Surveys in Geophysics

, Volume 38, Issue 1, pp 385–406 | Cite as

A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales

  • A. B. A. SlangenEmail author
  • F. Adloff
  • S. Jevrejeva
  • P. W. Leclercq
  • B. Marzeion
  • Y. Wada
  • R. Winkelmann


Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7–17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.


Sea-level change Regional sea-level change Sea-level projections Ice sheets Glaciers Terrestrial water storage Mediterranean 



This paper is a result of the ISSI Workshop on Integrative Study of Sea Level, held in Bern, Switzerland, 2–6 February 2015. A.S. was supported by a CSIRO Australia Office of the Chief Executive Fellowship and the NWO-Netherlands Polar Programme. P.L. was funded by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 320816. Y.W. was supported by a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship (Grant No. JSPS-2014-878). F.A. was supported by an AXA postdoctoral fellowship.


  1. Adloff F et al (2015) Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim Dyn. doi: 10.1007/s00382-015-2507-3 Google Scholar
  2. Agarwal N, Jungclaus JH, Köhl A, Mechoso CR, Stammer D (2015) Additional contributions to CMIP5 regional sea level projections resulting from Greenland and Antarctic ice mass loss. Environ Res Lett 10(7):074008. doi: 10.1088/1748-9326/10/7/074008 CrossRefGoogle Scholar
  3. Bamber JL, Aspinall WP (2013) An expert judgement assessment of future sea level rise from the ice sheets. Nat Clim Chang 3(4):424–427. doi: 10.1038/nclimate1778 CrossRefGoogle Scholar
  4. Bilbao RAF, Gregory JM, Bouttes N (2015) Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCM’s. Clim Dyn 45(9):2647–2666. doi: 10.1007/s00382-015-2499-z CrossRefGoogle Scholar
  5. Bordbar MH, Martin T, Latif M, Park W (2015) Effects of long-term variability on projections of twenty-first century dynamic sea level. Nat Clim Chang 5:343–347. doi: 10.1038/nclimate2569 CrossRefGoogle Scholar
  6. Bouttes N, Gregory JM (2014) Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environ Res Lett 9(3):034004. doi: 10.1088/1748-9326/9/3/034004 CrossRefGoogle Scholar
  7. Calafat FM, Jordà G, Marcos M, Gomis D (2012) Comparison of Mediterranean sea level variability as given by three baroclinic models. J Geophys Res 117(C2):C02009. doi: 10.1029/2011JC007277 CrossRefGoogle Scholar
  8. Carillo A, Sannino G, Artale V, Ruti PM, Calmanti S, Dell’Aquila A (2012) Steric sea level rise over the Mediterranean Sea: present climate and scenario simulations. Clim Dyn 39(9–10):2167–2184. doi: 10.1007/s00382-012-1369-1 CrossRefGoogle Scholar
  9. Carson M, Köhl A, Stammer D, Slangen ABA, Katsman CA, van de Wal RSW, Church JA, White NJ (2015) Coastal sea level changes, observed and projected during the 20th and 21st Century. Clim Change 134(1):269–281Google Scholar
  10. Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320(5873):212–214. doi: 10.1126/science.1154580 CrossRefGoogle Scholar
  11. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett. doi: 10.1029/2011GL048794 Google Scholar
  12. Church JA et al (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, and New YorkGoogle Scholar
  13. Clark PU, Church JA, Gregory JM, Payne AJ (2015) Recent progress in understanding and projecting regional and global mean sea level change. Curr Clim Chang Rep 1(4):224–246. doi: 10.1007/s40641-015-0024-4 CrossRefGoogle Scholar
  14. Cogley JG (2009) A more complete version of the World Glacier Inventory. Ann Glaciol 50:32–38CrossRefGoogle Scholar
  15. CSIRO and Bureau of Meteorology (2015) Climate change in Australia Information for Australia’s Natural Resourche Management Regions: technical reportGoogle Scholar
  16. de Vries H, Katsman C, Drijfhout S (2014) Constructing scenarios of regional sea level change using global temperature pathways. Environ. Res. Lett. 9(11):115007. doi: 10.1088/1748-9326/9/11/115007 CrossRefGoogle Scholar
