

  • Brandes C, Steffen H, Steffen R, Wu P (2015) Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology G36:710–711

    Google Scholar 

  • Cambiotti G, Ricard Y, Sabadini R (2010) Ice age true polar wander in a compressible and non-hydrostatic Earth. Geophys J Int 183(3):1248

    Article  Google Scholar 

  • Cathles L (1975) The viscosity of the Earth’s mantle. Princeton University Press, Princeton

    Google Scholar 

  • Cazenave A, Chambers D, Cipollini P, Fu L, Hurell J, Merrifield M, Nerem S, Plag H, Shum C, Willis J (2009) The challenge for measuring sea level rise and regional and global trends. Proc OceanObs 9:135

    Google Scholar 

  • Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65(1):83

    Article  Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145

    Article  Google Scholar 

  • Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42(3):1–20. doi:10.1029/2003RG000139

  • Chambers DP, Wahr J, Tamisiea ME, Nerem RS (2012) Reply to comment by WR Peltier et al. on Ocean mass from GRACE and glacial isostatic adjustment. J Geophys Res Solid Earth 117(11):B11404

  • Church J, Gregory J, Huybrechts P, Kuhn M, Lambeck K, Nhuan M, Qin D, Woodworth P (2001) Changes. In: Houghton J, Ding Y, Griggs D, Noguer M, Van der Linden P, Dai X, Maskell K (eds) Sea level. Cambridge University Press, Cambridge, pp 639–694

    Google Scholar 

  • Church J, Clark P, Cazenave A, Gregory J, Jevrejeva S, Levermann A, Merrifield M, Milne G, Nerem R, Nunn P, Payne A, Pfeffer W, Stammer D (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 1138–1191

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33(1):L01602

    Article  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32(4–5):585

    Article  Google Scholar 

  • Clark JA, Farrell WE, Peltier WR (1978) Global changes in postglacial sea level: a numerical calculation. Quat Res 9(3):265

    Article  Google Scholar 

  • Clark PU, Mitrovica J, Milne G, Tamisiea M (2002) Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science 295(5564):2438

    Google Scholar 

  • Clark JA, Lingle CS (1979) Predicted relative sea-level changes (18,000 years BP to present) caused by late-glacial retreat of the Antarctic ice sheet. Quat Res 11(3):279

    Article  Google Scholar 

  • Conrad CP (2013) The solid Earth’s influence on sea level. Geol Soc Am Bull 125(7–8):1027

    Article  Google Scholar 

  • D’Agostino G, Spada G, Sabadini R (1997) Postglacial rebound and lateral viscosity variations: a semi-analytical approach based on a spherical model with Maxwell rheology. Geophys J Int 129(3):F9

    Article  Google Scholar 

  • Dahlen F, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Dal Forno G, Gasperini P (2007) Modelling of mantle postglacial relaxation in axisymmetric geometry with a composite rheology and a glacial load interpolated by adjusted spherical harmonics analysis. Geophys J Int 169(3):1301

    Article  Google Scholar 

  • Dal Forno G, Gasperini P, Spada G (2012) In: VII Hotine-Marussi symposium on mathematical geodesy. Springer, pp 393–397

  • De Boer B, Stocchi P, Van De Wal R et al (2014) A fully coupled 3-D ice-sheet-sea-level model: algorithm and applications. Geosci Model Dev 7(5):2141

    Article  Google Scholar 

  • Dott RH (1992) An introduction to the ups and downs of eustasy. Geol Soc Am Mem 180:1

    Article  Google Scholar 

  • Douglas B (1991) Global sea level rise. J Geophys Res 96(C4):6981

    Article  Google Scholar 

  • Douglas B (1992) Global sea level acceleration. J Geophys Res Oceans 97(C8):12699

    Article  Google Scholar 

  • Douglas B (1997) Global sea rise: a redetermination. Surv Geophys 18(2–3):279

    Article  Google Scholar 

  • Douglas B (2001) Sea level change in the era of the recording tide gauge. Int Geophys Ser 75:37

    Article  Google Scholar 

  • Douglas B (2008) Concerning evidence for fingerprints of glacial melting. J Coast Res 24(sp2):218

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297

    Article  Google Scholar 

  • Farrell W (1972) Deformation of the Earth by surface loads. Rev Geophys 10(3):761

    Article  Google Scholar 

  • Farrell W, Clark J (1976) On postglacial sea-level. Geophys J Roy Astron Soc 46:647

