Surveys in Geophysics

, Volume 37, Issue 2, pp 307–337 | Cite as

The SWOT Mission and Its Capabilities for Land Hydrology

  • Sylvain Biancamaria
  • Dennis P. Lettenmaier
  • Tamlin M. Pavelsky
Article

Abstract

Surface water storage and fluxes in rivers, lakes, reservoirs and wetlands are currently poorly observed at the global scale, even though they represent major components of the water cycle and deeply impact human societies. In situ networks are heterogeneously distributed in space, and many river basins and most lakes—especially in the developing world and in sparsely populated regions—remain unmonitored. Satellite remote sensing has provided useful complementary observations, but no past or current satellite mission has yet been specifically designed to observe, at the global scale, surface water storage change and fluxes. This is the purpose of the planned Surface Water and Ocean Topography (SWOT) satellite mission. SWOT is a collaboration between the (US) National Aeronautics and Space Administration, Centre National d’Études Spatiales (the French Spatial Agency), the Canadian Space Agency and the United Kingdom Space Agency, with launch planned in late 2020. SWOT is both a continental hydrology and oceanography mission. However, only the hydrology capabilities of SWOT are discussed here. After a description of the SWOT mission requirements and measurement capabilities, we review the SWOT-related studies concerning land hydrology published to date. Beginning in 2007, studies demonstrated the benefits of SWOT data for river hydrology, both through discharge estimation directly from SWOT measurements and through assimilation of SWOT data into hydrodynamic and hydrology models. A smaller number of studies have also addressed methods for computation of lake and reservoir storage change or have quantified improvements expected from SWOT compared with current knowledge of lake water storage variability. We also briefly review other land hydrology capabilities of SWOT, including those related to transboundary river basins, human water withdrawals and wetland environments. Finally, we discuss additional studies needed before and after the launch of the mission, along with perspectives on a potential successor to SWOT.

Keywords

Surface Water and Ocean Topography (SWOT) satellite mission Continental surface waters Lakes Reservoirs Rivers 

Notes

Acknowledgments

S.B. acknowledges funding from the CNES Terre–Océan–Surfaces Continentales–Atmosphère (TOSCA) committee for the SWOT Science Definition Team. D.L. acknowledges funding from NASA Earth Sciences, Grant No. NNX15AF01G. T.P.’s work on this paper was supported by NASA Terrestrial Hydrology Program Grant No. NNX13AD05G and by funding from the SWOT Project at the NASA/Caltech Jet Propulsion Lab. We thank two anonymous reviewers and Pierre-Andre Garambois for their comments, which we believe have improved the manuscript.

This paper originated with presentations at the International Space Science Institute (ISSI) Workshop on Remote Sensing and Water Resources, held in Bern (Switzerland), October 6–10, 2014.