  17. Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50(7):5698–5720. doi: 10.1002/2014WR015595 CrossRefGoogle Scholar
  18. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Technical report, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Occasional Paper No 58Google Scholar
  19. Edwards TL et al (2014) Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. Cryosphere 8(1):195–208. doi: 10.5194/tc-8-195-2014 CrossRefGoogle Scholar
  20. Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948. doi: 10.1038/nclimate2425 CrossRefGoogle Scholar
  21. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett, Geophys. doi: 10.1029/2010GL046442 Google Scholar
  22. Farrell WE, Clark JA (1976) On Postglacial Sea Level. Geophys JR Astron Soc 46:647–667CrossRefGoogle Scholar
  23. Favier L, Durand G, Cornford SL, Gudmundsson GH, Gagliardini O, Gillet-Chaulet F, Zwinger T, Payne AJ, Le Brocq AM (2014) Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat Clim Chang 4(2):117–121. doi: 10.1038/nclimate2094 CrossRefGoogle Scholar
  24. Frieler K, Clark PU, He F, Ligtenberg SRM, van den Broeke MR, Winkelmann R, Reese R, Levermann A (2015) Consistent evidence of increasing antarctic accumulation with warming. Nat Clim Chang 5:348–352CrossRefGoogle Scholar
  25. Fürst JJ, Goelzer H, Huybrechts P (2015) Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere 9(3):1039–1062. doi: 10.5194/tc-9-1039-2015 CrossRefGoogle Scholar
  26. Gardner AS et al (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134):852–857. doi: 10.1126/science.1234532 CrossRefGoogle Scholar
  27. Giesen RH, Oerlemans J (2013) Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Clim Dyn 41(11–12):3283–3300. doi: 10.1007/s00382-013-1743-7 CrossRefGoogle Scholar
  28. Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB (2015) The global volume and distribution of modern groundwater. Nat Geosci 9:161–167. doi: 10.1038/ngeo2590 CrossRefGoogle Scholar
  29. Golledge NR, Kowalewski DE, Naish TR, Levy RH, Fogwill CJ, Gasson EGW (2015) The multi-millennial Antarctic commitment to future sea-level rise. Nature 526(7573):421–425. doi: 10.1038/nature15706 CrossRefGoogle Scholar
  30. Gornitz V (1995) Sea-level rise: a review of recent past and near-future trends. Earth Surf Process Landforms 20(1):7–20. doi: 10.1002/esp.3290200103 CrossRefGoogle Scholar
  31. Gregory JM et al (2013) Twentieth-century global-mean sea level rise: Is the whole greater than the sum of the parts? J Clim 26(13):4476–4499. doi: 10.1175/JCLI-D-12-00319.1 CrossRefGoogle Scholar
  32. Grinsted A, Jevrejeva S, Riva REM, Dahl-Jensen D (2015) Sea level rise projections for northern Europe under RCP8.5. Clim Res 64:15–23. doi: 10.3354/cr01309 CrossRefGoogle Scholar
  33. Han G, Ma Z, Bao H, Slangen A (2014) Regional differences of relative sea level changes in the Northwest Atlantic: historical trends and future projections. J Geophys Res Ocean 119(1):156–164. doi: 10.1002/2013JC009454 CrossRefGoogle Scholar
  34. Han G, Ma Z, Chen N, Thomson R, Slangen A (2015) Changes in mean relative sea level around Canada in the twentieth and twenty-first centuries. Atmos Ocean. doi: 10.1080/07055900.2015.1057100 Google Scholar
  35. Hirabayashi Y, Zang Y, Watanabe S (2013) Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrol Res 7(1):6–11. doi: 10.3178/HRL.7.6 Google Scholar
  36. Horton BP, Rahmstorf S, Engelhart SE, Kemp AC (2014) Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat Sci Rev 84:1–6. doi: 10.1016/j.quascirev.2013.11.002 CrossRefGoogle Scholar
  37. Howard T, Ridley J, Pardaens AK, Hurkmans RTWL, Payne AJ, Giesen RH, Lowe JA, Bamber JL, Edwards TL, Oerlemans J (2014) The land-ice contribution to 21st-century dynamic sea level rise. Ocean Sci 10(3):485–500. doi: 10.5194/os-10-485-2014 CrossRefGoogle Scholar
