Skip to main content

Assessing and Improving Land Surface Model Outputs Over Africa Using GRACE, Field, and Remote Sensing Data

Abstract

The Gravity Recovery and Climate Experiment (GRACE), along with other relevant field and remote sensing datasets, was used to assess the performance of two land surface models (LSMs: CLM4.5-SP and GLDAS-Noah) over the African continent and improve the outputs of the CLM4.5-SP model. Spatial and temporal analysis of monthly (January 2003–December 2010) Terrestrial Water Storage (TWS) estimates extracted from GRACE (TWSGRACE), CLM4.5-SP (TWSCLM4.5), and GLDAS-Noah (TWSGLDAS) indicates the following: (1) compared to GRACE, LSMs overestimate TWS in winter months and underestimate them in summer months; (2) the amplitude of annual cycle (AAC) of TWSGRACE is higher than that of TWSLSM (AAC: TWSGRACE > TWSGLDAS > TWSCLM4.5); (3) higher, and statistically significant correlations were observed between TWSGRACE and TWSGLDAS compared to those between TWSGRACE and TWSCLM4.5; (4) differences in forcing precipitation and temperature datasets for GLDAS-Noah and CLM4.5-SP models are unlikely to be the main cause for the observed discrepancies between TWSGRACE and TWSLSM; and (5) the CLM4.5-SP model overestimates evapotranspiration (ET) values in summer months and underestimates them in winter months compared to ET estimates extracted from field-based (FLUXNET-MTE) and satellite-based (MOD16 and GLEAM) ET measurements. A first-order correction was developed and applied to correct the CLM4.5-derived ET, soil moisture, groundwater, and TWS. The corrections improved the correspondence (i.e., higher correlation and comparable AAC) between TWSCLM4.5 and TWSGRACE over various climatic settings. Our findings suggest that similar straightforward correction approaches could potentially be developed and used to assess and improve the performance of a wide range of LSMs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Ahmed M, Sultan M, Wahr J et al (2011) Integration of GRACE (Gravity Recovery and Climate Experiment) data with traditional data sets for a better understanding of the time-dependent water partitioning in African watersheds. Geology 39:479–482. doi:10.1130/G31812.1

    Article  Google Scholar 

  • Ahmed M, Sultan M, Wahr J, Yan E (2014) The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth Sci Rev 136:289–300. doi:10.1016/j.earscirev.2014.05.009

    Article  Google Scholar 

  • Awange JL, Gebremichael M, Forootan E et al (2014) Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Adv Water Resour 74:64–78. doi:10.1016/j.advwatres.2014.07.012

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838. doi:10.1126/science.1184984

    Article  Google Scholar 

  • Bonan GB, Lawrence PJ, Oleson KW et al (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116:1–22. doi:10.1029/2010JG001593

    Google Scholar 

  • Bucchignani E, Cattaneo L, Panitz H-J, Mercogliano P (2015) Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain. Meteorol Atmos Phys. doi:10.1007/s00703-015-0403-3

    Google Scholar 

  • Chen J, Li J, Zhang Z, Ni S (2014) Long-term groundwater variations in Northwest India from satellite gravity measurements. Glob Planet Change 116:130–138. doi:10.1016/j.gloplacha.2014.02.007

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson RE et al (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023. doi:10.1175/BAMS-84-8-1013

    Article  Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134. doi:10.1016/S0022-1694(02)00283-4

    Article  Google Scholar 

  • Döll P, Fritsche M, Eicker A, Müller Schmied H (2014a) Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surv Geophys 35:1311–1331. doi:10.1007/s10712-014-9282-2

    Article  Google Scholar 

  • Döll P, Müller Schmied H, Schuh C et al (2014b) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720. doi:10.1002/2014WR015595

    Article  Google Scholar 

  • Eicker A, Schumacher M, Kusche J et al (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP Global Hydrology Model (WGHM) using an ensemble Kalman filter: first results. Surv Geophys 35:1285–1309. doi:10.1007/s10712-014-9309-8