References

  1. Allen GF, Pavelsky TM (2015) Patterns of river width and surface area revealed by satellite-derived North American River Width data set. Geophys Res Lett 42(2):295–402. doi:10.1002/2014GL062764 CrossRefGoogle Scholar
  2. Alsdorf DE, Lettenmaier DP (2003) Tracking fresh water from space. Science 301:1485–1488CrossRefGoogle Scholar
  3. Alsdorf DE, Lettenmaier DP, Vörösmarty C (2003) The need for global, satellite-based observations of terrestrial surface waters. EOS Trans Am Geophys Union 84(29):269–276. doi:10.1029/2003EO290001 CrossRefGoogle Scholar
  4. Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2):RG2002. doi:10.1029/2006RG000197 CrossRefGoogle Scholar
  5. Andreadis KM, Schumann GJP (2014) Estimating the impact of satellite observations on the predictability of large-scale hydraulic models. Adv Water Resour 73:44–54. doi:10.1016/j.advwatres.2014.06.006 CrossRefGoogle Scholar
  6. Andreadis KM, Clark EA, Lettenmaier DP, Alsdorf DE (2007) Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys Res Lett 34:L10403CrossRefGoogle Scholar
  7. Arsen A, Crétaux JF, Berge-Nguyen M (2014) Remote sensing-derived bathymetry of lake Poopo. Remote Sens 6(1):407–420. doi:10.3390/rs6010407 CrossRefGoogle Scholar
  8. Bates PD, Neal JC, Alsdorf DE, Schumann GJP (2014) Observing global surface water flood dynamics. Surv Geophys 35(3):839–852. doi:10.1007/s10712-013-9269-4 CrossRefGoogle Scholar
  9. Baup F, Frappart F, Maubant J (2014) Combining high-resolution satellite images and altimetry to estimate the volume of small lakes. Hydrol Earth Syst Sci 18:2007–2020. doi:10.5194/hess-18-2007-2014 CrossRefGoogle Scholar
  10. Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36. doi:10.1016/j.jhydrol.2005.07.007 CrossRefGoogle Scholar
  11. Biancamaria S, Andreadis KM, Durand MT, Clark EA, Rodriguez E, Mognard NM, Alsdorf DE, Lettenmaier DP, Oudin Y (2010) Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE J Sel Top Appl Earth Obs Remote Sens 3(1):6–19. doi:10.1109/JSTARS.2009.2034614 CrossRefGoogle Scholar
  12. Biancamaria S, Durand MT, Andreadis K, Bates PD, Boone A, Mognard NM, Rodriguez E, Alsdorf DE, Lettenmaier DP, Clark EA (2011) Assimilation of virtual wide swath altimetry to improve Arctic river modelling. Remote Sens Environ 115(2):373–381. doi:10.1016/j.rse.2010.09.008 CrossRefGoogle Scholar
  13. Biancamaria S, Andreadis K, Ricci S (2014) Using images of continental water surface elevations from upcoming satellite mission. EOS Trans Am Geophys Union 95(12):105. doi:10.1002/2014EO120004 CrossRefGoogle Scholar
  14. Bierkens MFP, Bell VA, Burek P, Chaney N, Condon LE, David CH, de Roo A, Döll P, Drost N, Famiglietti JS, Flörke M, Gochis DJ, Houser P, Hut R, Keune J, Kollet S, Maxwell RM, Reager JT, Samaniego L, Sudicky E, Sutanudjaja EH, van de Giesen N, Winsemius H, Wood EF (2015) Hyper-resolution global hydrological modelling: what is next? Everywhere and locally relevant. Hydrol Process 29(2):310–320. doi:10.1002/hyp.10391 CrossRefGoogle Scholar
  15. Bjerklie DM (2007) Estimating the bankfull velocity and discharge for rivers using remotely sensed river morphology information. J Hydrol 341(3–4):144–155. doi:10.1016/j.jhydrol.2007.04.011 CrossRefGoogle Scholar
  16. Bjerklie DM, Dingman SL, Vörosmarty CJ, Bolster CH, Congalton R (2003) Evaluating the potential for measuring river discharge from space. J Hydrol 278(1):17–38. doi:10.1016/S0022-1694(03)00129-X CrossRefGoogle Scholar
  17. Bjerklie DM, Moller D, Smith LC, Dingman SL (2005) Estimating discharge in rivers using remotely sensed hydraulic information. J Hydrol 309(1–4):191–209. doi:10.1016/j.jhydrol.2004.11.022 CrossRefGoogle Scholar
  18. Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling: a review. Hydrol Process 9(3–4):251–290. doi:10.1002/hyp.3360090305 CrossRefGoogle Scholar
