Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges

Abstract

Accurate, precise and timely forecasts of flood wave arrival time, depth and velocity at each point of the floodplain are essential to reduce damage and save lives. Current computational capabilities support hydraulic models of increasing complexity over extended catchments. Yet a number of sources of uncertainty (e.g., input and boundary conditions, implementation data) may hinder the delivery of accurate predictions. Field gauging data of water levels and discharge have traditionally been used for hydraulic model calibration, validation and real-time constraint. However, the discrete spatial distribution of field data impedes the testing of the model skill at the two-dimensional scale. The increasing availability of spatially distributed remote sensing (RS) observations of flood extent and water level offers the opportunity for a comprehensive analysis of the predictive capability of hydraulic models. The adequate use of the large amount of information offered by RS observations triggers a series of challenging questions on the resolution, accuracy and frequency of acquisition of RS observations; on RS data processing algorithms; and on calibration, validation and data assimilation protocols. This paper presents a review of the availability of RS observations of flood extent and levels, and their use for calibration, validation and real-time constraint of hydraulic flood forecasting models. A number of conclusions and recommendations for future research are drawn with the aim of harmonising the pace of technological developments and their applications.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Adhikari P, Hong Y, Douglas K, Kirschbaum D, Gourley J, Adler R, Robert Brakenridge G (2010) A digitized global flood inventory (1998–2008): compilation and preliminary results. Nat Hazards 55:405–422. doi:10.1007/s11069-010-9537-2

    Article  Google Scholar 

  2. Alsdorf DE (2002) Interferometric SAR observations of water level changes: potential targets for future repeat-pass AIRSAR missions. In: Paper presented at the AIRSAR earth science and application workshop, Pasadena, California, March 4–6 2002

  3. Alsdorf DE, Melack JM, Dunne T, Mertes LAK, Hess LL, Smith LC (2000) Interferometric radar measurements of water level changes on the Amazon flood plain. Nature 404:174–177

    Article  Google Scholar 

  4. Alsdorf DE, Smith LC, Melack JM (2001) Amazon floodplain water level changes measured with interferometric SIR-C radar. Geosci Remote Sens IEEE Trans 39:423–431. doi:10.1109/36.905250

    Article  Google Scholar 

  5. Alsdorf D, Dunne T, Melack J, Smith L, Hess L (2005) Diffusion modeling of recessional flow on central Amazonian floodplains. Geophys Res Lett 32:L21405. doi:10.1029/2005GL024412

    Article  Google Scholar 

  6. Alsdorf D, Bates P, Melack J, Wilson M, Dunne T (2007) Spatial and temporal complexity of the Amazon flood measured from space. Geophys Res Lett 34:L08402. doi:10.1029/2007GL029447

    Article  Google Scholar 

  7. Andreadis KM, Schumann GJP (2014) Estimating the impact of satellite observations on the predictability of large-scale hydraulic models. Adv Water Resour 73:44–54. doi:10.1016/j.advwatres.2014.06.006

    Article  Google Scholar 

  8. Andreadis KM, Clark EA, Lettenmaier DP, Alsdorf DE (2007) Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys Res Lett 34:L10403. doi:10.1029/2007GL029721

    Article  Google Scholar 

  9. Aronica G, Hankin B, Beven K (1998) Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Adv Water Resour 22:349–365. doi:10.1016/S0309-1708(98)00017-7

    Article  Google Scholar 

  10. Aronica G, Bates PD, Horritt MS (2002) Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrol Process 16:2001–2016. doi:10.1002/hyp.398

    Article  Google Scholar 

  11. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Prob 14:R1

    Article  Google Scholar 

  12. Bates PD (2004) Remote sensing and flood inundation modelling. Hydrol Process 18:2593–2597. doi:10.1002/hyp.5649

    Article  Google Scholar 

  13. Bates PD, Horritt MS, Smith CN, Mason D (1997) Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol Process 11:1777–1795. doi:10.1002/(SICI)1099-1085(199711)11:14<1777:AID-HYP543>3.0.CO;2-E

    Article  Google Scholar 

  14. Bates PD, Stewart MD, Siggers GB, Smith AM, Hervouet JM, Sellin RHJ (1998) Internal and external validation of a two-dimensional finite element code for river flood simulations. Proc Inst Civ Eng Water Marit Energy 130:127–141. doi:10.1680/iwtme.1998.30972

    Article  Google Scholar 

  15. Bates PD, Horritt MS, Aronica G, Beven K (2004) Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrol Process 18:3347–3370. doi:10.1002/hyp.1499

    Article  Google Scholar 

  16. Bates PD, Wilson MD, Horritt MS, Mason DC, Holden N, Currie A (2006) Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling. J Hydrol 328:306–318. doi:10.1016/j.jhydrol.2005.12.028

    Article  Google Scholar 

  17. Bates P, Neal J, Alsdorf D, Schumann GP (2014a) Observing global surface water flood dynamics. Surv Geophys 35:839–852. doi:10.1007/s10712-013-9269-4

    Article  Google Scholar 

  18. Bates PD, Pappenberger F, Romanowicz RJ (2014b) Uncertainty in flood inundation modelling. In: Applied uncertainty analysis for flood risk management. Imperial College Press, London (UK), pp 232–269. doi:10.1142/9781848162716_0010

  19. Bazi Y, Bruzzone L, Melgani F (2005) An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. Geosci Remote Sens IEEE Trans 43:874–887. doi:10.1109/TGRS.2004.842441

    Article  Google Scholar 

  20. Bercher N, Kosuth P (2012) Monitoring river water levels from space: quality assessment of 20 years of satellite altimetry data. In: Paper presented at the 20 years of progress in radar altimetry, Venice (Italy), 24–29 September 2012

  21. Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36. doi:10.1016/j.jhydrol.2005.07.007

    Article  Google Scholar 

  22. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298. doi:10.1002/hyp.3360060305

    Article  Google Scholar 

  23. Biancamaria S, Bates PD, Boone A, Mognard NM (2009) Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. J Hydrol 379:136–150. doi:10.1016/j.jhydrol.2009.09.054