    Article  Google Scholar 

  • Ershadi A, McCabe MF, Evans JP et al (2014) Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric For Meteorol 187:46–61. doi:10.1016/j.agrformet.2013.11.008

    Article  Google Scholar 

  • Famiglietti JS, Lo M, Ho SL et al (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett. doi:10.1029/2010GL046442

    Google Scholar 

  • Feng W, Zhong M, Lemoine J-M et al (2013) Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour Res 49:2110–2118. doi:10.1002/wrcr.20192

    Article  Google Scholar 

  • Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112:901–919. doi:10.1016/j.rse.2007.06.025

    Article  Google Scholar 

  • Forman BA, Reichle RH, Rodell M (2012) Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Water Resour Res 48:W01507. doi:10.1029/2011WR011239

    Article  Google Scholar 

  • Forootan E, Kusche J, Loth I et al (2014) Multivariate prediction of total water storage changes over West Africa from multi-satellite data. Surv Geophys 35:913–940. doi:10.1007/s10712-014-9292-0

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG et al (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857. doi:10.1126/science.1234532

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Gonçalvès J, Petersen J, Deschamps P et al (2013) Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys Res Lett 40:2673–2678. doi:10.1002/grl.50478

    Article  Google Scholar 

  • Han S-C, Riva R, Sauber J, Okal E (2013) Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields. J Geophys Res Solid Earth 118:1240–1267. doi:10.1002/jgrb.50116

    Article  Google Scholar 

  • Houborg R, Rodell M, Li B et al (2012) Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour Res. doi:10.1029/2011WR011291

    Google Scholar 

  • Hudiburg TW, Law BE, Thornton PE (2013) Evaluation and improvement of the Community Land Model (CLM4) in Oregon forests. Biogeosciences 10:453–470. doi:10.5194/bg-10-453-2013

    Article  Google Scholar 

  • Hurrell JW, Holland MM, Gent PR et al (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518. doi:10.1038/nature10847

    Article  Google Scholar 

  • Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50:1–14. doi:10.1002/2013WR014633

    Article  Google Scholar 

  • Jung M, Reichstein M, Bondeau A (2009) Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosci Discuss 6:5271–5304. doi:10.5194/bgd-6-5271-2009

    Article  Google Scholar 

  • Jung M, Reichstein M, Ciais P et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954. doi:10.1038/nature09396

    Article  Google Scholar 

  • Jung M, Reichstein M, Margolis HA et al (2011) Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res Biogeosci 116:1–16. doi:10.1029/2010JG001566

    Google Scholar 

  • Kim HW, Hwang K, Mu Q et al (2012) Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE J Civ Eng 16:229–238. doi:10.1007/s12205-012-0006-1

    Article  Google Scholar 

  • Klees R, Zapreeva EA, Winsemius HC, Savenije HHG (2007) The bias in GRACE estimates of continental water storage variations. Hydrol Earth Syst Sci 11:1227–1241. doi:10.5194/hess-11-1227-2007

    Article  Google Scholar 

  • Koren V, Schaake J, Mitchell K et al (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res 104:19569–19585. doi:10.1029/1999JD900232

    Article  Google Scholar 

  • Koster RD, Suarez MJ (1996) Energy and water balance calculations in the Mosaic LSM. NASA Tech Memo 9(104606):69

    Google Scholar 

  • Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res. doi:10.1029/2011WR011453

    Google Scholar 

  • Lawrence DM, Oleson KW, Flanner MG et al (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Syst 3:1–27. doi:10.1029/2011MS000045

    Google Scholar 

  • Lawrence DM, Oleson KW, Flanner MG et al (2012) The CCSM4 land simulation, 1850–2005: assessment of surface climate and new capabilities. J Clim 25:2240–2260. doi:10.1175/JCLI-D-11-00103.1

    Article  Google Scholar 

  • Lee H, Beighley RE, Alsdorf D et al (2011) Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ 115:3530–3538. doi:10.1016/j.rse.2011.08.015

