Surveys in Geophysics

, Volume 37, Issue 3, pp 557–578 | Cite as

Magnetic Signatures and Curie Surface Trend Across an Arc–Continent Collision Zone: An Example from Central Philippines

  • Pearlyn C. Manalo
  • Carla B. DimalantaEmail author
  • Noelynna T. Ramos
  • Decibel V. Faustino-Eslava
  • Karlo L. Queaño
  • Graciano P. YumulJr.


Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface.


Magnetism Curie point depth Arc–continent collision Central Philippines 



The authors acknowledge the logistical and financial support and research grants provided by the Department of Science and Technology through the Philippine Council for Industry, Energy and Emerging Technology Research and Development and the University of the Philippines—National Institute of Geological Sciences (UP-NIGS). Constructive discussions with members of the UP-NIGS Rushurgent Working Group are gratefully acknowledged. We thank Michael Rycroft and two anonymous experts for their critical reviews that greatly improved this manuscript.


  1. Abraham JD, Anderson ED, Drenth BJ, Finn CA, Kucks RP, Lindsay CR, Phillips JD, Sweeney RE (2007) Aeromagnetic survey in Afghanistan: a website for distribution of data. Accessed 8 Oct 2015
  2. Abraham EM, Lawal KM, Ekwe AC, Alile O, Murana KA, Lawal AA (2014) Reply to discussion on ‘Spectral analysis of aeromagnetic data for geothermal energy investigation of Ikogosi Warm Spring-Ekiti State, southwestern Nigeria’. Geotherm Energy 2:18CrossRefGoogle Scholar
  3. Aina A (1986) Reduction to equator, reduction to pole and orthogonal reduction of magnetic profiles. Explor Geophys 17:141–145CrossRefGoogle Scholar
  4. Aitken ARA (2010) Moho geometry gravity inversion experiment (MoGGIE): a refined model of the Australian Moho, and its tectonic and isostatic implications. Earth Planet Sci Lett 297:71–83CrossRefGoogle Scholar
  5. Almasco JN, Fuller RM, Frost G (2000) Paleomagnetism of Palawan, Philippines. J Asian Earth Sci 18:369–389CrossRefGoogle Scholar
  6. Arfai J, Franke D, Gaedicke C, Lutz R, Schnabel M, Ladage S, Berglar K, Aurelio M, Montano J, Pellejera N (2011) Geological evolution of the West Luzon Basin (South China Sea, Philippines). Mar Geophys Res 32:349–362CrossRefGoogle Scholar
  7. Arnaiz-Rodríguez MS, Orihuela N (2013) Curie point depth in Venezuela and the Eastern Caribbean. Tectonophysics 590:38–51CrossRefGoogle Scholar
  8. Assumpção M, Bianchi M, Julià J, Dias FL, França GS, Nascimento R, Drouet S, Pavāo CG, Albuquerque DG, Lopes AEV (2013) Crustal Thickness map of Brazil: data compilation and main features. J S Am Earth Sci 43:74–85CrossRefGoogle Scholar
  9. Ates A, Bilim F, Buyuksarac A, Aydemir A, Bektas O, Aslan Y (2012) Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data. Surv Geophys 33:869–885CrossRefGoogle Scholar
  10. Aurelio MA (2000) Shear partitioning in the Philippines: constraints from the Philippine Fault and global positioning system data. Island Arc 9:584–597CrossRefGoogle Scholar
  11. Aydemir A, Ates A, Bilim F, Buyuksarac A, Bektas O (2014) Evaluation of gravity and aeromagnetic anomalies for the deep structure and possibility of hydrocarbon potential of the region surrounding Lake Van, Eastern Anatolia, Turkey. Surv Geophys 35:431–448CrossRefGoogle Scholar
  12. Aydin I, Karat H, Koçak A (2005) Curie-point depth map of Turkey. Geophys J Int 162:633–640CrossRefGoogle Scholar
  13. Bamford D, Prodehl C (1977) Explosion seismology and the continental crust–mantle boundary. J Geol Soc Lond 134:139–151CrossRefGoogle Scholar
  14. Baranov V (1957) A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies. Geophysics 22:359–382CrossRefGoogle Scholar