    Article  Google Scholar 

  24. Biancamaria S et al (2011) Assimilation of virtual wide swath altimetry to improve Arctic river modeling. Remote Sens Environ 115:373–381. doi:10.1016/j.rse.2010.09.008

    Article  Google Scholar 

  25. Biancamaria S, Lettenmaier DP, Pavelsky TM (2015) The SWOT mission and its capabilities for land hydrology. Surv Geophys. doi:10.1007/s10712-015-9346-y

    Google Scholar 

  26. Birkett CM, Mertes LAK, Dunne T, Costa MH, Jasinski MJ (2002) Surface water dynamics in the Amazon Basin: application of satellite radar altimetry. J Geophys Res Atmos 107:LBA 26-21. doi:10.1029/2001JD000609

    Article  Google Scholar 

  27. Blyth KEN (1997) Floodnet: a telenetwork for acquisition, processing and dissemination of earth observation data for monitoring and emergency management of floods. Hydrol Process 11:1359–1375. doi:10.1002/(SICI)1099-1085(199708)11:10<1359:AID-HYP529>3.0.CO;2-6

    Article  Google Scholar 

  28. Brandimarte L, Brath A, Castellarin A, Baldassarre GD (2009) Isla Hispaniola: a trans-boundary flood risk mitigation plan. Phys Chem Earth A/B/C 34:209–218. doi:10.1016/j.pce.2008.03.002

    Article  Google Scholar 

  29. Brisco B, Kapfer M, Hirose T, Tedford B, Liu J (2011) Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Can J Remote Sens 37:82–92. doi:10.5589/m11-017

    Article  Google Scholar 

  30. Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23:429–441. doi:10.1080/01431160010014729

    Article  Google Scholar 

  31. Calabresi G (1995) The use of ERS SAR for flood monitoring: an overall assessment. In: Paper presented at the 2nd ERS applications workshop, London, UK, 6–8 December

  32. Charney J, Halem M, Jastrow R (1969) Use of incomplete historical data to infer the present state of the atmosphere. J Atmos Sci 26:1160–1163. doi:10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2

    Article  Google Scholar 

  33. Choudhury BJ (1989) Monitoring global land surface using Nimbus-7 37 GHz data theory and examples. Int J Remote Sens 10:1579–1605. doi:10.1080/01431168908903993

    Article  Google Scholar 

  34. Coxon G, Freer J, Westerberg IK, Wagener T, Woods R, Smith PJ (2015) A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resour Res 51:5531–5546. doi:10.1002/2014WR016532

    Article  Google Scholar 

  35. De Groeve T (2010) Flood monitoring and mapping using passive microwave remote sensing in Namibia. Geomat Nat Hazards Risk 1:19–35. doi:10.1080/19475701003648085

    Article  Google Scholar 

  36. De Roo A, Van Der Knijff J, Horritt MS, Schmuck G, De Jong S (1999) Assessing flood damages of the 1997 Oder flood and the 1995 Meuse flood. In: Paper presented at the 2nd international ITC symposium on operationalization of remote sensing, Enschede, The Netherlands

  37. Delmeire S (1997) Use of ERS-1 data for the extraction of flooded areas. Hydrol Process 11:1393–1396. doi:10.1002/(SICI)1099-1085(199708)11:10<1393:AID-HYP528>3.0.CO;2-N

    Article  Google Scholar 

  38. Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: a quantitative analysis. Hydrol Earth Syst Sci 13:913–921. doi:10.5194/hess-13-913-2009

    Article  Google Scholar 

  39. Di Baldassarre G, Uhlenbrook S (2012) Is the current flood of data enough? A treatise on research needs for the improvement of flood modelling. Hydrol Process 26:153–158. doi:10.1002/hyp.8226

    Article  Google Scholar 

  40. Di Baldassarre G, Schumann G, Bates P (2009a) Near real time satellite imagery to support and verify timely flood modelling. Hydrol Process 23:799–803. doi:10.1002/hyp.7229

    Article  Google Scholar 

  41. Di Baldassarre G, Schumann G, Bates PD (2009b) A technique for the calibration of hydraulic models using uncertain satellite observations of flood extent. J Hydrol 367:276–282. doi:10.1016/j.jhydrol.2009.01.020

    Article  Google Scholar 

  42. Di Baldassarre G, Schumann G, Brandimarte L, Bates P (2011) Timely low resolution SAR imagery to support floodplain modelling: a case study review. Surv Geophys 32:255–269. doi:10.1007/s10712-011-9111-9

    Article  Google Scholar 

  43. Domeneghetti A, Castellarin A, Brath A (2012) Assessing rating-curve uncertainty and its effects on hydraulic model calibration. Hydrol Earth Syst Sci 16:1191–1202. doi:10.5194/hess-16-1191-2012

    Article  Google Scholar 

  44. Domeneghetti A, Tarpanelli A, Brocca L, Barbetta S, Moramarco T, Castellarin A, Brath A (2014) The use of remote sensing-derived water surface data for hydraulic model calibration. Remote Sens Environ 149:130–141. doi:10.1016/j.rse.2014.04.007

    Article  Google Scholar 

  45. Domeneghetti A, Castellarin A, Tarpanelli A, Moramarco T (2015) Investigating the uncertainty of satellite altimetry products for hydrodynamic modelling. Hydrol Process 29:4908–4918. doi:10.1002/hyp.10507

    Article  Google Scholar 

  46. Dottori F, Di Baldassarre G, Todini E (2013) Detailed data is welcome, but with a pinch of salt: accuracy, precision, and uncertainty in flood inundation modeling. Water Resour Res 49:6079–6085. doi:10.1002/wrcr.20406

    Article  Google Scholar 

  47. Dung NV, Merz B, Bárdossy A, Thang TD, Apel H (2011) Multi-objective automatic calibration of hydrodynamic models utilizing inundation maps and gauge data. Hydrol Earth Syst Sci 15:1339–1354. doi:10.5194/hess-15-1339-2011

    Article  Google Scholar 

  48. Dunne S, Entekhabi D (2005) An ensemble-based reanalysis approach to land data assimilation. Water Resour Res 41:W02013. doi:10.1029/2004WR003449

