Surveys in Geophysics

, Volume 38, Issue 1, pp 329–348 | Cite as

Internal Variability Versus Anthropogenic Forcing on Sea Level and Its Components

  • Marta Marcos
  • Ben Marzeion
  • Sönke Dangendorf
  • Aimée B. A. Slangen
  • Hindumathi Palanisamy
  • Luciana Fenoglio-Marc
Article

Abstract

In this paper we review and update detection and attribution studies in sea level and its major contributors during the past decades. Tide gauge records reveal that the observed twentieth-century global and regional sea level rise is out of the bounds of its natural variability, evidencing thus a human fingerprint in the reported trends. The signal varies regionally, and it partly depends on the magnitude of the background variability. The human fingerprint is also manifested in the contributors of sea level for which observations are available, namely ocean thermal expansion and glaciers’ mass loss, which dominated the global sea level rise over the twentieth century. Attribution studies provide evidence that the trends in both components are clearly dominated by anthropogenic forcing over the second half of the twentieth century. In the earlier decades, there is a lack of observations hampering an improved attribution of causes to the observed sea level rise. At certain locations along the coast, the human influence is exacerbated by local coastal activities that induce land subsidence and increase the risk of sea level-related hazards.

Keywords

Mean sea level rise Thermal expansion Glaciers melting Detection and attribution Land subsidence 