  19. Clark EA, Biancamaria S, Hossain F, Crétaux JF, Lettenmaier DP (2015) Current and future application for altimetry in trans-boundary river management. In: Benveniste J, Vignudelli S, Kostianov AG (eds) Inland water altimetry. Springer, Berlin. ISBN 978-3-642-22678-6 (should be published in 2015, accepted)Google Scholar
  20. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon-dioxide supersaturation in the surface waters of lakes. Science 265(5178):1568–1570. doi:10.1126/science.265.5178.1568 CrossRefGoogle Scholar
  21. Crétaux JF, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Berge-Nguyen M, Gennero M-C, Abarca Del Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv Space Res 47(9):1497–1507. doi:10.1016/j.asr.2011.01.004 CrossRefGoogle Scholar
  22. Crétaux JF, Biancamaria S, Arsen A, Bergé-Nguyen M, Becker M (2015) Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin. Environ Res Lett 10(1):015002. doi:10.1088/1748-9326/10/1/015002 CrossRefGoogle Scholar
  23. Descroix L, Genthon P, Amogu O, Rajot JL, Sighomnou D, Vauclin M (2012) Change in Sahelian Rivers hydrograph: the case of the recent red floods of the Niger River in the Niamey region. Glob Planet Change 98–99:18–30. doi:10.1016/j.gloplacha.2012.07.009 CrossRefGoogle Scholar
  24. Desjonquères JD, Carayon G, Steunou N, Lambin J (2010) Poseidon-3 radar altimeter: new modes and in-flight performances. Mar Geod 33(S1):53–79. doi:10.1080/01490419.2010.488970 CrossRefGoogle Scholar
  25. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397. doi:10.4319/lo.2006.51.5.2388 CrossRefGoogle Scholar
  26. Durand MT, Andreadis KM, Alsdorf DE, Lettenmaier DP, Moller D, Wilson M (2008) Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys Res Lett 35:L20401. doi:10.1029/2008GL034150 CrossRefGoogle Scholar
  27. Durand MT, Fu LL, Lettenmaier DP, Alsdorf DE, Rodríguez E, Esteban-Fernandez D (2010) The Surface Water and Ocean Topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc IEEE 98(5):766–779. doi:10.1109/JPROC.2010.2043031 CrossRefGoogle Scholar
  28. Durand MT, Neal J, Rodríguez E, Andreadis K, Smith L, Yoon Y (2014) Estimating reach-averaged discharge for the River Severn from measurements of river water surface elevation and slope. J Hydrol 511:92–104. doi:10.1016/j.jhydrol.2013.12.050 CrossRefGoogle Scholar
  29. Enjolras VM, Rodríguez E (2009) An assessment of a Ka-band radar interferometer mission accuracy over Eurasian Rivers. IEEE Trans Geosci Remote Sens 47(6):1752–1765. doi:10.1109/TGRS.2008.2006370 CrossRefGoogle Scholar
  30. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodríguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2):R2004. doi:10.1029/2005RG000183 CrossRefGoogle Scholar
  31. Fjørtoft R, Gaudin JM, Pourthié N, Lalaurie JC, Mallet A, Nouvel JF, Martinot-Lagarde J, Oriot H, Borderies P, Ruiz C, Daniel S (2014) KaRIn on SWOT: characteristics of near-nadir Ka-band interferometric SAR imagery. IEEE Trans Geosci Remote Sens 52(4):2172–2185. doi:10.1109/TGRS.2013.2258402 CrossRefGoogle Scholar
  32. Flipo N, Mouhri A, Labarthe B, Biancamaria S, Rivière A, Weill P (2014) Continental hydrosystem modelling: the concept of nested stream–aquifer interfaces. Hydrol Earth Syst Sci 18(8):3121–3149. doi:10.5194/hess18-3121-2014 CrossRefGoogle Scholar
  33. Fu LL, Rodríguez E (2004) High-resolution measurement of ocean surface topography by radar interferometry for oceanographic and geophysical applications. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: frontiers and challenges in geophysics. Geophysical Monograph 150, AGU, Washington, pp 209–224Google Scholar
  34. Fu LL, Alsdorf DE, Morrow R, Rodríguez E, Mognard NM (2012) SWOT: the Surface Water and Ocean Topography mission. JPL Publication 12-05. http://swot.jpl.nasa.gov/files/swot/SWOT_MSD_1202012.pdf. Accessed 20 Feb 2015