  38. Hu A, Deser C (2013) Uncertainty in future regional sea level rise due to internal climate variability. Geophys Res Lett 40:2768–2772. doi: 10.1002/grl.50531 CrossRefGoogle Scholar
  39. Huss M, Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. J Geophys Res Earth Surf 117(F4):F04010. doi: 10.1029/2012JF002523 CrossRefGoogle Scholar
  40. Huss M, Hock R (2015) A new model for global glacier change and sea-level rise. Front Earth Sci 3(September):1–22. doi: 10.3389/feart.2015.00054 Google Scholar
  41. Huss M, Jouvet G, Farinotti D, Bauder A (2010) Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrol Earth Syst Sci 14(5):815–829. doi: 10.5194/hessd-7-345-2010 CrossRefGoogle Scholar
  42. Huybrechts P, Goelzer H, Janssens I, Driesschaert E, Fichefet T, Goosse H, Loutre M-F (2011) Response of the Greenland and Antarctic Ice Sheets to multi-millennial greenhouse warming in the earth system model of intermediate complexity LOVECLIM. Surv Geophys 32(4):397–416CrossRefGoogle Scholar
  43. Jevrejeva S, Grinsted A, Moore JC (2014) Upper limit for sea level projections by 2100. Environ Res Lett 9(10):104008. doi: 10.1088/1748-9326/9/10/104008 CrossRefGoogle Scholar
  44. Jordà G, Gomis D (2013) On the interpretation of the steric and mass components of sea level variability: the case of the Mediterranean basin. J Geophys Res Ocean 118(2):953–963. doi: 10.1002/jgrc.20060 CrossRefGoogle Scholar
  45. Joughin I, Smith BE, Medley B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344(6185):735–738CrossRefGoogle Scholar
  46. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett. doi: 10.1029/2011GL048604 Google Scholar
  47. Kopp RE, Horton RM, Little CM, Jerry X, Oppenheimer M, Rasmussen DJ, Strauss BH, Tebaldi C (2014) Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. Earth’s Future. doi: 10.1002/2014EF000239 Google Scholar
  48. Lang C, Fettweis X, Erpicum M (2015) Future climate and surface mass balance of Svalbard glaciers in an RCP85 climate scenario: a study with the regional climate model MAR forced by MIROC5. Cryosphere 9(3):945–956. doi: 10.5194/tc-9-945-2015 CrossRefGoogle Scholar
  49. Lenaerts JTM, Le Bars D, van Kampenhout L, Vizcaino M, Enderlin EM, van den Broeke MR (2015) Representing Greenland ice sheet freshwater fluxes in climate models. Geophys Res Lett 42(15):6373–6381. doi: 10.1002/2015GL064738 CrossRefGoogle Scholar
  50. Lettenmaier DP, Milly PCD (2009) Land waters and sea level. Nat Geosci 2(7):452–454. doi: 10.1038/ngeo567 CrossRefGoogle Scholar
  51. Levermann A, Clark PU, Marzeion B, Milne GA, Pollard D, Radic V, Robinson A (2013) The multimillennial sea-level commitment of global warming. Proc Natl Acad Sci USA 110(34):13745–13750. doi: 10.1073/pnas.1219414110 CrossRefGoogle Scholar
  52. Levermann A et al (2014) Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Earth Syst Dyn 5(2):271–293. doi: 10.5194/esd-5-271-2014 CrossRefGoogle Scholar
  53. Little CM, Horton RM, Kopp RE, Oppenheimer M, Vecchi GA, Villarini G (2015a) Joint projections of US East Coast sea level and storm surge. Nat Clim Chang 5:1114–1120. doi: 10.1038/nclimate2801 CrossRefGoogle Scholar
  54. Little CM, Horton RM, Kopp RE, Oppenheimer M, Yip S (2015b) Uncertainty in twenty-first-century CMIP5 sea level projections. J Clim 28(2):838–852. doi: 10.1175/JCLI-D-14-00453.1 CrossRefGoogle Scholar
  55. Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res. doi: 10.1029/2009WR008564 Google Scholar
  56. Lyu K, Zhang X, Church JA, Slangen ABA, Hu J (2014) Time of emergence for regional sea-level change. Nat Clim Chang 4:1006–1010. doi: 10.1038/nclimate2397 CrossRefGoogle Scholar
  57. Marcos M, Tsimplis MN (2008) Coastal sea level trends in Southern Europe. Geophys J Int 175:70–82CrossRefGoogle Scholar
  58. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6:1295–1322. doi: 10.5194/tc-6-1295-2012 CrossRefGoogle Scholar