References

  1. Abidin HZ, Djaja R, Darmawan D, Hadi S, Akbar A, Rajiyowiryono H, Sudibyo Y, Meilano I, Kasuma MA, Kahar J, Subarya C (2001) Land subsidence of Jakarta (Indonesia) and its geodetic monitoring. Nat Hazards 23:365–387CrossRefGoogle Scholar
  2. Abidin HZ, Andreas H, Gumilar I, Wibowo IRR (2015). On correlation between urban development, land subsidence and flooding phenomena in Jakarta. In: Proceedings of IAHS, 370, 15–20, 2015 proc-iahs.net/370/15/2015/. doi:10.5194/piahs-370-15-2015
  3. Agnew DC (1992) The time-domain behaviour of power-law noises. Geophys Res Lett 19(4):333–336CrossRefGoogle Scholar
  4. Allen MR, Tett SFB (1999) Checking for model consistency in optimal fingerprinting. Clim Dyn 15:419–434CrossRefGoogle Scholar
  5. Barbosa SM, Silva ME, Fernandes MJ (2008) Time series analysis of sea-level records: characterising long-term variability. In: Donner RV, Barbosa SM (eds) Nonlinear time series analysis in the geosciences. Springer, New York, pp 157–173CrossRefGoogle Scholar
  6. Barnett TP, Pierce DW, Schnur R (2001) Detection of anthropogenic climate change in the world’s oceans. Science 292:270CrossRefGoogle Scholar
  7. Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human induced warming into the world’s oceans. Science 309:284–287CrossRefGoogle Scholar
  8. Becker M, Karpytchev M, Lennartz-Sassinek S (2014) Long-term sea level trends: natural or anthropogenic? Geophys Res Lett 41:5571–5580. doi:10.1002/2014GL061027 CrossRefGoogle Scholar
  9. Bilbao RAF, Gregory JM, Bouttes N (2015) Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs. Clim Dyn. doi:10.1007/s00382-015-2499-z Google Scholar
  10. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J et al (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 385–432Google Scholar
  11. Bindoff NL et al (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  12. Bordbar MH, Martin T, Latif M, Park W (2015) Effects of long-term variability on projections of twenty-first century dynamic sea level. Nat Clim Change 5:343–347. doi:10.1038/nclimate2569 CrossRefGoogle Scholar
  13. Bos MS, Williams SDP, Araujo IB, Bastos L (2014) The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys J Int 196:1423–1430CrossRefGoogle Scholar
  14. Bouttes N, Gregory JM (2014) Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environ Res Lett 9:034004. doi:10.1088/1748-9326/9/3/034004 CrossRefGoogle Scholar
  15. Bouttes N, Gregory JM, Kuhlbrod T, Smith RS (2014) The drivers of projected North Atlantic sea level change. Clim Dyn 43:1531–1544. doi:10.1007/s00382-013-1973-8 CrossRefGoogle Scholar
  16. Burke EE, Roe GH (2014) The absence of memory in the climatic forcing of glaciers. Clim Dyn 42:1335–1346CrossRefGoogle Scholar
  17. Calafat FM, Chambers DP (2013) Quantifying recent acceleration in sea level unrelated to internal climate variability. Geophys Res Lett 40:3661–3666. doi:10.1002/grl.50731 CrossRefGoogle Scholar
  18. Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res Oceans 110(C9). doi:10.1029/2004JC002817
  19. Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320:212–214CrossRefGoogle Scholar
  20. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602CrossRefGoogle Scholar
  21. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, PfefferWT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM(eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50:96–100CrossRefGoogle Scholar
  23. Dangendorf S, Rybski D, Mudersbach C, Müller A, Kaufmann E, Zorita E, Jensen J (2014a) Evidence for long-term memory in sea level. Geophys Res Lett 41:5530–5537. doi:10.1002/2014GL060538 CrossRefGoogle Scholar
  24. Dangendorf S, Calafat FM, Arns A, Wahl T, Haigh ID, Jensen J (2014b) Mean sea level variability in the North Sea: processes and implications. J. Geophys Res Oceans 119:6820–6841. doi:10.1002/2014JC009901 CrossRefGoogle Scholar
  25. Dangendorf S, Marcos M, Muller A, Zorita E, Riva R, Berk K, Jensen J (2015) Detecting anthropogenic footprints in sea level rise. Nat Commun. doi:10.1038/ncomms8849 Google Scholar
  26. Douglas BC (2005) Gulf of Mexico and Atlantic coast sea level change. In: Sturges W, Lugo-Fernández A (eds) Circulation in the Gulf of Mexico: observations and models. Geophysical monograph series, vol 161. American Geophysical Union, Washington, DC, pp 111–121CrossRefGoogle Scholar
  27. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4(3):222–227. doi:10.1038/nclimate2106 CrossRefGoogle Scholar