  15. Besana GM, Ando M (2005) The central Philippine fault zone: location of great earthquakes, slow events, and creep activity. Earth Planets Space 57:987–994CrossRefGoogle Scholar
  16. Besana GM, Negishi H, Ando M (1997) The three-dimensional attenuation structures beneath the Philippine archipelago based on seismic intensity data inversion. Earth Planet Sci Lett 151:1–11CrossRefGoogle Scholar
  17. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4:1027. doi: 10.1029/2001GC000252 CrossRefGoogle Scholar
  18. Bischke RE, Suppe J, del Pilar R (1990) A new branch of the Philippine fault system as observed from aeromagnetic and seismic data. Tectonophysics 183:243–264CrossRefGoogle Scholar
  19. Brown SR (1998) Frictional heating on faults: stable sliding versus stick slip. J Geophys Res 103:7413–7420CrossRefGoogle Scholar
  20. Brune JN, Henyey TL, Roy RF (1969) Heat flow, stress and rate of slip along the San Andreas fault, California. J Geophys Res 74:3821–3827CrossRefGoogle Scholar
  21. Bureau of Energy Development (1985) High sensitivity aeromagnetic survey, magnetic color map. Scale, 1:250,000. Bureau of Energy Development, Ministry of Energy, Manila, 37 sheetsGoogle Scholar
  22. Caagusan NL (1966) Petrography of the metamorphic rocks of northern Mindoro. Bull Inst Philipp Geol 1:22–46Google Scholar
  23. Canto APB, Padrones JT, Concepcion RAB, Perez ADC, Tamayo RA Jr, Dimalanta CB, Faustino-Eslava DV, Queaño KL, Yumul GP Jr (2012) Geology of northwestern Mindoro and its offshore islands: implications for terrane accretion in west central Philippines. J Asian Earth Sci 61:78–87CrossRefGoogle Scholar
  24. Carlson RL, Raskin GS (1984) Density of the ocean crust. Nature 311:555–558CrossRefGoogle Scholar
  25. Clark DA, Emerson DW (1991) Notes on rock magnetization characteristics in applied geophysical studies. Explor Geophys 22:547–555CrossRefGoogle Scholar
  26. Clark MK, Royden LH (2000) Topographic ooze: building eastern margin of Tibet by lower crustal flow. Geology 28:703–706CrossRefGoogle Scholar
  27. Concepcion RAB, Dimalanta CB, Yumul GP Jr, Faustino-Eslava DV, Queaño KL, Tamayo RA Jr, Imai A (2012) Petrography, geochemistry and tectonics of a rifted fragment of Mainland Asia: evidence from the Lasala Formation, Mindoro Island, Philippines. Int J Earth Sci (Geologische Rundschau) 101:273–290CrossRefGoogle Scholar
  28. Diegor W (1980) Some aspects in the geology, mineralization, and geotectonics of southwest Panay. In: Proceedings in Philippine bureau of mines and geo-sciences annual geological survey division seminar, Bureau of Mines, Quezon City, p 19Google Scholar
  29. Dimalanta CB, Suerte LO, Yumul GP Jr, Tamayo RA Jr, Ramos EGL (2006) A Cretaceous supra-subduction oceanic basin source for Central Philippine ophiolitic basement complexes: geological and geophysical constraints. Geosci J 10:305–320CrossRefGoogle Scholar
  30. Dimalanta CB, Ramos EGL, Yumul GP Jr, Bellon H (2009) New features from the Romblon Island Group: key to understanding the arc–continent collision in central Philippines. Tectonophysics 479:120–129CrossRefGoogle Scholar
  31. Dolmaz MN, Hisarli ZM, Ustaömer T, Orbay N (2005) Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province, Turkey. Pure appl Geophys 162:571–590CrossRefGoogle Scholar
  32. Doo WB, Hsu SK, Armada L (2015) Philippine island arc system tectonic features inferred from magnetic data analysis. Terr Atmos Ocean Sci. doi: 10.3319/TAO.2015.05.11.04(TC) Google Scholar
  33. Finlayson DM, Owen A, Johnstone D, Wake-Dyster KD (1993) Moho and petrologic crust–mantle boundary coincide under southeastern Australia. Geology 21:707–710CrossRefGoogle Scholar