    Article  Google Scholar 

  • Lenk O (2013) Satellite based estimates of terrestrial water storage variations in Turkey. J Geodyn 67:106–110. doi:10.1016/j.jog.2012.04.010

    Article  Google Scholar 

  • Levin NE, Zipser EJ, Ceding TE (2009) Isotopic composition of waters from Ethiopia and Kenya: insights into moisture sources for eastern Africa. J Geophys Res Atmos 114:1–13. doi:10.1029/2009JD012166

    Article  Google Scholar 

  • Li BL, Rodell M, Zaitchik BF et al (2012) Assimilation of GRACE terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol 446–447:103–115. doi:10.1016/j.jhydrol.2012.04.035

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF (1996) One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J Geophys Res 101:21403. doi:10.1029/96JD01448

    Article  Google Scholar 

  • Long D, Longuevergne L, Scanlon BR (2015) Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resour Res 51:2574–2594. doi:10.1002/2014WR016853

    Article  Google Scholar 

  • Miralles DG, Gash JH, Holmes TRH et al (2010) Global canopy interception from satellite observations. J Geophys Res Atmos 115:1–8. doi:10.1029/2009JD013530

    Article  Google Scholar 

  • Miralles DG, De Jeu RAM, Gash JH et al (2011a) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15:967–981. doi:10.5194/hess-15-967-2011

    Article  Google Scholar 

  • Miralles DG, Holmes TRH, De Jeu RAM et al (2011b) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15:453–469. doi:10.5194/hess-15-453-2011

    Article  Google Scholar 

  • Moradkhani H (2008) Hydrologic remote sensing and land surface data assimilation. Sensors 8:2986–3004. doi:10.3390/s8052986

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800. doi:10.1016/j.rse.2011.02.019

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nguyen H, Evans A, Lucas C et al (2013) The Hadley circulation in reanalyses: climatology, variability, and change. J Clim 26:3357–3376. doi:10.1175/JCLI-D-12-00224.1

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L (2006) Assessing a land surface model’s improvements with GRACE estimates. Geophys Res Lett 33:L07401. doi:10.1029/2005GL025555

    Article  Google Scholar 

  • Oleson KW, Lawrence DM, Gordon B et al (2010) Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech Note Note NCAR/TN-478+STR, 257

  • Reichle R, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130:103–114. doi:10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394. doi:10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/nature08238

    Article  Google Scholar 

  • Scanlon BR, Longuevergne L, Long D (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res. doi:10.1029/2011WR011312

    Google Scholar 

  • Schaefer K, Schwalm CR, Williams C et al (2012) A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis. J Geophys Res Biogeosci 117:1–15. doi:10.1029/2012JG001960

    Google Scholar 

  • Steffen H, Wu P (2011) Glacial isostatic adjustment in Fennoscandia—a review of data and modeling. J Geodyn 52:169–204. doi:10.1016/j.jog.2011.03.002

    Article  Google Scholar 

  • Su H, Yang Z-L, Dickinson RE et al (2010) Multisensor snow data assimilation at the continental scale: the value of Gravity Recovery and Climate Experiment terrestrial water storage information. J Geophys Res 115:D10104. doi:10.1029/2009JD013035

    Article  Google Scholar 

  • Sultan M, Ahmed M, Sturchio N et al (2013) Assessment of the Vulnerabilities of the Nubian Sandstone Fossil Aquifer, North Africa. In: Pielke RA, Hossain F (eds) Climate vulnerability: understanding and addressing threats to essential resources. Elsevier Inc., Academic Press, Amsterdam, pp 311–333

    Chapter  Google Scholar 

  • Sultan M, Ahmed M, Wahr J et al (2015) Monitoring aquifer depletion from space: case studies from the Saharan and Arabian Aquifers. In: Lakshmi V (ed) Remote sensing of the terrestrial water cycle, AGU geophysical monograph 206, pp 349–366

    Google Scholar 

  • Swenson SC, Lawrence DM (2014) Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. J Geophys Res 119:10299–10312. doi:10.1002/2014JD022314