  28. Fenoglio-Marc L, Groten E, Dietz C (2004) Vertical land motion in the Mediterranean Sea from altimetry and tide gauge stations. Mar Geodesy 27(3–4):683–701CrossRefGoogle Scholar
  29. Fenoglio-Marc L, Braitenberg C, Tunini L (2011) Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Phys Chem Earth. doi:10.1016/j.pce.2011.05.014 Google Scholar
  30. Fenoglio-Marc L, Schöne T, Illigner J, Becker M, Manurung P, Khafid (2012) Sea level change and vertical motion from satellite altimetry, tide gauges and GPS in the Indonesian Region. Mar Geodesy 35(sup1):137–150. doi:10.1080/01490419.2012.718682 CrossRefGoogle Scholar
  31. Frankcombe LM, McGregor S, England MH (2014) Robustness of the modes of Indo-Pacific sea level variability. Clim Dyn. doi:10.1007/s00382-014-2377-0 Google Scholar
  32. Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857CrossRefGoogle Scholar
  33. Gehrels WR, Woodworth PL (2013) When did modern rates of sea-level rise start? Global Planet Change 100:263–277CrossRefGoogle Scholar
  34. Gleckler PJ, Santer BD, Domingues CM, Pierce DW, Barnett TP, Church JA, Taylor KE, AchutaRao KM, Boyer TP, Caldwell PM (2012) Human-induced global ocean warming on multidecadal timescales. Nat Clim Change 2:524–529Google Scholar
  35. Hamlington BD, Strassburg MW, Leben RR, Han W, Nerem RS, Kim K-Y (2014) Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat Clim Change 4(9):782–785. doi:10.1038/nclimate2307 CrossRefGoogle Scholar
  36. Han W et al (2013) Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim Dyn. doi:10.1007/s00382-013-1951-1 Google Scholar
  37. Hay CC, Morrow E, Kopp RE, Mitrovica JX (2015) Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:481–484CrossRefGoogle Scholar
  38. Hegerl GC et al (2010) Good practice guidance paper on detection and attribution related to anthropogenic climate change. In: Stocker TF et al (ed) Meeting report of the intergovernmental panel on climate change expert meeting on detection and attribution of anthropogenic climate change. IPCC working group I technical support unit, University of Bern, Bern, Switzerland, 8 ppGoogle Scholar
  39. Hünicke B, Zorita E, Soomere T, Madsen KS, Johansson M, Suursaar Ü (2015) Recent change—sea level and wind waves. Second assessment of climate change for the Baltic Sea Basin. pp 155–185. doi:10.1007/978-3-319-16006-1_9. Print ISBN 978-3-319-16005-4, Online ISBN 978-3-319-16006-1
  40. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299CrossRefGoogle Scholar
  41. Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi:10.1029/2005JC003229 CrossRefGoogle Scholar
  42. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35:L08715CrossRefGoogle Scholar
  43. Jevrejeva S, Grinsted A, Moore JC (2009) Anthropogenic forcing dominates sea level rise since 1850. Geophys Res Lett 36:L20706. doi:10.1029/2009GL040216 CrossRefGoogle Scholar
  44. Jordà G (2014) Detection time for global and regional sea level trends and accelerations. J Geophys Res Oceans 119(10):7164–7174. doi:10.1002/2014JC010005 CrossRefGoogle Scholar
  45. Kantelhardt JW, Koscielny-Bunde E, Rego HH, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Phys A 295(3):441–454CrossRefGoogle Scholar
  46. Kemp AC, Horton BP, Donelly JP, Mann ME, Vermeer M, Rahmstorf S (2011) Climate related sea-level variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257Google Scholar
  47. Köhl A, Stammer D, Cornuelle B (2007) Interannual to Decadal Changes in the ECCO Global Synthesis. J Phys Oceanogr 37(2):313–337. doi:10.1175/JPO3014.1 CrossRefGoogle Scholar
  48. Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP, Gehrels WR, Hay CC, Mitrovica JX, Morrow ED, Rahmstorf S (2016) Temperature-driven global sea-level variability in the Common Era. PNAS 113(11):E1434–E1441. doi:10.1073/pnas.1517056113 CrossRefGoogle Scholar
  49. Kuo CY, Shum CK, Braun A, Cheng KC, Yi Y (2008) Vertical motion determined using satellite altimetry and tide gauges. Terr Atmos Ocean Sci 19(1–2):21–35CrossRefGoogle Scholar
  50. Leclercq PW, Oerlemans J, Basagic HJ, Bushueva I, Cook AJ, Le Bris R (2014) A data set of worldwide glacier length fluctuations. Cryosphere 8:659–672CrossRefGoogle Scholar
  51. Letetrel C, Karpytchev M, Bouin M-N, Marcos M, Santamaría-Gómez A, Wöppelmann G (2015) Estimation of vertical land movement rates along the coasts of the Gulf of Mexico over the past decades. Cont Shelf Res 111:42–51CrossRefGoogle Scholar