    Article  Google Scholar 

  49. Durand JM, Gimonet BJ, Perbos JR (1987) SAR data filtering for classification. Geosci Remote Sens IEEE Trans 25:629–637. doi:10.1109/TGRS.1987.289842

    Article  Google Scholar 

  50. Evans TL, Costa M, Telmer K, Silva TSF (2010) Using ALOS/PALSAR and RADARSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal. Sel Top Appl Earth Obs Remote Sens IEEE J 3:560–575. doi:10.1109/JSTARS.2010.2089042

    Article  Google Scholar 

  51. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res Oceans 99:10143–10162. doi:10.1029/94JC00572

    Article  Google Scholar 

  52. Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367. doi:10.1007/s10236-003-0036-9

    Article  Google Scholar 

  53. Evensen G (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn 54:539–560. doi:10.1007/s10236-004-0099-2

    Article  Google Scholar 

  54. Faruolo M, Coviello I, Lacava T, Pergola N, Tramutoli V (2009) Real time monitoring of flooded areas by a multi-temporal analysis of optical satellite data. In: Geoscience and remote sensing symposium, 2009 IEEE international, IGARSS 2009, 12–17 July 2009. pp IV-192–IV-195. doi:10.1109/IGARSS.2009.5417339

  55. Franceschetti G, Iodice A, Riccio D (2002) A canonical problem in electromagnetic backscattering from buildings. IEEE Trans Geosci Remote Sens 40:1787–1801. doi:10.1109/TGRS.2002.802459

    Article  Google Scholar 

  56. Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006) Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens Environ 100:252–264. doi:10.1016/j.rse.2005.10.027

    Article  Google Scholar 

  57. Frost VS, Stiles JA, Shanmugam KS, Holtzman JC, Smith SA (1981) An adaptive filter for smoothing noisy radar images. Proc IEEE 69:133–135. doi:10.1109/PROC.1981.11935

    Article  Google Scholar 

  58. Frost VS, Stiles JA, Shanmugan KS, Holtzman J (1982) A model for radar images and its application to adaptive digital filtering of multiplicative noise. Pattern Anal Mach Intell IEEE Trans 4:157–166. doi:10.1109/TPAMI.1982.4767223

    Article  Google Scholar 

  59. Fu L-L (2001) Chapter 3.3 Ocean circulation and variability from satellite altimetry. In: Gerold Siedler JC, John G (eds) International geophysics, vol 77. Academic Press, Cambridge, Massachusetts (USA), pp 141-XXVIII. doi:10.1016/S0074-6142(01)80116-9

  60. Furrer R, Bengtsson T (2007) Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J Multivar Anal 98:227–255. doi:10.1016/j.jmva.2006.08.003

    Article  Google Scholar 

  61. García-Pintado J, Neal JC, Mason DC, Dance SL, Bates PD (2013) Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling. J Hydrol 495:252–266. doi:10.1016/j.jhydrol.2013.03.050

    Article  Google Scholar 

  62. García-Pintado J, Mason DC, Dance SL, Cloke HL, Neal JC, Freer J, Bates PD (2015) Satellite-supported flood forecasting in river networks: a real case study. J Hydrol 523:706–724. doi:10.1016/j.jhydrol.2015.01.084

    Article  Google Scholar 

  63. Giustarini L et al (2011) Assimilating SAR-derived water level data into a hydraulic model: a case study. Hydrol Earth Syst Sci Discuss 8:2103–2144. doi:10.5194/hessd-8-2103-2011

    Article  Google Scholar 

  64. Giustarini L, Matgen P, Hostache R, Dostert J (2012) From SAR-derived flood mapping to water level data assimilation into hydraulic models. In: Neale CMU, Maltese A (eds) Remote sensing for agriculture, ecosystems, and hydrology XIV, Edinburgh (UK), 24–26 September. Proceedings of SPIE, pp 85310U–85310U–85312. doi:10.1117/12.974655

  65. Giustarini L, Hostache R, Matgen P, Schumann GJP, Bates PD, Mason DC (2013) A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 51:2417–2430. doi:10.1109/tgrs.2012.2210901

    Article  Google Scholar 

  66. Giustarini L et al (2015) Accounting for image uncertainty in SAR-based flood mapping. Int J Appl Earth Obs Geoinf 34:70–77. doi:10.1016/j.jag.2014.06.017

    Article  Google Scholar 

  67. Grayson R, Blöschl G (2001) Spatial patterns in catchment hydrology: observations and modelling. Cambridge University Press, Cambridge

    Google Scholar 

  68. Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resour Res 34:751–763. doi:10.1029/97WR03495

    Article  Google Scholar 

  69. Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inf Sci 17:235–249. doi:10.1080/13658810210157822

    Article  Google Scholar 

  70. Hall J, Tarantola S, Bates P, Horritt M (2005) Distributed sensitivity analysis of flood inundation model calibration. J Hydraul Eng 131:117–126. doi:10.1061/(ASCE)0733-9429(2005)131:2(117)

    Article  Google Scholar 

  71. Hall JW, Manning LJ, Hankin RKS (2011) Bayesian calibration of a flood inundation model using spatial data. Water Resour Res 47:W05529. doi:10.1029/2009WR008541

    Article  Google Scholar 

  72. Hall AC, Schumann GJP, Bamber JL, Bates PD, Trigg MA (2012) Geodetic corrections to Amazon River water level gauges using ICESat altimetry. Water Resour Res 48:W06602. doi:10.1029/2011WR010895

    Article  Google Scholar 

  73. Hamilton SK, Sippel SJ, Melack JM (1996) Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Arch Hydrobiol 137:1–23

    Google Scholar 

  74. Hartmann HC, Pagano TC, Sorooshian S, Bales R (2002) Confidence builders: evaluating seasonal climate forecasts from user perspectives. Bull Am Meteorol Soc 83:683–698. doi:10.1175/1520-0477(2002)083<0683:CBESCF>2.3.CO;2

    Article  Google Scholar 

  75. Henderson FM, Lewis AJ (2008) Radar detection of wetland ecosystems: a review. Int J Remote Sens 29:5809–5835. doi:10.1080/01431160801958405