  59. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37CrossRefGoogle Scholar
  60. Mcinnes KL, Church JA, Monselesan D, Hunter JR, O’Grady JG, Haigh ID, Zhang X (2015) Sea-level rise projections for Australia: information for impact and adaptation planning. Meteorol Oceanogr J, AustGoogle Scholar
  61. Mengel M, Levermann A, Frieler K, Robinson A, Marzeion B, Winkelmann R (2016) Future sea level rise constrained by observations and long-term commitment. Proc Natl Acad Sci. doi: 10.1073/pnas.1500515113 Google Scholar
  62. Mercer JH (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271:321–325CrossRefGoogle Scholar
  63. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  64. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(747–756):747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  65. Nowicki S et al (2013) Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. J Geophys Res Earth Surf 118(2):1002–1024. doi: 10.1002/jgrf.20081 CrossRefGoogle Scholar
  66. Oerlemans J, Nick FM (2005) A minimal model of a tidewater glacier. Ann Glaciol 42:1–6CrossRefGoogle Scholar
  67. Peltier WR (2004) Global glacial isostasy and the surface of the Ice-Age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  68. Pokhrel YN, Hanasaki N, Yeh PJ-F, Yamada TJ, Kanae S, Oki T (2012) Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat Geosci 5(6):389–392. doi: 10.1038/ngeo1476 CrossRefGoogle Scholar
  69. Pollard D, DeConto RM (2016) Contribution of Antarctica to past and future sea-level rise. Nature 531(7596):591–597. doi: 10.1038/nature17145 CrossRefGoogle Scholar
  70. Pollard D, DeConto RM, Alley RB (2015) Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet Sci Lett 412:112–121. doi: 10.1016/j.epsl.2014.12.035 CrossRefGoogle Scholar
  71. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci. doi: 10.1038/NGEO1052 Google Scholar
  72. Radić V, Bliss A, Cody AB, Hock R, Miles E, Cogley JG (2014) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim Dyn 42:37–58. doi: 10.1007/s00382-013-1719-7 CrossRefGoogle Scholar
  73. Rhein M et al (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  74. Ridley J, Gregory JM, Huybrechts P, Lowe JA (2010) Thresholds for irreversible decline of the Greenland ice sheet. Clim Dyn 35:1049–1057. doi: 10.1007/s00382-009-0646-0 CrossRefGoogle Scholar
  75. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett. doi: 10.1029/2011GL046583 Google Scholar
  76. Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys Res Lett 41(10):3502–3509. doi: 10.1002/2014GL060140 CrossRefGoogle Scholar
  77. Ritz C, Edwards TL, Durand G, Payne AJ, Peyaud V, Hindmarsh RCA (2015) Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature. doi: 10.1038/nature16147 Google Scholar
  78. Robinson A, Calov R, Ganopolski A (2012) Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Chang. 2(6):429–432. doi: 10.1038/nclimate1449 CrossRefGoogle Scholar
  79. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  80. Shannon SR, Payne AJ, Bartholomew ID, Van Den Broeke MR, Edwards TL, Sole AJ, Van De Wal RSW, Zwinger T (2013) Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. doi:10.1073/pnas.1212647110/-/
  81. Shepherd A et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi: 10.1126/science.1228102 CrossRefGoogle Scholar
  82. Simpson MJR, Breili K, Kierulf HP (2014) Estimates of twenty-first century sea-level changes for Norway. Clim Dyn 42(5–6):1405–1424. doi: 10.1007/s00382-013-1900-z CrossRefGoogle Scholar
  83. Slangen ABA, van de Wal RSW (2011) An assessment of uncertainties in using volume-area modelling for computing the twenty-first century glacier contribution to sea-level change. Cryosphere 5:673–686. doi: 10.5194/tc-5-673-2011 CrossRefGoogle Scholar
  84. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38(5–6):1191–1209. doi: 10.1007/s00382-011-1057-6 CrossRefGoogle Scholar