    Article  Google Scholar 

  • Gasperini P, Dal Forno G, Boschi E (2004) Linear or non-linear rheology in the Earth’s mantle: the prevalence of power-law creep in the postglacial isostatic readjustment of Laurentia. Geophys J Int 157(3):1297

    Article  Google Scholar 

  • Geruo A, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys J Int 192(2):557

    Article  Google Scholar 

  • Giunchi C, Spada G, Sabadini R (1997) Lateral viscosity variations and post-glacial rebound: effects on present-day VLBI baseline deformations. Geophys Res Lett 24(1):13

    Article  Google Scholar 

  • Giunchi C, Spada G (2000) Postglacial rebound in a non-Newtonian spherical Earth. Geophys Res Lett 27(14):2065

    Article  Google Scholar 

  • Gregory JM, White N, Church J, Bierkens M, Box J, Van den Broeke M, Cogley J, Fettweis X, Hanna E, Huybrechts P et al (2013) Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J Clim 26(13):4476

    Article  Google Scholar 

  • Gröger M, Plag HP (1993) Estimations of a global sea level trend: limitations from the structure of the PSMSL global sea level data set. Glob Planet Change 8(3):161

    Article  Google Scholar 

  • Guo J, Huang Z, Shum C, van der Wal W (2012) Comparisons among contemporary glacial isostatic adjustment models. J Geodyn 61:129

    Article  Google Scholar 

  • Gutenberg B (1941) Changes in sea level, postglacial uplift, and mobility of the Earth’s interior. Geol Soc Am Bull 52(5):721

    Article  Google Scholar 

  • Hagedoorn JM, Wolf D, Martinec Z (2007) An estimate of 8 mean sea-level rise inferred from tide-gauge measurements using glacial-isostatic models consistent with the relative sea-level record. Pure Appl Geophys 164:791

    Article  Google Scholar 

  • Haskell N (1935) The motion of a viscous fluid under a surface load. J Appl Phys 6(8):265

    Google Scholar 

  • Haskell N (1936) The motion of a viscous fluid under a surface load part II. J Appl Phys 7(2):56

    Google Scholar 

  • Hay CC, Morrow E, Kopp RE, Mitrovica JX (2015) Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517(7535):481

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1981) Physical Geodesy. Technical University, Physical Geodesy (Institute of Physical Geodesy

  • Hogarth P (2014) Preliminary analysis of acceleration of sea level rise through the twentieth century using extended tide gauge data sets. Oceans 119(11):7645

    Google Scholar 

  • Hwang C (1991) Orthogonal functions over the oceans and applications to the determination of orbit error, geoid and sea surface topography from satellite altimetry. Rep./Dep. of Geodetic Science A. Surveying. The Ohio State Univ.; N414

  • Hwang C (1993) Spectral analysis using orthonormal functions with a case study on the sea surface topography. Geophys J Int 115(3):1148

    Article  Google Scholar 

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287

    Article  Google Scholar 

  • Jeans J (1923) The propagation of earthquake waves. Proc R Soc Lond Ser A 102:554

    Article  Google Scholar 

  • Jerri A (1999) Introduction to integral equations with applications. Wiley, Hoboken

    Google Scholar 

  • Jevrejeva S, Moore J, Grinsted A, Matthews A, Spada G (2014) Trends and acceleration in global and regional sea levels since 1807. Glob Planet Change 113:11

    Article  Google Scholar 

  • Jevrejeva S, Moore J, Grinsted A, Woodworth P (2008) Recent global sea level acceleration started over 200 years ago?. Geophys Res Lett 35(8):L08715

  • Johnston P (1993) The effect of spatially non-uniform water loads on prediction of sea-level change. Geophys J Int 114(3):615

    Article  Google Scholar 

  • Kendall RA, Mitrovica JX, Milne GA (2005) On post-glacial sea level-II. Numerical formulation and comparative results on spherically symmetric models. Geophys J Int 161(3):679

    Article  Google Scholar 

  • Kendall RA, Latychev K, Mitrovica JX, J.E. Davis, M.E. Tamisiea (2006) Decontaminating tide gauge records for the influence of glacial isostatic adjustment: the potential impact of 3-D Earth structure. Geophys Res Lett 33(24):L24318

  • Khan NS, Ashe E, Shaw TA, Vacchi M, Walker J, Peltier W, Kopp RE, Horton BP (2015) Holocene relative sea-Level changes from near-, intermediate-, and far-field locations. Curr Clim Change Rep 1(4):247–262

    Article  Google Scholar 

  • King MA, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernández-Pajares M, Lavallee D, Cerveira PJM et al (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31(5):465