    Article  Google Scholar 

  76. Henry JB, Chastanet P, Fellah K, Desnos YL (2006) Envisat multi-polarized ASAR data for flood mapping. Int J Remote Sens 27:1921–1929. doi:10.1080/01431160500486724

    Article  Google Scholar 

  77. Hess LL, Melack JM, Simonett DS (1990) Radar detection of flooding beneath the forest canopy: a review. Int J Remote Sens 11:1313–1325. doi:10.1080/01431169008955095

    Article  Google Scholar 

  78. Hong S-H, Wdowinski S, Sang-Wan K (2010) Evaluation of TerraSAR-X observations for wetland InSAR application. Geosci Remote Sens IEEE Trans 48:864–873. doi:10.1109/TGRS.2009.2026895

    Article  Google Scholar 

  79. Horritt M (1999) A statistical active contour model for SAR image segmentation. Image Vis Comput 17:213–224. doi:10.1016/S0262-8856(98)00101-2

    Article  Google Scholar 

  80. Horritt MS (2000) Calibration of a two-dimensional finite element flood flow model using satellite radar imagery. Water Resour Res 36:3279–3291. doi:10.1029/2000WR900206

    Article  Google Scholar 

  81. Horritt MS (2006) A methodology for the validation of uncertain flood inundation models. J Hydrol 326:153–165. doi:10.1016/j.jhydrol.2005.10.027

    Article  Google Scholar 

  82. Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. J Hydrol 268:87–99. doi:10.1016/S0022-1694(02)00121-X

    Article  Google Scholar 

  83. Horritt MS, Mason DC, Cobby DM, Davenport IJ, Bates PD (2003) Waterline mapping in flooded vegetation from airborne SAR imagery. Remote Sens Environ 85:271–281. doi:10.1016/S0034-4257(03)00006-3

    Article  Google Scholar 

  84. Horritt MS, Di Baldassarre G, Bates PD, Brath A (2007) Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery. Hydrol Process 21:2745–2759. doi:10.1002/hyp.6486

    Article  Google Scholar 

  85. Hostache R, Matgen P, Schumann G, Puech C, Hoffmann L, Pfister L (2009) Water level estimation and reduction of hydraulic model calibration uncertainties using satellite SAR images of floods. Geosci Remote Sens IEEE Trans 47:431–441. doi:10.1109/TGRS.2008.2008718

    Article  Google Scholar 

  86. Hostache R, Lai X, Monnier J, Puech C (2010) Assimilation of spatially distributed water levels into a shallow-water flood model. Part II: use of a remote sensing image of Mosel River. J Hydrol 390:257–268. doi:10.1016/j.jhydrol.2010.07.003

    Article  Google Scholar 

  87. Houser P, De Lannoy GM, Walker J (2010) Land surface data assimilation. In: Lahoz W, Khattatov B, Menard R (eds) Data assimilation. Springer, Berlin, pp 549–597. doi:10.1007/978-3-540-74703-1_21

  88. Houtekamer PL, Mitchell HL (2005) Ensemble Kalman filtering. Q J R Meteorol Soc 131:3269–3289. doi:10.1256/qj.05.135

    Article  Google Scholar 

  89. Hunt BR, Kostelich EJ, Szunyogh I (2007) Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Phys D 230:112–126. doi:10.1016/j.physd.2006.11.008

    Article  Google Scholar 

  90. Hunter NM, Bates PD, Horritt MS, De Roo APJ, Werner MGF (2005) Utility of different data types for calibrating flood inundation models within a GLUE framework. Hydrol Earth Syst Sci 9:412–430. doi:10.5194/hess-9-412-2005

    Article  Google Scholar 

  91. Hunter NM, Bates PD, Horritt MS, Wilson MD (2006) Improved simulation of flood flows using storage cell models. Proc Inst Civil Eng Water Manag 159:9–18. doi:10.1680/wama.2006.159.1.9

    Article  Google Scholar 

  92. Jin YQ (1999) A flooding index and its regional threshold value for monitoring floods in China from SSM/I data. Int J Remote Sens 20:1025–1030. doi:10.1080/014311699213064

    Article  Google Scholar 

  93. Jung HC et al (2010) Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra rivers. Earth Surf Proc Land 35:294–304. doi:10.1002/esp.1914

    Article  Google Scholar 

  94. Jung HC et al (2012) Calibration of two-dimensional floodplain modeling in the central Atchafalaya Basin Floodway System using SAR interferometry. Water Resour Res 48:W07511. doi:10.1029/2012WR011951

    Article  Google Scholar 

  95. Karim F, Petheram C, Marvanek C, Ticehurst C, Wallace J, Gouweleeuw B (2011) The use of hydrodynamic modelling and remote sensing to estimate floodplain inundation and flood discharge in a large tropical catchment. In: Paper presented at the 19th international congress on modelling and simulation, 12–16 December, Perth (Australia), pp 3796–3802

  96. Kirchgessner P, Nerger L, Bunse-Gerstner A (2014) On the choice of an optimal localization radius in ensemble Kalman filter methods. Mon Weather Rev 142:2165–2175. doi:10.1175/MWR-D-13-00246.1

    Article  Google Scholar 

  97. Kouraev AV, Zakharova EA, Samain O, Mognard NM, Cazenave A (2004) Ob’river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens Environ 93:238–245. doi:10.1016/j.rse.2004.07.007

    Article  Google Scholar 

  98. Kugler Z, De Groeve T (2007) The global flood detection system. JRC scientific and technical reports, pp 45. EUR 23303 EN, ISSN 1018-5593

  99. Lacomme P, Hardange JP, Marchais JC, Normant E (2001) Air and spaceborne radar systems—an introduction, vol Spie Press Monograph (Book 108). William Andrew Publishing/Noyes, NY (USA), pp 524

  100. Lai X, Monnier J (2009) Assimilation of spatially distributed water levels into a shallow-water flood model. Part I: mathematical method and test case. J Hydrol 377:1–11. doi:10.1016/j.jhydrol.2009.07.058

    Article  Google Scholar 

  101. Lai X, Liang Q, Yesou H, Daillet S (2014) Variational assimilation of remotely sensed flood extents using a 2-D flood model. Hydrol Earth Syst Sci 18:4325–4339. doi:10.5194/hess-18-4325-2014