  34. Franke D, Barckhausen U, Baristeas N, Engels M, Ladage S, Lutz R, Montano J, Pellejera N, Ramos EG, Schnabel M (2011) The continent-ocean transition at the southeastern margin of the South China Sea. Mar Pet Geol 28:1187–1204Google Scholar
  35. Gabo JAS, Dimalanta CB, Asio MGS, Queaño KL, Yumul GP, Imai A (2009) Geology and geochemistry of the clastic sequences from Northwestern Panay (Philippines): implications for provenance and geotectonic setting. Tectonophysics 479:111–119CrossRefGoogle Scholar
  36. Gao G, Kang G, Bai C, Wen L (2015) Study on crustal magnetic anomalies and Curie surface in Southeast Tibet. J Asian Earth Sci 97:169–177CrossRefGoogle Scholar
  37. Gervasio FC (1967) Age and nature of orogenesis of the Philippines. Tectonophysics 4:379–402CrossRefGoogle Scholar
  38. Hamilton W (1979) Tectonics of the Indonesian Region. U.S. Geological Survey Professional Paper 1078Google Scholar
  39. Henyey TL, Wasserburg GJ (1971) Heat flow near major strike-slip faults in California. J Geophys Res 76:7924–7946CrossRefGoogle Scholar
  40. Holloway NH (1982) North Palawan block, Philippines: its relation to Asian mainland and role in evolution of the South China Sea. Am Assoc Pet Geol Bull 16:1355–1383Google Scholar
  41. International Association of Geomagnetism and Aeronomy Working Group V-MOD Participating members, Finlay CC, Maus S, Beggan CD, Bondar TN, Chambodut A, Chernova TA, Chulliat A, Golovkov VP, Hamilton B, Hamoudi M, Holme R, Hulot G, Kuang W, Langlais B, Lesur V, Lowes FJ, Lühr H, Macmillan S, Mandea M, McLean S, Manoj C, Menvielle M, Michaelis I, Olsen N, Rauberg J, Rother M, Sabaka TJ, Tangborn A, Tøffner-Clausen L, Thébault E, Thomson AWP, Wardinski I, Wei Z, Zvereva TI (2010) International geomagnetic reference field: the eleventh generation. Geophys J Int 183:1216–1230. doi: 10.1111/j.1365-246X.2010.04804.x CrossRefGoogle Scholar
  42. Jagolino R, Jandumon M (1973) Geological reconnaissance and canvassing of the economic mineral deposits in northwest Panay, western Visayas. Philippine Bureau in Mines Open-File ReportGoogle Scholar
  43. Jumawan FT, Yumul GP Jr, Tamayo RA Jr (1998) Using geochemistry as a tool in determining the tectonic setting and mineralization potential of an exposed upper mantle-crust sequence: example from the Amnay ophiolitic complex in Occidental Mindoro, Philippines. J Geol Soc Philipp 53:24–48Google Scholar
  44. Karig DE (1983) Accreted terranes in the northern part of the Philippine archipelago. Tectonics 2:211–236CrossRefGoogle Scholar
  45. Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration. Blackwell Science Ltd., OxfordGoogle Scholar
  46. Lachenbruch AH (1980) Frictional heating, fluid pressure, and the resistance to fault motion. J Geophys Res 85:6249–6272Google Scholar
  47. Lagmay AMF, Tengonciang AMP, Uy HS (2005) Structural setting of the Bicol Basin and kinematic analysis of fractures on Mayon Volcano, Philippines. J Volcanol Geotherm Res 144:23–36CrossRefGoogle Scholar
  48. Li Z, Roecker S, Kim K, Xu Y, Hao T (2014) Moho depth variations in the Taiwan orogen from joint inversion of seismic arrival time and Bouguer gravity data. Tectonophysics 632:151–159CrossRefGoogle Scholar
  49. Liu WN, Li CF, Li J, Fairhead D, Zhou Z (2014) Deep structures of the Palawan and Sulu Sea and their implications for opening of the South China Sea. Mar Pet Geol 58:721–735CrossRefGoogle Scholar