    Article  Google Scholar 

  • Konrad H (2015) Sea-level and solid-earth feedbacks on ice-sheet dynamics. Ph.D. thesis, Freie Universität Berlin

  • Kopp R, Mitrovica J, Griffies S, Yin J, Hay C, Stouffer R (2010) The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim Change 103:619

    Article  Google Scholar 

  • Kopp RE, Hay CC, Little CM, Mitrovica JX (2015) Geographic variability of sea-level change. Curr Clim Change Rep 1(3):192

    Article  Google Scholar 

  • Lambeck K, Purcell A, Johnston P, Nakada M, Yokoyama Y (2003) Water-load definition in the glacio-hydro-isostatic sea-level equation. Quat Sci Rev 22(2):309

    Article  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292(5517):679

    Article  Google Scholar 

  • Latychev K, Mitrovica JX, Tromp J, Tamisiea ME, Komatitsch D, Christara CC (2005) Glacial isostatic adjustment on 3-D Earth models: a finite-volume formulation. Geophys J Int 161(2):421

    Article  Google Scholar 

  • Levitus S (2005) Warming of the world ocean. Geophys Res Lett 32:L02604

    Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608

    Google Scholar 

  • Lombard A, Cazenave A, Le Traon P, Ishii M (2005a) Contribution of thermal expansion to present-day sea-level change revisited. Glob Planet Change 47:1

    Article  Google Scholar 

  • Lombard A, Cazenave A, DoMinh K, Cabanes C, Nerem R (2005b) Thermosteric sea level rise for the past 50 years; comparison with tide gauges and inference on water mass contribution. Glob Planet Change 48:303

    Article  Google Scholar 

  • Mainardi F, Spada G (2011) Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur Phys J Spec Top 193:133

    Article  Google Scholar 

  • Meier MF (1984) Contribution of small glaciers to global sea level. Science 226(4681):1418

    Article  Google Scholar 

  • Mémin A, Spada G, Rogister Y, Hinderer J, et al (2014) Decadal geodetic variations in Ny-Ålesund (Svalbard): role of past and present ice-mass changes. Geophys J Int 198(1):285–297

  • Meyssignac B (2012) La variabilité régionale du niveau de la mer. Ph.D. thesis, Université Paul Sabatier-Toulouse III

  • Meyssignac B, Melia DS y, Becker M, Llovel W, Cazenave A (2012) Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past 8(2):787

    Article  Google Scholar 

  • Meyssignac B, Cazenave A (2012) Sea level: a review of present-day and recent-past changes and variability. J Geodyn 58:96

    Article  Google Scholar 

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2(7):471

    Article  Google Scholar 

  • Milne G, Mitrovica J (1996) Postglacial sea-level change on a rotating Earth: first results from a gravitationally self-consistent sea-level equation. Geophy J Int 126(3):F13

    Article  Google Scholar 

  • Milne GA, Mitrovica JX (1998) Postglacial sea-level change on a rotating Earth. Geophys J Int 133(1):1

    Article  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409(6823):1026

    Article  Google Scholar 

  • Mitrovica JX (2003) Recent controversies in predicting post-glacial sea-level change. Quat Sci Rev 22(2):127

    Article  Google Scholar 

  • Mitrovica JX, Wahr J, Matsuyama I, Paulson A (2005) The rotational stability of an ice-age earth. Geophys J Int 161(2):491

    Article  Google Scholar 

  • Mitrovica J, Gomez N, Morrow E, Hay C, Latychev K, Tamisiea M (2011) On the robustness of predictions of sea level fingerprints. Geophys J Int 187(2):729

    Article  Google Scholar 

  • Mitrovica J, Milne G (2002) On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat Sci Rev 21(20):2179

    Article  Google Scholar 

  • Mitrovica JX, Milne GA (2003) On post-glacial sea level: I. General theory. Geophys J Int 154(2):253

    Article  Google Scholar 

  • Mitrovica JX, Peltier W (1991) On postglacial geoid subsidence over the equatorial oceans. J Geophys Res Solid Earth 96(B12):20053

    Article  Google Scholar 

  • Mitrovica JX, Wahr J (2011) Ice age Earth rotation. Annu Rev Earth Planet Sci 39:577

    Article  Google Scholar 

  • Munk WH, MacDonald GJ (1960) The rotation of the Earth: a geophysical discussion. Cambridge University Press, New York

    Google Scholar 

  • Nakada M (2009) Polar wander of the Earth associated with the quaternary glacial cycle on a convecting mantle. Geophys J Int 179(1):569