    Google Scholar 

  • Swenson SC, Lawrence DM (2015) A GRACE-based assessment of interannual groundwater dynamics in the Community Land Model. Water Resour Res 51:8817–8833. doi:10.1002/2014WR016259

    Article  Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Google Scholar 

  • Tang J, Riley WJ (2013) Impacts of a new bare-soil evaporation formulation on site, regional, and global surface energy and water budgets in CLM4. J Adv Model Earth Syst 5:558–571. doi:10.1002/jame.20034

    Article  Google Scholar 

  • Tang J, Riley WJ, Niu J (2015) Incorporating root hydraulic redistribution in CLM4.5: effects on predicted site and global evapotranspiration, soil moisture, and water storage. J Adv Model Earth. doi:10.1002/2015MS000484

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC et al (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi:10.1126/science.1099192

    Article  Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi:10.1029/2009GL039401

    Article  Google Scholar 

  • Trambauer P, Dutra E, Maskey S et al (2014) Comparison of different evaporation estimates over the African continent. Hydrol Earth Syst Sci 18:193–212. doi:10.5194/hess-18-193-2014

    Article  Google Scholar 

  • Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40:3055–3063. doi:10.1002/grl.50527

    Article  Google Scholar 

  • Velicogna I, Sutterley TC, Broeke MR Van Den (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett 41:8130–8137. doi:10.1002/2014GL061052

  • Viovy N, Ciais P (2015) CRUNCEP data set for 1901–2008. http://dods.extra.cea.fr/data/p529viov/cruncep/. Accessed Oct 2015

  • Voss KA, Famiglietti JS, Lo M et al (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris–Euphrates–Western Iran region. Water Resour Res 49:904–914. doi:10.1002/wrcr.20078

    Article  Google Scholar 

  • Wahr JM (2007) Time variable gravity from satellites. Treatise Geophys 3:213–237. doi:10.1016/B978-044452748-6.00176-0

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229. doi:10.1029/98JB02844

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:20–23. doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33:L06401. doi:10.1029/2005GL025305

    Article  Google Scholar 

  • Walker JP, Houser PR, Reichle RH (2003) New technologies require advances in hydrologic data assimilation. Eos (Washington DC) 84:545–551. doi:10.11029/2002/WRR001545

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J et al (2008) Mid-to late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828. doi:10.1016/j.quascirev.2008.06.013

    Article  Google Scholar 

  • Werth S, Güntner A (2009) Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol Earth Syst Sci Discuss 6:4813–4861. doi:10.5194/hessd-6-4813-2009

    Article  Google Scholar 

  • Werth S, Güntner A, Petrovic S, Schmidt R (2009) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci Lett 277:166–173. doi:10.1016/j.epsl.2008.10.021

    Article  Google Scholar 

  • Widiastuti E (2009) Data assimilation of GRACE terrestrial water storage data into a hydrological model using the ensemble Kalman smoother: a case study of the Rhine river basin. Masters Thesis, Civil Engineering and Geosciences, TU Delft, 74 p

  • Wouters B, Bonin JA, Chambers DP et al (2014) GRACE, time-varying gravity Earth system dynamics and climate change. Rep Prog Phys. doi:10.1088/0034-4885/77/11/116801

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

    Article  Google Scholar 

  • Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River Basin. J Hydrometeorol 9:535–548. doi:10.1175/2007JHM951.1

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the National Aeronautics and Space Administration (NASA) Grant NNX12AJ94G to Western Michigan University. We thank the Editor and the anonymous Reviewers of the Surveys in Geophysics for their instructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sultan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Sultan, M., Yan, E. et al. Assessing and Improving Land Surface Model Outputs Over Africa Using GRACE, Field, and Remote Sensing Data. Surv Geophys 37, 529–556 (2016). https://doi.org/10.1007/s10712-016-9360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9360-8

Keywords

  • GRACE
  • GLDAS-Noah
  • CLM4.5-SP
  • TWS
  • Evapotranspiration
  • Africa