    Article  Google Scholar 

  102. Lang MW, Kasischke ES (2008) Using C-band synthetic aperture radar data to monitor forested wetland hydrology in Maryland’s Coastal Plain, USA. Geosci Remote Sens IEEE Trans 46:535–546. doi:10.1109/TGRS.2007.909950

    Article  Google Scholar 

  103. Lee J (1983) A simple speckle smoothing algorithm for synthetic aperture radar images. Syst Man Cybern IEEE Trans 13:85–89. doi:10.1109/TSMC.1983.6313036

    Article  Google Scholar 

  104. Lee J, Jen-Hung W, Ainsworth TL, Kun-Shan C, Chen AJ (2009) Improved sigma filter for speckle filtering of SAR imagery. Geosci Remote Sens IEEE Trans 47:202–213. doi:10.1109/TGRS.2008.2002881

    Article  Google Scholar 

  105. Lee H et al (2011) Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ 115:3530–3538. doi:10.1016/j.rse.2011.08.015

    Article  Google Scholar 

  106. Li Y, Grimaldi S, Walker J, Pauwels V (2016) Application of remote sensing data to constrain operational rainfall-driven flood forecasting: a review. Remote Sens 8:456. doi:10.3390/rs8060456

    Article  Google Scholar 

  107. Liu Y et al (2012) Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrol Earth Syst Sci 16:3863–3887. doi:10.5194/hess-16-3863-2012

    Article  Google Scholar 

  108. MacIntosh H, Profeti G (1995) The use of ERS SAR data to manage flood emergencies at the smaller scale. In: Paper presented at the 2nd ERS Applications Workshop, London, UK

  109. Madsen H, Skotner C (2005) Adaptive state updating in real-time river flow forecasting—a combined filtering and error forecasting procedure. J Hydrol 308:302–312. doi:10.1016/j.jhydrol.2004.10.030

    Article  Google Scholar 

  110. Marcus WA, Fonstad MA (2008) Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf Proc Land 33:4–24. doi:10.1002/esp.1637

    Article  Google Scholar 

  111. Martinis S, Twele A, Voigt S (2009) Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat Hazards Earth Syst Sci 9:303–314

    Article  Google Scholar 

  112. Martinis S, Twele A, Voigt S (2011) Unsupervised extraction of flood-induced backscatter changes in SAR data using markov image modeling on irregular graphs. IEEE Trans Geosci Remote Sens 49:251–263. doi:10.1109/TGRS.2010.2052816

    Article  Google Scholar 

  113. Martinis S, Kersten J, Twele A (2015) A fully automated TerraSAR-X based flood service. ISPRS J Photogramm Remote Sens 104:203–212. doi:10.1016/j.isprsjprs.2014.07.014

    Article  Google Scholar 

  114. Mason DC, Horritt MS, Dall’Amico JT, Scott TR, Bates PD (2007) Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry. Geosci Remote Sens IEEE Trans 45:3932–3943. doi:10.1109/TGRS.2007.901032

    Article  Google Scholar 

  115. Mason DC, Bates PD, Dall’Amico JT (2009) Calibration of uncertain flood inundation models using remotely sensed water levels. J Hydrol 368:224–236. doi:10.1016/j.jhydrol.2009.02.034

    Article  Google Scholar 

  116. Mason DC, J-p. Schumann G, Bates PD (2010) Data utilization in flood inundation modelling. In: Flood risk science and management. Wiley, New York, pp 209–233. doi:10.1002/9781444324846.ch11

  117. Mason DC, Davenport IJ, Neal JC, Schumann GJP, Bates PD (2012a) Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images. IEEE Trans Geosci Remote Sens 50:3041–3052. doi:10.1109/tgrs.2011.2178030

    Article  Google Scholar 

  118. Mason DC, Schumann GJP, Neal JC, Garcia-Pintado J, Bates PD (2012b) Automatic near real-time selection of flood water levels from high resolution Synthetic Aperture Radar images for assimilation into hydraulic models: a case study. Remote Sens Environ 124:705–716. doi:10.1016/j.rse.2012.06.017

    Article  Google Scholar 

  119. Mason DC, Giustarini L, Garcia-Pintado J, Cloke HL (2014) Detection of flooded urban areas in high resolution synthetic aperture radar images using double scattering. Int J Appl Earth Obs Geoinf 28:150–159. doi:10.1016/j.jag.2013.12.002

    Article  Google Scholar 

  120. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  121. Matgen P, Henry JB, Pappenberger F, Fraipont PD, Hoffmann L, Pfister L (2004) Uncertainty in calibrating flood propagation models with flood boundaries derived from synthetic aperture radar imagery. In: Proceedings of the 20th congress of the International Society of Photogrammetry and Remote Sensing, 12–23 July, Instanbul, Turkey, pp 352–358

  122. Matgen P, Schumann G, Henry JB, Hoffmann L, Pfister L (2007a) Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int J Appl Earth Obs Geoinf 9:247–263. doi:10.1016/j.jag.2006.03.003

    Article  Google Scholar 

  123. Matgen P, Schumann G, Pappenberger F, Pfister L (2007b) Sequential assimilation of remotely sensed water stages in flood inundation models. In: Paper presented at the IAHS symposium on remote sensing for environmental monitoring and change detection—24th General Assembly of the International Union of Geodesy and Geophysics (IUGG), Perugia, Italy, 2–13 July

  124. Matgen P et al (2010) Towards the sequential assimilation of SAR-derived water stages into hydraulic models using the Particle Filter: proof of concept. Hydrol Earth Syst Sci 14:1773–1785. doi:10.5194/hess-14-1773-2010

    Article  Google Scholar 

  125. Matgen P, Hostache R, Schumann G, Pfister L, Hoffmann L, Savenije HHG (2011) Towards an automated SAR-based flood monitoring system: lessons learned from two case studies. Phys Chem Earth A/B/C 36:241–252. doi:10.1016/j.pce.2010.12.009

    Article  Google Scholar 

  126. Mitchell AL, Milne AK, Tapley I (2015) Towards an operational SAR monitoring system for monitoring environmental flows in the Macquarie Marshes. Wetlands Ecol Manag 23:61–77. doi:10.1007/s11273-014-9358-2