    Article  Google Scholar 

  • Nakada M, Inoue H (2005) Rates and causes of recent global sea-level rise inferred from long tide gauge data records. Quat Sci Rev 24(10):1217

    Article  Google Scholar 

  • Nakada M, Lambeck K (1987) Glacial rebound and relative sea-level variations: a new appraisal. Geophys J Int 90(1):171

    Article  Google Scholar 

  • Nakada M, Lambeck K (1988) The melting history of the late Pleistocene Antarctic ice sheet. Nature 333(6168):36

    Article  Google Scholar 

  • Navarra A, Simoncini V (2010) A guide to empirical orthogonal functions for climate data analysis. Springer, Berlin

    Book  Google Scholar 

  • Olivieri M, Spada G (2013) Intermittent sea-level acceleration. Glob Planet Change 109:64. doi:10.1016/j.gloplacha.2013.08.004

    Article  Google Scholar 

  • Peltier W, Farrell W, Clark J (1978) Glacial isostasy and relative sea level: a global finite element model. Tectonophysics 50(2):81

    Article  Google Scholar 

  • Peltier W (1989) Geophysics, encyclopedia of Earth science. Springer, Berlin

    Google Scholar 

  • Peltier WR (1994) Ice age paleotopography. Science 265(5169):195

    Article  Google Scholar 

  • Peltier WR (1996) Mantle viscosity and ice-age ice sheet topography. Science 273(5280):1359

    Article  Google Scholar 

  • Peltier W (2001) Global glacial isostatic adjustment and modern instrumental records of relative sea level history. Int Geophys 75:65

    Article  Google Scholar 

  • Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111

    Article  Google Scholar 

  • Peltier W, Argus D, Drummond R, Moore A (2012) Postglacial rebound and current ice loss estimates from space geodesy: the new ICE-6G (VM5a) global model. AGU Fall Meet Abstr 1:02

    Google Scholar 

  • Peltier W, Andrews J (1976) Glacial-isostatic adjustment— I. The forward problem. Geophys J Int 46(3):605

    Article  Google Scholar 

  • Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice age terminal deglaciation: the global ICE-6G-C (VM5a) model. J Geophys Res B: Solid Earth 120(1):450–487

  • Peltier W, Drummond R (2002) A broad-shelf effect upon postglacial relative sea level history. Geophys Res Lett 29(8):10-1–10-4

  • Peltier W, Tushingham A (1989) Global sea level rise and the greenhouse effect: might they be connected? Science 244(4906):806

    Article  Google Scholar 

  • Pfeffer J, Allemand P (2016) The key role of vertical land motions in coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth Planet Sci Lett 439:39

    Article  Google Scholar 

  • Pirazzoli P (1986) Secular trends of relative sea-level (RSL) changes indicated by tide-gauge records. Tech. rep., CNRS-INTERGEO, 191 Rue Saint Jacques, 75005 Paris, France

  • Pirazzoli P (1993) Global sea-level changes and their measurement. Glob Planet Change 8(3):135

    Article  Google Scholar 

  • Plag HP, Jüettner HU (2001) Inversion of global tide gauge data for present-day ice load changes (scientific paper). Mem Natl Inst Polar Res 54:301 special issue

    Google Scholar 

  • Ricard Y, Spada G, Sabadini R (1993) Polar wandering of a dynamic Earth. Geophys J Int 113(2):284

    Article  Google Scholar 

  • Richter K, Riva R, Drange H (2013) Impact of self-attraction and loading effects induced by shelf mass loading on projected regional sea level rise. Geophys Res Lett 40(6):1144

    Article  Google Scholar 

  • Sabadini R, Yuen DA, Boschi E (1982) Polar wandering and the forced responses of a rotating, multilayered, viscoelastic planet. J Geophys Res 87(B4):2885

    Article  Google Scholar 

  • Sabadini R, Peltier W (1981) Pleistocene deglaciation and the Earth’s rotation: implications for mantle viscosity. Geophys J Int 66(3):553

    Article  Google Scholar 

  • Schmidt P, Lund B, Näslund JO, Fastook J (2014) Comparing a thermo-mechanical Weichselian Ice Sheet reconstruction to reconstructions based on the sea level equation: aspects of ice configurations and glacial isostatic adjustment. Solid Earth 5(1):371

    Article  Google Scholar 

  • Serpelloni E, Faccenna C, Spada G, Dong D, Williams SD (2013) Vertical GPS ground motion rates in the Euro-Mediterranean region: new evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. J Geophys Res Solid Earth 118(11):6003