  50. Maac YO, Ylade ED (1988) Stratigraphic and paleontologic studies of Tablas, Romblon. Research on stratigraphic correlation of cenozoic strata in oil and gas fields, Philippines. Report of Research and Development Cooperation ITIT Projects No. 8319:44–79Google Scholar
  51. Macleod IN (1999) Analytic signal and reduction-to-the-pole in the interpretation of total magnetic field data at low magnetic latitudes. Accessed 12 Oct 2015
  52. Macleod LN, Jones K, Dai TF (1993) 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes. Explor Geophys 24:679–688CrossRefGoogle Scholar
  53. Manalo PC, Dimalanta CB, Faustino-Eslava DV, Ramos NT, Queaño KL, Yumul GP Jr (2015) Crustal thickness variation from a continental to an island arc terrane: clues from the gravity signatures of the central Philippines. J Asian Earth Sci 104:205–214CrossRefGoogle Scholar
  54. Manea M, Manea VC (2011) Curie point depth estimates and correlation with subduction in Mexico. Pure Appl Geophys 168:1489–1499CrossRefGoogle Scholar
  55. McCabe R, Almasco J, Diegor W (1982) Geologic and paleomagnetic evidence for a possible Miocene collision in western Panay, central Philippines. Geology 10:325–329CrossRefGoogle Scholar
  56. Metal Mining Agency Japan-Japan International Cooperation Agency, MMAJ-JICA (1988) Report on the Mineral Exploration: Mineral deposits and Tectonics of Two Contrasting Geologic Environments in the Republic of the Philippines—Palawan V-VI, area, West Negros area and Samar I-IIII areaGoogle Scholar
  57. Milsom J, Eriksen A (2011) Field geophysics, 4th edn. Wiley-Blackwell, LondonCrossRefGoogle Scholar
  58. Mount VS, Suppe J (1987) State of stress near the San Andreas fault: implications for wrench tectonics. Geology 15:1143–1146CrossRefGoogle Scholar
  59. Negi JG, Agrawal PK, Pandey OP (1987) Large variation of Curie depth and lithospheric thickness beneath the Indian subcontinent and a case for magnetothermometry. Geophys J Int 88:763–775CrossRefGoogle Scholar
  60. Nwankwo LI, Olasehinde PI, Akoshile CO (2009) An attempt to estimate the Curie-point isotherm depths in the Nupe Basin, West Central Nigeria. Glob J Pure Appl Sci 15:427–433Google Scholar
  61. Nwogbo PO (1998) Spectral prediction of magnetic source depths from simple numerical models. Comput Geosci 24:847–852CrossRefGoogle Scholar
  62. O’Reilly SY, Griffin WL (1985) A xenoliths derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics 111:41–63CrossRefGoogle Scholar
  63. O’Reilly SY, Griffin WL (2013) Moho vs crust–mantle boundary: evolution of an idea. Tectonophysics 609:535–546CrossRefGoogle Scholar
  64. Ohara J (1969) Heavy minerals of the Miocene Singit and Tarao Formations in Panay Island, the Philippines. In: Kobayashi T, Toriyama R (eds) Geology and palaeontology of Southeast Asia, vol 7. Tokyo University Press, Tokyo, pp 97–113Google Scholar
  65. Okubo Y, Matsunaga T (1994) Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity. J Geophys Res 99:22363–22371CrossRefGoogle Scholar
  66. Onwuemesi AG (1997) One-dimensional spectral analysis of aeromagnetic anomalies and curie depth isotherm in the Anambra basin of Nigeria. J Geodyn 23:95–107CrossRefGoogle Scholar
  67. Pacle NAD, Manalo PC, Ramos NT, Queaño KL, Marquez EJ, Tamayo RAJr, Faustino-Eslava DV, Dimalanta CB, Yumul GP Jr (2013) Post-early Cretaceous to Miocene tectonic setting of Masbate Island, central Philippines as recorded by its several sedimentary formations. In: The 2nd international symposium of the international geoscience programme (IGCP) Project 589 Abstract VolumeGoogle Scholar
  68. Padrones JT (2013) Subsurface geometries and crustal structure of northwest Mindoro Island, Philippines. M.Sc. Thesis, University of the PhilippinesGoogle Scholar