    Article  Google Scholar 

  127. Moradkhani H (2008) Hydrologic remote sensing and land surface data assimilation. Sensors (Basel, Switzerland) 8:2986–3004. doi:10.3390/s8052986

    Article  Google Scholar 

  128. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  129. Mueller N et al (2016) Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens Environ 174:341–352. doi:10.1016/j.rse.2015.11.003

    Article  Google Scholar 

  130. Musa ZN, Popescu I, Mynett A (2015) A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation. Hydrol Earth Syst Sci 19:3755–3769. doi:10.5194/hess-19-3755-2015

    Article  Google Scholar 

  131. Neal JC, Atkinson PM, Hutton CW (2007) Flood inundation model updating using an ensemble Kalman filter and spatially distributed measurements. J Hydrol 336:401–415. doi:10.1016/j.jhydrol.2007.01.012

    Article  Google Scholar 

  132. Neal J, Schumann G, Bates P, Buytaert W, Matgen P, Pappenberger F (2009) A data assimilation approach to discharge estimation from space. Hydrol Process 23:3641–3649. doi:10.1002/hyp.7518

    Article  Google Scholar 

  133. Neal J, Schumann G, Bates P (2012) A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour Res 48:W11506. doi:10.1029/2012WR012514

    Article  Google Scholar 

  134. Nerger L, Gregg WW (2007) Assimilation of SeaWiFS data into a global ocean-biogeochemical model using a local SEIK filter. J Mar Syst 68:237–254. doi:10.1016/j.jmarsys.2006.11.009

    Article  Google Scholar 

  135. Oberstadler R, HÖNsch H, Huth D (1997) Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrol Process 11:1415–1425. doi:10.1002/(SICI)1099-1085(199708)11:10<1415:AID-HYP532>3.0.CO;2-2

    Article  Google Scholar 

  136. O’Grady D, Leblanc M (2014) Radar mapping of broad-scale inundation: challenges and opportunities in Australia. Stoch Environ Res Risk Assess 28:29–38. doi:10.1007/s00477-013-0712-3

    Article  Google Scholar 

  137. Oliver C, Quegan S (2004) Understanding Synthetic Aperture Radar Images. SciTech Publishing, London (UK), pp 479

  138. O’Loughlin F, Trigg MA, Schumann GJP, Bates PD (2013) Hydraulic characterization of the middle reach of the Congo River. Water Resour Res 49:5059–5070. doi:10.1002/wrcr.20398

    Article  Google Scholar 

  139. Papa F, Prigent C, Rossow WB, Legresy B, Remy F (2006) Inundated wetland dynamics over boreal regions from remote sensing: the use of Topex-Poseidon dual-frequency radar altimeter observations. Int J Remote Sens 27:4847–4866. doi:10.1080/01431160600675887

    Article  Google Scholar 

  140. Pappenberger F, Beven K, Horritt M, Blazkova S (2005) Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J Hydrol 302:46–69. doi:10.1016/j.jhydrol.2004.06.036

    Article  Google Scholar 

  141. Pappenberger F, Frodsham K, Beven K, Romanowicz R, Matgen P (2007) Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations. Hydrol Earth Syst Sci 11:739–752. doi:10.5194/hess-11-739-2007

    Article  Google Scholar 

  142. Parker WV (2012) Discover the benefits of radar imaging. Earth Imaging J Remote Sens Satell Images Satell Imag. http://eijournal.com/2012/discover-the-benefits-of-radar-imaging

  143. Pavelsky TM, Smith LC (2008) RivWidth: a software tool for the calculation of river widths from remotely sensed imagery. Geosci Remote Sens Lett IEEE 5:70–73. doi:10.1109/LGRS.2007.908305

    Article  Google Scholar 

  144. Prestininzi P, Di Baldassarre G, Schumann G, Bates PD (2011) Selecting the appropriate hydraulic model structure using low-resolution satellite imagery. Adv Water Resour 34:38–46. doi:10.1016/j.advwatres.2010.09.016

    Article  Google Scholar 

  145. Proud SR, Fensholt R, Rasmussen LV, Sandholt I (2011) Rapid response flood detection using the MSG geostationary satellite. Int J Appl Earth Obs Geoinf 13:536–544. doi:10.1016/j.jag.2011.02.002

    Article  Google Scholar 

  146. Pulvirenti L, Chini M, Pierdicca N, Guerriero L, Ferrazzoli P (2011a) Flood monitoring using multi-temporal COSMO-SkyMed data: image segmentation and signature interpretation. Remote Sens Environ 115:990–1002. doi:10.1016/j.rse.2010.12.002

    Article  Google Scholar 

  147. Pulvirenti L, Pierdicca N, Chini M, Guerriero L (2011b) An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Nat Hazards Earth Syst Sci 11:529

    Article  Google Scholar 

  148. Raclot D (2006) Remote sensing of water levels on floodplains: a spatial approach guided by hydraulic functioning. Int J Remote Sens 27:2553–2574. doi:10.1080/01431160600554397

    Article  Google Scholar 

  149. Raclot D, Puech C (2003) What does ai contribute to hydrology? aerial photos and flood levels. Appl Artif Intell 17:71–86. doi:10.1080/713827055

    Article  Google Scholar 

  150. Rees WG (2012) Physical principles of remote sensing. Cambridge University Press, Cambridge

    Google Scholar 

  151. Revilla-Romero B, Hirpa F, Pozo J, Salamon P, Brakenridge R, Pappenberger F, De Groeve T (2015) On the use of global flood forecasts and satellite-derived inundation maps for flood monitoring in data-sparse regions. Remote Sens 7:15702

    Article  Google Scholar 

  152. Rodriguez E (2015) Surface water and ocean topography mission (SWOT), Science Requirements Document, JPL document D-61923. https://swot.jpl.nasa.gov/files/swot/SRD_021215.pdf

  153. Rodriguez E, Moller D (2004) Measuring surface water from space. In: Paper presented at the AGU San Francisco (USA)

  154. Romanowicz R, Beven K (1998) Dynamic real-time prediction of flood inundation probabilities. Hydrol Sci J 43:181–196. doi:10.1080/02626669809492117