    Article  Google Scholar 

  • Slangen A (2012) Modelling regional sea–level changes in recent past and future. Ph.D. thesis, Utrecht University, the Netherlands

  • Spada G (1992) Rebound Post-glaciale e Dinamica Rotazionale di un Pianeta Viscoelastico Stratificato. Ph.D. thesis, University of Bologna, Bologna, Italy

  • Spada G, Yuen D, Sabadini R, Boschi E (1991) Lower-mantle viscosity constrained by seismicity around deglaciated regions. Nature 351(6321):53

    Article  Google Scholar 

  • Spada G, Ricard Y, Sabadini R (1992) Excitation of true polar wander by subduction. Nature 360(6403):452

    Article  Google Scholar 

  • Spada G, Sabadini R, Yuen DA, Ricard Y (1992) Effects on post-glacial rebound from the hard rheology in the transition zone. Geophys J Int 109(3):683

    Article  Google Scholar 

  • Spada G, Antonioli A, Cianetti S, Giunchi C (2006) Glacial isostatic adjustment and relative sea-level changes: the role of lithospheric and upper mantle heterogeneities in a 3-D spherical Earth. Geophys J Int 165(2):692

    Article  Google Scholar 

  • Spada G, Ruggieri G, Sørensen LS, Nielsen K, Melini D, Colleoni F (2012) Greenland uplift and regional sea level changes from ICESat observations and GIA modelling. Geophys J Int 189(3):1457

    Article  Google Scholar 

  • Spada G, Bamber J, Hurkmans R (2013) The gravitationally consistent sea-level fingerprint of future terrestrial ice loss. Geophys Res Lett 40(3):482

    Article  Google Scholar 

  • Spada G, Olivieri M, Galassi G (2014) Anomalous secular sea-level acceleration in the Baltic Sea caused by isostatic adjustment. Ann Geophys 57(4):S0432

    Google Scholar 

  • Spada G, Olivieri M, Galassi G (2015) A heuristic evaluation of long-term global sea level acceleration. Geophys Res Lett 42:4166

    Article  Google Scholar 

  • Spada G, Galassi G (2012) New estimates of secular sea level rise from tide gauge data and GIA modelling. Geophys J Int 191(3):1067

    Google Scholar 

  • Spada G, Galassi G (2016) Spectral analysis of sea level during the altimetry era, and evidence for GIA and glacial melting fingerprints. Glob Planet Chang 143:34–49. doi:10.1016/j.gloplacha.2016.05.006

    Article  Google Scholar 

  • Spada G, Melini D, Galassi G, Colleoni F (2012) Modeling sea level changes and geodetic variations by glacial isostasy: the improved SELEN code. arXiv:1212.5061

  • Spada G, Stocchi P (2006) The sea level equation, theory and numerical examples. Aracne, Roma

    Google Scholar 

  • Spada G, Stocchi P (2007) SELEN: a Fortran 90 program for solving the “Sea level equation”. Comput Geosci 33(4):538

    Article  Google Scholar 

  • Steffen R, Eaton DW, Wu P (2012) Moment tensors, state of stress and their relation to post-glacial rebound in northeastern Canada. Geophys J Int 189(3):1741

    Article  Google Scholar 

  • Steffen H, Wu P (2011) Glacial isostatic adjustment in Fennoscandia review of data and modeling. J Geodyn 52(3):169

    Article  Google Scholar 

  • Steinberger B, O’Connell RJ (1997) Changes of the Earth’s rotation axis owing to advection of mantle density heterogeneities. Nature 387(6629):169

    Article  Google Scholar 

  • Stocchi P, Spada G (2007) Glacio and hydro-isostasy in the Mediterranean Sea: Clark’s zones and role of remote ice sheets. Ann Geophys 50:6

  • Suess E (1906) Face of the Earth. Clarendon Press, Oxford

    Google Scholar 

  • Tamisiea ME (2011) Ongoing glacial isostatic contributions to observations of sea level change. Geophys J Int 186(3):1036

    Article  Google Scholar 

  • Tegmark M (1996) An icosahedron-based method for pixelizing the celestial sphere. Astrophys J 470:L81

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2014) Geodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Tushingham A, Peltier W (1991) ICE-3G—a new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. J Geophys Res 96(B3):4497

    Article  Google Scholar 

  • Tushingham A, Peltier W (1992) Validation of the ICE-3G model of Wuerm–Wisconsin deglaciation using a global data base of relative sea level histories. J Geophys Res 97(B3):3285