  69. Payot BD, Arai S, Tamayo RA Jr (2011) Abyssal harzburgite veined by silica-oversaturated melt in the Sibuyan Ultramafics, Romblon, central Philippines. J Mineral Petrol Sci 106:175–180CrossRefGoogle Scholar
  70. Perez ADC, Faustino-Eslava DV, Yumul GP Jr, Dimalanta CB, Tamayo RA Jr, Yang TF, Zhou MF (2013) Enriched and depleted character of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle. J Asian Earth Sci 65:107–117CrossRefGoogle Scholar
  71. Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280CrossRefGoogle Scholar
  72. Pubellier M, Meresse F (2013) Phanerozoic growth of Asia: geodynamic processes and evolution. J Asian Earth Sci 72:118–128CrossRefGoogle Scholar
  73. Pubellier M, Monnier C, Maury R, Tamayo R (2004) Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia. Tectonophysics 392:9–36CrossRefGoogle Scholar
  74. Quebral R, Pubellier M, Rangin C, Deffontaines B (1996) Eastern Mindanao, Philippines: a transition zone from a collision to strike-slip environment. Tectonics 15:713–726CrossRefGoogle Scholar
  75. Rajaram M (2007) Depth to Curie temperature. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia of geomagnetism and paleomagnetism. Springer, Berlin, pp 157–159CrossRefGoogle Scholar
  76. Rajaram M, Anand SP, Hemant K, Purucker ME (2009) Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data. Earth Planet Sci Lett 281:147–158CrossRefGoogle Scholar
  77. Ramos NT, Dimalanta CB, Besana GM, Tamayo RA Jr, Yumul GP Jr, Maglambayan VB (2005) Seismotectonic reactions to the arc–continent convergence in central Philippines. Resour Geol 55:199–206CrossRefGoogle Scholar
  78. Rangin C, Stephan JF, Muller C (1985) Middle Oligocene oceanic crust of the South China Sea jammed into Mindoro collision zone, Philippines. Geology 13:425–428CrossRefGoogle Scholar
  79. Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int 169:421–434CrossRefGoogle Scholar
  80. Rudnick RL, McDonough WF, O’Connell RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145:395–411CrossRefGoogle Scholar
  81. Ryan WB, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014. doi: 10.1029/2008GC002332 CrossRefGoogle Scholar
  82. Salem A, Ushijima K, Elsirafi A, Mizunaga H (2000) Spectral analysis of aeromagnetic data for geothermal reconnaissance of Quseir Area, Northern Red Sea, Egypt. In: Proceedings World Geothermal Congress, Japan, pp 1669–1674Google Scholar
  83. Sarewitz DR, Lewis SD (1991) The Marinduque intra-arc basin, Philippines: basin genesis and in situ ophiolite development in a strike-slip setting. Geol Soc Am Bull 103:597–614CrossRefGoogle Scholar
  84. Sevilla WI (2011) Seismic velocity variations under island arcs: examples from the Philippines and Montserrat (Lesser antilles). Doctoral dissertation, The Pennsylvania State UniversityGoogle Scholar
  85. Shuey RT, Schellinger DK, Tripp AC, Alley LB (1977) Curie depth determination from aeromagnetic spectra. Geophys J Int 50:75–101CrossRefGoogle Scholar
  86. Sibson RH (1975) Generation of pseudotachylyte by ancient seismic faulting. Geophys J R Astron Soc 43:775–794CrossRefGoogle Scholar
  87. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302CrossRefGoogle Scholar
  88. Stampolidis A, Kane I, Tsokas GN, Tsourlos P (2005) Curie point depths of Albania inferred from ground total field magnetic data. Surv Geophys 26:461–480CrossRefGoogle Scholar
  89. Starostenko VI, Dolmaz MN, Kutas RI, Rusakov OM, Oksum E, Hisarli ZM, Okyar M, Kalyoncuoglu UY, Tutunsatar HE, Legostaeva OV (2014) Thermal structure of the crust in the Black Sea: comparative analysis of magnetic and heat flow data. Mare Geophys Res 35:345–359CrossRefGoogle Scholar