  52. Levermann A Peter, Clark U, Marzeion Ben, Milne Glenn A, Pollard David, Radic Valentina, Robinsonh Alexander (2013) The multimillennial sea-level commitment of global warming. PNAS 110(34):13745–13750. doi:10.1073/pnas.1219414110 CrossRefGoogle Scholar
  53. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems, Geophys Res Lett 36(7). doi:10.1029/2008GL037155
  54. Levitus S et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39:L10603. doi:10.1029/2012GL051106 CrossRefGoogle Scholar
  55. Lyman JM, Johnson Gregory C (2014) Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J Clim 27:1945–1957. doi:10.1175/JCLI-D-12-00752.1 CrossRefGoogle Scholar
  56. Lyu K, Zhang X, Church JA, Slangen ABA, Hu J (2014) Time of emergence for regional sea-level change. Nat Clim Change 4(11):1006–1010. doi:10.1038/nclimate2397 CrossRefGoogle Scholar
  57. Marcos M, Amores A (2014) Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Res Lett, Geophys. doi:10.1002/2014GL059766 Google Scholar
  58. Marcos M, Tsimplis MN (2007) Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys Res Lett 34:L18604. doi:10.1029/2007GL030641 CrossRefGoogle Scholar
  59. Marzeion B, Cogley JG, Richter K, Parkes D (2014) Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345:919–921CrossRefGoogle Scholar
  60. McGregor S, Gupta AS, England MH (2012) Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution*. J Clim 25(23):8164–8176. doi:10.1175/JCLI-D-12-00105.1 CrossRefGoogle Scholar
  61. Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Clim 24(15):4126–4138. doi:10.1175/2011JCLI3932.1 CrossRefGoogle Scholar
  62. Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a Pacific trade wind intensification. Geophys Res Lett. doi:10.1029/2011GL049576 Google Scholar
  63. Merrifield MA, Thompson PR, Lander M (2012) Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys Res Lett. doi:10.1029/2012GL052032 Google Scholar
  64. Meyssignac B, Salas D, Melia Y, Becker M, Llovel W, Cazenave A (2012) Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past 8(2):787–802. doi:10.5194/cp-8-787-2012 CrossRefGoogle Scholar
  65. Monselesan DP, O’Kane TJ, Risbey JS, Church J (2015) Internal climate memory in observations and models. Geophys Res Lett 42:1232–1242. doi:10.1002/2014GL062765 CrossRefGoogle Scholar
  66. Nidheesh AG, Lengaigne M, Vialard J, Unnikrishnan AS, Dayan H (2013) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn 41(2):381–402. doi:10.1007/s00382-012-1463-4 CrossRefGoogle Scholar
  67. Oerlemans J (1988) Simulation of historic glacier variations with a simple climate-glacier model. J Glaciol 34:333–341Google Scholar
  68. Palanisamy H, Meyssignac B, Cazenave A, Delcroix T (2015a) Is anthropogenic sea level fingerprint already detectable in the Pacific Ocean? Environ Res Lett 10(8):084024. doi:10.1088/1748-9326/10/8/084024 CrossRefGoogle Scholar
  69. Palanisamy H, Cazenave A, Delcroix T, Meyssignac B (2015b) Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: the contribution of thermocline depth change and internal climate variability. Ocean Dyn. doi:10.1007/s10236-014-0805-7 Google Scholar
  70. Pfeffer J, Allemand P (2016) The key role of vertical land motions in coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth Planet Sci Lett 439:39–47. doi:10.1016/j.epsl.2016.01.027 CrossRefGoogle Scholar
  71. Piecuch CG, Ponte RM (2015) Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geo Phys Res Lett 42:5918–5925. doi:10.1002/2015GL064580 CrossRefGoogle Scholar
  72. Pirazzoli PA (1987) Recent sea-level changes and related engineering problems in the lagoon of Venice (Italy). Prog Oceanogr 18:323–346. doi:10.1016/0079-6611(87)90038-3 CrossRefGoogle Scholar
  73. Raucoules D et al (2008) Ground deformation detection of the greater area of Thessaloniki (northern Greece) using radar interferometry techniques. Nat Hazards Earth Syst Sci 8:779–788. doi:10.5194/nhess-8-779-2008 CrossRefGoogle Scholar
  74. Reichert BK, Bengtsson L, Oerlemans J (2002) Recent glacier retreat exceeds internal variability. J Clim 15:3069–3081CrossRefGoogle Scholar
  75. Richter K, Marzeion B (2014) Earliest local emergence of forced dynamic and steric sea-level trends in climate models. Environ Res Lett 9(11):114009. doi:10.1088/1748-9326/9/11/114009 CrossRefGoogle Scholar
  76. Roe GH, Baker MB (2014) Glacier response to climate perturbations: an accurate linear geometric model. J Glaciol 60:670–684CrossRefGoogle Scholar