    Article  Google Scholar 

  155. Romanowicz R, Beven K (2003) Estimation of flood inundation probabilities as conditioned on event inundation maps. Water Resour Res 39:1073. doi:10.1029/2001WR001056

    Article  Google Scholar 

  156. Romanowicz RJ, Beven KJ, Tawn J (1996) Bayesian calibration of flood inundation models. Floodplain processes. Wiley, Chichester, pp 333–360

    Google Scholar 

  157. Schlaffer S, Matgen P, Hollaus M, Wagner W (2015) Flood detection from multi-temporal SAR data using harmonic analysis and change detection. Int J Appl Earth Obs Geoinf 38:15–24. doi:10.1016/j.jag.2014.12.001

    Article  Google Scholar 

  158. Schmugge T (1987) Remote sensing applications in hydrology. Rev Geophys 25:148–152. doi:10.1029/RG025i002p00148

    Article  Google Scholar 

  159. Schumann GJP, Moller DK (2015) Microwave remote sensing of flood inundation. Phys Chem Earth A/B/C 83–84:84–95. doi:10.1016/j.pce.2015.05.002

    Article  Google Scholar 

  160. Schumann G, Henry J-B, Hoffmann L, Pfister L, Pappenberger F, Matgen P (2005) Demonstrating the high potential of remote sensing in hydraulic modelling and flood risk management. In: Paper presented at the annual conference of the remote sensing and photogrammetry society with the NERC earth observation conference, Portsmouth, UK, 6–9 September 2005

  161. Schumann G, Hostache R, Puech C, Hoffmann L, Matgen P, Pappenberger F, Pfister L (2007a) High-resolution 3-D flood information from radar imagery for flood hazard management. Geosci Remote Sens IEEE Trans 45:1715–1725. doi:10.1109/TGRS.2006.888103

    Article  Google Scholar 

  162. Schumann G, Matgen P, Hoffmann L, Hostache R, Pappenberger F, Pfister L (2007b) Deriving distributed roughness values from satellite radar data for flood inundation modelling. J Hydrol 344:96–111. doi:10.1016/j.jhydrol.2007.06.024

    Article  Google Scholar 

  163. Schumann G, Cutler M, Black A, Matgen P, Pfister L, Hoffmann L, Pappenberger F (2008a) Evaluating uncertain flood inundation predictions with uncertain remotely sensed water stages. Int J River Basin Manag 6:187–199. doi:10.1080/15715124.2008.9635347

    Article  Google Scholar 

  164. Schumann G, Matgen P, Cutler MEJ, Black A, Hoffmann L, Pfister L (2008b) Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J Photogramm Remote Sens 63:283–296. doi:10.1016/j.isprsjprs.2007.09.004

    Article  Google Scholar 

  165. Schumann G, Matgen P, Pappenberger F (2008c) Conditioning water stages from satellite imagery on uncertain data points. Geosci Remote Sens Lett IEEE 5:810–813. doi:10.1109/LGRS.2008.2005646

    Article  Google Scholar 

  166. Schumann G, Pappenberger F, Matgen P (2008d) Estimating uncertainty associated with water stages from a single SAR image. Adv Water Resour 31:1038–1047. doi:10.1016/j.advwatres.2008.04.008

    Article  Google Scholar 

  167. Schumann G, Bates PD, Horritt MS, Matgen P, Pappenberger F (2009a) Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models. Rev Geophys. doi:10.1029/2008RG000274

    Google Scholar 

  168. Schumann G, Di Baldassarre G, Bates PD (2009b) The utility of spaceborne radar to render flood inundation maps based on multialgorithm ensembles. Geosci Remote Sens IEEE Trans 47:2801–2807. doi:10.1109/TGRS.2009.2017937

    Article  Google Scholar 

  169. Schumann G, Di Baldassarre G, Alsdorf D, Bates PD (2010) Near real-time flood wave approximation on large rivers from space: Application to the River Po, Italy. Water Resour Res 46:W05601. doi:10.1029/2008WR007672

    Article  Google Scholar 

  170. Schumann GJP, Neal JC, Mason DC, Bates PD (2011) The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods. Remote Sens Environ 115:2536–2546. doi:10.1016/j.rse.2011.04.039

    Article  Google Scholar 

  171. Schumann GJP, Bates PD, Di Baldassarre G, Mason DC (2012) The use of radar imagery in riverine flood inundation studies. In: Fluvial remote sensing for science and management. Wiley, pp 115–140. doi:10.1002/9781119940791.ch6

  172. Schumann GJP et al (2013) A first large-scale flood inundation forecasting model. Water Resour Res 49:6248–6257. doi:10.1002/wrcr.20521

    Article  Google Scholar 

  173. Schumann GJP, Vernieuwe H, De Baets B, Verhoest NEC (2014) ROC-based calibration of flood inundation models. Hydrol Process 28:5495–5502. doi:10.1002/hyp.10019

    Article  Google Scholar 

  174. Schumann GJP, Bates PD, Neal JC, Andreadis KM (2015) Chapter 2—Measuring and mapping flood processes. In: Baldassarre JFSPD (ed) Hydro-meteorological hazards, risks and disasters. Elsevier, Boston, pp 35–64. doi:http://dx.doi.org/10.1016/B978-0-12-394846-5.00002-3

  175. Shiiba M, Laurenson X, Tachikawa Y (2000) Real-time stage and discharge estimation by a stochastic-dynamic flood routing model. Hydrol Process 14:481–495. doi:10.1002/(SICI)1099-1085(20000228)14:3<481:AID-HYP950>3.0.CO;2-F

    Article  Google Scholar 

  176. Siddique-E-Akbor AHM, Hossain F, Lee H, Shum CK (2011) Inter-comparison study of water level estimates derived from hydrodynamic–hydrologic model and satellite altimetry for a complex deltaic environment. Remote Sens Environ 115:1522–1531. doi:10.1016/j.rse.2011.02.011

    Article  Google Scholar 

  177. Sippel SJ, Hamilton SK, Melack JM, Novo EMM (1998) Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. Int J Remote Sens 19:3055–3074