  90. Stratford WR, Stern TA (2006) Crust and upper mantle structure of a continental backarc: central North Island, New Zealand. Geophys J Int 166:469–484CrossRefGoogle Scholar
  91. Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470CrossRefGoogle Scholar
  92. Taylor B, Hayes DE (1980) The tectonic evolution of the South China Basin. In: Hayes DE (ed) The tectonic and geologic evolution of southeast Asian seas and islands. Geophysical Monograph, Part 1, vol 23, pp 89–104. American Geophysical Union, Washington, DCGoogle Scholar
  93. Telford WM, Geldart LP, Sheriff RE, Keys DA (1976) Applied geophysics. Cambridge University Press, Cambridge, MAGoogle Scholar
  94. Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg LE, Novák Jin S (2015) Analysis of the refined crust CRUST 1.0 crustal model and its gravity field. Surv Geophys 36:139–165CrossRefGoogle Scholar
  95. Travaglia C (1979) Geology of samar. Bureau of Soils Technical Report, ManilaGoogle Scholar
  96. Tsutsumi H, Perez JS (2013) Large-scale active fault map of the Philippine fault based on aerial photograph interpretation. Act Fault Res 39:29–37Google Scholar
  97. van der Meijde M, Juliá J, Assumpḉão M (2013) Gravity derived Moho for South America. Tectonophysics 609:456–467CrossRefGoogle Scholar
  98. Wakita K, Pubellier M, Windley BF (2013) Tectonic processes, from rifting to collision via subduction, in SE Asia and the western Pacific: a key to understanding the architecture of the Central Asian Orogenic Belt. Lithosphere 5:265–276CrossRefGoogle Scholar
  99. Wasilewski PJ, Mayhew MA (1992) The Moho as a magnetic boundary revisited. Geophys Res Lett 19:2259–2262CrossRefGoogle Scholar
  100. Wasilewski PJ, Thomas HH, Mayhew MA (1979) The Moho as a magnetic boundary. Geophys Res Lett 6:541–544CrossRefGoogle Scholar
  101. White RS, McKenzie D, O’Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res Solid Earth 97:19683–19715CrossRefGoogle Scholar
  102. Worzel JL, Shurbet GL (1955) Gravity interpretations from standard oceanic and continental crustal section. Geol Soc Am Spec Pap 62:87–100Google Scholar
  103. Yumul GP, Dimalanta CB, Tamayo RA, Maury RC (2003) Collision, subduction and accretion events in the Philippines: a synthesis. Island Arc 12:77–91CrossRefGoogle Scholar
  104. Yumul GP Jr, Dimalanta CB, Tamayo RA Jr (2005) Indenter-tectonics in the Philippines: example from the Palawan Microcontinental Block-Philippine Mobile Belt Collision. Resour Geol 55:189–198CrossRefGoogle Scholar
  105. Yumul GP, Dimalanta CB, Marquez EJ, Queaño KL (2009) Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process: a review. J Asian Earth Sci 34:610–623CrossRefGoogle Scholar
  106. Zamoras LR, Montes MGA, Queaño KL, Marquez EJ, Dimalanta CB, Gabo JAS, Yumul GP Jr (2008) Buruanga peninsula and Antique Range: two contrasting terranes in Northwest Panay, Philippines featuring an arc–continent collision zone. Island Arc 17:443–457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Pearlyn C. Manalo
    • 1
  • Carla B. Dimalanta
    • 1
    Email author
  • Noelynna T. Ramos
    • 1
  • Decibel V. Faustino-Eslava
    • 2
  • Karlo L. Queaño
    • 3
    • 4
  • Graciano P. YumulJr.
    • 4
  1. 1.Rushurgent Working Group, National Institute of Geological SciencesUniversity of the Philippines, DilimanQuezon CityPhilippines
  2. 2.School of Environmental Science and ManagementUniversity of the Philippines, Los BañosLagunaPhilippines
  3. 3.Mapua Institute of TechnologyIntramuros, ManilaPhilippines
  4. 4.Apex Mining Company Inc.Ortigas CityPhilippines

Personalised recommendations