  77. Santamaría-Gómez A, Gravelle M, Wöppelmann G (2014) Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data. J Geodesy 88:207–222. doi:10.1007/s00190-013-0677-5 CrossRefGoogle Scholar
  78. Saramul S, Ezer T (2014) Spatial variations of sea level along the coast of Thailand: impacts of extreme land subsidence, earthquakes and the seasonal monsoon. Global Planet Changes 122:70–81. doi:10.1016/j.gloplacha.2014.08.012 CrossRefGoogle Scholar
  79. Schöne T, Illigner J, Manurung P, Subarya C, Khafid Zech C, Galas R (2011) GPS-controlled tide gauges in Indonesia a German contribution to Indonesia’s Tsunami Early Warning System. Nat Hazards Earth Syst Sci 11:731–741CrossRefGoogle Scholar
  80. Simons WJF, Socquet A, Vigny A, Ambrosius BAC, Abu SH, Promthong C, Subarya C, Sarsito DA, Matheussen S, Morgan P, Spakman W (2007) A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. J Geophys Res 112(B06420). doi:10.1029/2005JB003868
  81. Slangen ABA, Church JA, Zhang X, Monselesan D (2014) Detection and attribution of global mean thermosteric sea-level change. Geophys Res Lett 41(16):5951–5959. doi:10.1002/2014GL061356 CrossRefGoogle Scholar
  82. Slangen ABA, Church JA, Zhang X, Monselesan D (2015) The sea-level response to external forcings in CMIP5 climate models. J Clim. doi:10.1175/JCLI-D-15-0376.1 Google Scholar
  83. Slangen ABA, Church JA, Agosta C, Fettweis X, Marzeion B, Richter K (2016) Anthropogenic forcing dominates global mean sea-level rise since 1970 Nat Climate Change. doi:10.1038/nclimate2991
  84. Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci. doi:10.1146/annurev-marine-121211-172406 Google Scholar
  85. Thompson PR, Merrifield Mark A, Wells Judith R, Chang Chantel M (2014) Wind-driven coastal sea level variability in the northeast pacific. J Clim 27:4733–4751. doi:10.1175/JCLI-D-13-00225.1 CrossRefGoogle Scholar
  86. Timmermann A, McGregor S, Jin F-F (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific*. J Clim 23(16):4429–4437. doi:10.1175/2010JCLI3519.1 CrossRefGoogle Scholar
  87. Trisirisatayawong I, Naeije M, Simons W, Fenoglio-Marc L (2011) Sea level change in the Gulf of Thailand from GPS-corrected tide gauge data and multi-satellite altimetry. Global Planet Change 76:137–151CrossRefGoogle Scholar
  88. Veit E, Conrad CP (2016) The impact of groundwater depletion on spatial variations in sea level change during the past century. Geophys Res Lett 43:3351–3359. doi:10.1002/2016GL068118 CrossRefGoogle Scholar
  89. Venzke S, Allen MR, Sutton RT, Rowell DP (1999) The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J Clim 12:2562–2584CrossRefGoogle Scholar
  90. Wakelin SL, Woodworth PL, Flather RA, Williams JA (2003) Sea-level dependence on the NAO over the NW European Continental Shelf. Geophys Res Lett 30(7):1403. doi:10.1029/2003GL017041 CrossRefGoogle Scholar
  91. Wöppelmann G, Marcos M (2012) Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J Geophys Res 117:C01007. doi:10.1029/2011JC007469 CrossRefGoogle Scholar
  92. Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys. doi:10.1002/2015RG000502 Google Scholar
  93. Wöppelmann G, Marcos M, Santamaría-Gómez A, Martín-Míguez B, Bouin M-N, Gravelle M (2014) Evidence for a differential sea level rise between hemispheres over the twentieth century. Geophys Res Lett 41:1639–1643. doi:10.1002/2013GL059039 CrossRefGoogle Scholar
  94. Wunsch Carl, Heimbach Patrick (2014) Bidecadal thermal changes in the abyssal ocean. J Phys Oceanogr 44:2013–2030. doi:10.1175/JPO-D-13-096.1 CrossRefGoogle Scholar
  95. Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys Res Lett. doi:10.1029/2012GL053240 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marta Marcos
    • 1
  • Ben Marzeion
    • 2
  • Sönke Dangendorf
    • 3
  • Aimée B. A. Slangen
    • 4
    • 5
  • Hindumathi Palanisamy
    • 6
  • Luciana Fenoglio-Marc
    • 7
  1. 1.Mediterranean Institute for Advanced Studies (UIB-CSIC)MallorcaSpain
  2. 2.University of BremenBremenGermany
  3. 3.University of SiegenSiegenGermany
  4. 4.Commonwealth Scientific and Industrial Research OrganisationHobartAustralia
  5. 5.Institute for Marine and Atmospheric ResearchUtrecht UniversityUtrechtThe Netherlands
  6. 6.Laboratoire d’Etudes en Géophysique et Océanographie SpatialesToulouseFrance
  7. 7.University of BonnBonnGermany

Personalised recommendations