    Article  Google Scholar 

  178. Sivapalan M et al (2003) IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrol Sci J 48:857–880. doi:10.1623/hysj.48.6.857.51421

    Article  Google Scholar 

  179. Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11:1427–1439. doi:10.1002/(SICI)1099-1085(199708)11:10<1427:AID-HYP473>3.0.CO;2-S

    Article  Google Scholar 

  180. Snyder C, Bengtsson T, Bickel P, Anderson J (2008) Obstacles to high-dimensional particle filtering. Mon Weather Rev 136:4629–4640. doi:10.1175/2008MWR2529.1

    Article  Google Scholar 

  181. Speck R, Turchi P, Süß H (2007) An end-to-end simulator for high-resolution spaceborne SAR systems. In: Algorithms for synthetic aperture radar imagery XIV, Orlando, Florida, USA, 7 May. Proceedings of SPIE. doi:10.1117/12.717222

  182. Stephens EM, Bates PD, Freer JE, Mason DC (2012) The impact of uncertainty in satellite data on the assessment of flood inundation models. J Hydrol 414–415:162–173. doi:10.1016/j.jhydrol.2011.10.040

    Article  Google Scholar 

  183. Stephens E, Schumann G, Bates P (2014) Problems with binary pattern measures for flood model evaluation. Hydrol Process 28:4928–4937. doi:10.1002/hyp.9979

    Article  Google Scholar 

  184. Stokstad E (1999) Scarcity of rain, stream gages threatens forecasts. Science 285:1199–1200. doi:10.1126/science.285.5431.1199

    Article  Google Scholar 

  185. Tarpanelli A, Barbetta S, Brocca L, Moramarco T (2013a) River discharge estimation by using altimetry data and simplified flood routing modeling. Remote Sens 5:4145

    Article  Google Scholar 

  186. Tarpanelli A, Brocca L, Melone F, Moramarco T (2013b) Hydraulic modelling calibration in small rivers by using coarse resolution synthetic aperture radar imagery. Hydrol Process 27:1321–1330. doi:10.1002/hyp.9550

    Article  Google Scholar 

  187. Ticehurst C, Chen Y, Karim F, Dushmanta D (2013) Using MODIS for mapping flood events for use in hydrological and hydrodynamic models: experiences so far. In: Paper presented at the 20th international congress on modelling and simulation—MODSIM 2013, Adelaide (Australia)

  188. Ticehurst C, Guerschman J, Chen Y (2014) The strengths and limitations in using the daily MODIS open water likelihood algorithm for identifying flood events. Remote Sens 6:11791

    Article  Google Scholar 

  189. Ticehurst C, Dutta D, Karim F, Petheram C, Guerschman J (2015) Improving the accuracy of daily MODIS OWL flood inundation mapping using hydrodynamic modelling. Nat Hazards 78:803–820. doi:10.1007/s11069-015-1743-5

    Article  Google Scholar 

  190. Tomkins KM (2014) Uncertainty in streamflow rating curves: methods, controls and consequences. Hydrol Process 28:464–481. doi:10.1002/hyp.9567

    Article  Google Scholar 

  191. Townsend PA (2002) Estimating forest structure in wetlands using multitemporal SAR. Remote Sens Environ 79:288–304. doi:10.1016/S0034-4257(01)00280-2

    Article  Google Scholar 

  192. Wang Y (2004) Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. Int J Remote Sens 25:959–974. doi:10.1080/0143116031000150022

    Article  Google Scholar 

  193. Werner M, Blazkova S, Petr J (2005) Spatially distributed observations in constraining inundation modelling uncertainties. Hydrol Process 19:3081–3096. doi:10.1002/hyp.5833

    Article  Google Scholar 

  194. Westerhoff RS, Kleuskens MPH, Winsemius HC, Huizinga HJ, Brakenridge GR, Bishop C (2013) Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol Earth Syst Sci 17:651–663. doi:10.5194/hess-17-651-2013

    Article  Google Scholar 

  195. Whitcomb J, Moghaddam M, McDonald K, Kellndorfer J, Podest E (2009) Mapping vegetated wetlands of Alaska using L-band radar satellite imagery. Can J Remote Sens 35:54–72. doi:10.5589/m08-080

    Article  Google Scholar 

  196. Wilson M et al (2007) Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys Res Lett 34:n/a–n/a. doi:10.1029/2007GL030156

    Article  Google Scholar 

  197. Woodhouse IH (2005) Introduction to microwave remote sensing. CRC Press, Florida, pp 400

    Google Scholar 

  198. Wright N, Villanueva I, Bates P, Mason DC, Wilson M, Pender G, Neelz S (2008) Case study of the use of remotely sensed data for modeling flood inundation on the river Severn, UK. J Hydraul Eng 134:533–540. doi:10.1061/(ASCE)0733-9429(2008)134:5(533)

    Article  Google Scholar 

  199. Yan K, Di Baldassarre G, Solomatine DP, Schumann GJP (2015) A review of low-cost space-borne data for flood modelling: topography, flood extent and water level. Hydrol Process. doi:10.1002/hyp.10449

    Google Scholar 

  200. Yu D, Lane SN (2006) Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: mesh resolution effects. Hydrol Process 20:1541–1565. doi:10.1002/hyp.5935

    Article  Google Scholar 

  201. Zwally HJ et al (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34:405–445. doi:10.1016/S0264-3707(02)00042-X

    Article  Google Scholar 

  202. Zwenzner H, Voigt S (2009) Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data. Hydrol Earth Syst Sci 13:567–576. doi:10.5194/hess-13-567-2009

    Article  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the Bushfires and Natural Hazards CRC project—Improving flood forecast skill using remote sensing data. Valentijn Pauwels is funded by ARC Future Fellow grant FT130100545. The authors would like to acknowledge the Australian Bureau of Meteorology and Geoscience Australia for their valuable comments and support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefania Grimaldi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grimaldi, S., Li, Y., Pauwels, V.R.N. et al. Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surv Geophys 37, 977–1034 (2016). https://doi.org/10.1007/s10712-016-9378-y

Download citation

Keywords

  • Hydraulic modelling of floods
  • Remote sensing
  • Flood extent and level
  • Data assimilation
  • Real-time forecast