    Article  Google Scholar 

  • van der Wal W, Wu P, Wang H, Sideris MG (2010) Sea levels and uplift rate from composite rheology in glacial isostatic adjustment modeling. J Geodyn 50(1):38

    Article  Google Scholar 

  • van der Wal W, Barnhoorn A, Stocchi P, Gradmann S, Wu P, Drury M, Vermeersen B (2013) Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia. Geophys J Int 194(1):61

    Article  Google Scholar 

  • van der Wal W, Whitehouse PL, Schrama EJ (2015) Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet Sci Lett 414:134

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Un 79(47):579

    Article  Google Scholar 

  • Whitehouse P. (2009) State of the art report. Svensk Kärnbränslehantering AB. In: Swedish Nuclear Fuel and Waste Management Co., Stockholm, p 105. http://skb.se/upload/publications/pdf/TR-09-11.pdf

  • Whitehouse P, Latychev K, Milne GA, Mitrovica JX, Kendall R (2006) Impact of 3-D Earth structure on Fennoscandian glacial isostatic adjustment: Implications for space-geodetic estimates of present-day crustal deformations. Geophys Res Lett 33(13):L13502

  • Wieczorek MA (2007) The gravity and topography of the terrestrial planets. Treat Geophys 10:165

    Article  Google Scholar 

  • Woodward R (1888) On the form and position of mean sea level. USGS Bull 48:87

    Google Scholar 

  • Woodworth P (1990) A search for accelerations in records of European mean sea level. Int J Clim 10(2):129

    Article  Google Scholar 

  • Wöppelmann G, Miguez BM, Bouin MN, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Change 57(3):396

    Article  Google Scholar 

  • Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys 54(1):64–92

  • Wunsch C, Stammer D (1995) The global frequency-wavenumber spectrum of oceanic variability estimated from TOPEX/POSEIDON altimetric measurements. J Geophys Res Oceans 100(C12):24895

    Article  Google Scholar 

  • Wu P, Peltier W (1982) Viscous gravitational relaxation. Geophys J Int 70(2):435

    Article  Google Scholar 

  • Wu P, Peltier W (1983) Glacial isostatic adjustment and the free air gravity anomaly as a constraint on deep mantle viscosity. Geophys J Int 74(2):377

    Google Scholar 

  • Wu P, Peltier W (1984) Pleistocene deglaciation and the Earth’s rotation: a new analysis. Geophys J Int 76(3):753

    Article  Google Scholar 

  • Yokoyama Y, Lambeck K, De Deckker P, Johnston P, Fifield LK (2000) Timing of the last glacial maximum from observed sea-level minima. Nature 406(6797):713

    Article  Google Scholar 

  • Zhong S, Paulson A, Wahr J (2003) Three-dimensional finite-element modelling of Earth’s viscoelastic deformation: effects of lateral variations in lithospheric thickness. Geophys J Int 155(2):679

    Article  Google Scholar 

Download references

Acknowledgments

This paper is an outcome of the ISSI Workshop “Integrative Study of Sea Level Budget”, held in Bern in February 2015. Two anonymous reviewers are acknowledged for their very constructive comments. I have greatly benefited from stimulating discussions on GIA and the SLE with students and colleagues during the POLENET/SERCE GIA training school held in Gibraltar Island (Ohio, USA) in September 2015. Daniele Melini is thanked for providing support with the numerical simulations. Gaia Galassi and Marco Olivieri are acknowledged for very insightful suggestions during the various stages of preparation of this manuscript. The  open-source  program  SELEN (a SEa Level EquatioN solver) is  available  from  the  Computational  Infrastructure  for  Geodynamics  (CIG), at the address http://geodynamics.org/cig/software/selen/), or from the author. All figures have been drawn using the Generic Mapping Tools of Wessel and Smith (1998). The PSMSL is acknowledged for making available the tide gauge data from the web page http://www.psmsl.org. This work is funded by a DiSPeA (Dipartimento di Scienze Pure e Applicate) research Grant (CUP H32I160000000005) and by Programma Nazionale di Ricerche in Antartide (PNRA 2013/B2.06, CUP D32I14000230005). I benefited from the warm and relaxing atmosphere of the Naturalistic Annex of the Museum of Bagnacavallo (RA), Italy, where the paper was drafted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Spada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spada, G. Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview. Surv Geophys 38, 153–185 (2017). https://doi.org/10.1007/s10712-016-9379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9379-x

Keywords

Navigation