  85. Slangen ABA, Carson M, Katsman CA, van de Wal RSW, Koehl A, Vermeersen LLA, Stammer D, Van De Wal RSW (2014) Projecting twenty-first century regional sea-level changes. Clim Change 124:317–332. doi: 10.1007/s10584-014-1080-9 CrossRefGoogle Scholar
  86. Slangen ABA, Church JA, Zhang X, Monselesan D (2015) The sea-level response to external forcings in CMIP5 climate models. J Clim 28(21):8521–8539. doi: 10.1175/JCLI-D-15-0376.1 CrossRefGoogle Scholar
  87. Taylor KE, Stouffer RJ, Meehl GA (2012a) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  88. Taylor RG et al (2012b) Ground water and climate change. Nat Clim Change 3(4):322–329. doi: 10.1038/nclimate1744 CrossRefGoogle Scholar
  89. Vaughan DG et al (2013) Observations: cryosphere. In: Climate Change 2013: the physical science basis. contribution of working Group I to the fifth assessment report of the intergovernmental panel on Climate Change, pp 317–382. doi: 10.1017/CBO9781107415324.012
  90. Vizcaino M, Mikolajewicz U, Jungclaus J, Schurgers G (2010) Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim Dyn 34:301–324CrossRefGoogle Scholar
  91. Wada Y, Bierkens MFP (2014) Sustainability of global water use: past reconstruction and future projections. Environ Res Lett 9(10):104003. doi: 10.1088/1748-9326/9/10/104003 CrossRefGoogle Scholar
  92. Wada Y, van Beek LPH, Weiland FCS, Chao BF, Wu Y-H, Bierkens MFP (2012) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett. doi: 10.1029/2012GL051230 Google Scholar
  93. Wada Y, Lo M-H, Yeh PJ-F, Reager JT, Famiglietti JS, Wu R-J, Tseng Y-H (2016) Fate of water pumped from underground and contributions to sea-level rise Nat. Clim Change. doi: 10.1038/NCLIMATE3001 Google Scholar
  94. Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J Glaciol 13:3–11Google Scholar
  95. Winkelmann R, Levermann A, Martin MA, Frieler K (2012) Increased future ice discharge from Antarctica owing to higher snowfall. Nature 492(7428):239–242. doi: 10.1038/nature11616 CrossRefGoogle Scholar
  96. Winkelmann R, Levermann A, Ridgwell A, Caldeira K (2015) Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Science 1(September):1–5Google Scholar
  97. Wisser D, Frolking S, Hagen S, Bierkens MFP (2013) Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour Res 49(9):5732–5739. doi: 10.1002/wrcr.20452 CrossRefGoogle Scholar
  98. Wong PP, Losada IJ, Gattuso J-P, Hinkel J, Khattabi A, McInnes K, Saito Y, Sallenger A (2013) Chapter 5: coastal systems and low-lying areas. In: IPCC WGII AR5, pp 1–85Google Scholar
  99. Yin J (2012) Century to multi-century sea level rise projections from CMIP5 models. Geophys Res Lett. doi: 10.1029/2012GL052947 Google Scholar
  100. Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea-level rise in 21st century projections. J Clim 23:4585–4607. doi: 10.1175/2010JCLI3533.1 CrossRefGoogle Scholar
  101. Zuo Z, Oerlemans J (1997) Contribution of glacier melt to sea-level rise since AD 1865: a regionally differentiated calculation. Clim Dyn 13:835–845CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht UniversityUtrechtThe Netherlands
  2. 2.CSIRO Oceans and AtmosphereCSIROHobartAustralia
  3. 3.CNRM-GAME, Météo-France, CNRSToulouseFrance
  4. 4.National Oceanographic CentreLiverpoolUK
  5. 5.Department of GeosciencesUniversity of OsloOsloNorway
  6. 6.Institute of GeographyUniversity of BremenBremenGermany
  7. 7.NASA Goddard Institute for Space StudiesColumbia UniversityNew YorkUSA
  8. 8.Center for Climate Systems ResearchColumbia UniversityNew YorkUSA
  9. 9.Department of Physical GeographyUtrecht UniversityUtrechtThe Netherlands
  10. 10.International Institute for Applied Systems AnalysisLaxenburgAustria
  11. 11.Potsdam Institute for Climate Impact ResearchUniversity of PotsdamPotsdamGermany

Personalised recommendations