  35. Gao H, Birkett C, Lettenmaier DP (2012) Global monitoring of large reservoir storage from satellite remote sensing. Water Resour Res 48(9):W09504. doi:10.1029/2012WR012063 Google Scholar
  36. Garambois PA, Monnier J (2015) Inference of effective river properties from remotely sensed observations of water surface. Adv Water Resour 79:103–120. doi:10.1016/j.advwatres.2015.02.007 CrossRefGoogle Scholar
  37. García-Pintado J, Neal JC, Mason DC, Dance S, Bates PD (2013) Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling. J Hydrol 495:252–266. doi:10.1016/j.jhydrol.2013.03.050 CrossRefGoogle Scholar
  38. García-Pintado J, Mason DC, Dance SL, Cloke HL, Neal JC, Freer J, Bates PD (2015) Satellite-supported flood forecasting in river networks: a real case study. J Hydrol 523:706–724. doi:10.1016/j.jhydrol.2015.01.084 CrossRefGoogle Scholar
  39. Gleason CJ, Smith LC (2014) Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. PNAS 111(13):4788–4791CrossRefGoogle Scholar
  40. Gleason CJ, Smith LC, Lee J (2014) Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: sensitivity to river form and optimization parameters. Water Resour Res 50(12):9604–9619. doi:10.1002/2014WR016109 CrossRefGoogle Scholar
  41. Kouraev AV, Zakharova EA, Samain O, Mognard NM, Cazenave A (2004) Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens Environ 93(1–2):238–245. doi:10.1016/j.rse.2004.07.007 CrossRefGoogle Scholar
  42. Lee H, Durand MT, Jung HC, Alsdorf D, Shum CK, Sheng Y (2010) Characterization of surface water storage changes in Arctic lakes using simulated SWOT measurements. Int J Remote Sens 31(14):3931–3953. doi:10.1080/01431161.2010.483494 CrossRefGoogle Scholar
  43. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22. doi:10.1016/j.jhydrol.2004.03.028 CrossRefGoogle Scholar
  44. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. EOS Trans Am Geophys Union 89(10):93–94. doi:10.1029/2008EO100001 CrossRefGoogle Scholar
  45. Lehner B, Reidy Liermann C, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9(9):494–502. doi:10.1890/100125 CrossRefGoogle Scholar
  46. Lettenmaier DP, Milly PCD (2009) Land waters and sea level. Nat Geosci 2(7):452–454. doi:10.1038/ngeo567 CrossRefGoogle Scholar
  47. Moller D, Esteban-Fernandez D (2015) Near-nadir Ka-band field observations of fresh water bodies. In: Lakshmi V, Alsdorf D, Anderson M, Biancamaria S, Cosh M, Entin J, Huffman G, Kustas W, van Oevelen P, Painter T, Parajka J, Rodell M, Rüdiger C (eds) Remote sensing of the water cycle. AGU Geophysical Monograph, 206, Wiley, New York, pp 143–155Google Scholar
  48. Munier S, Polebistki A, Brown C, Belaud G, Lettenmaier DP (2015) SWOT data assimilation for operational reservoir management on the upper Niger River Basin. Water Resour Res. doi:10.1002/2014WR016157 Google Scholar
  49. National Research Council (2007) Earth science and applications from space: national imperatives for the next decade and beyond. National Academies Press, WashingtonGoogle Scholar
  50. Neal JC, Schumann GJP, Bates PD (2012) A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour Res 48:W11506. doi:10.1029/2012WR012514 Google Scholar
  51. Paiva RCD, Durand MT, Hossain F (2015) Spatiotemporal interpolation of discharge across a river network by using synthetic SWOT satellite data. Water Resour Res. doi:10.1002/2014WR015618 Google Scholar
  52. Papa F, Biancamaria S, Lion C, Rossow WB (2012) Uncertainties in mean river discharge estimates associated with satellite altimeters temporal sampling intervals: a case study for the annual peak flow in the context of the future SWOT hydrology mission. IEEE Geosci Remote Sens Lett 9(4):569–573. doi:10.1109/LGRS.2011.2174958 CrossRefGoogle Scholar
  53. Pavelsky TM, Durand MT (2012) Developing new algorithms for estimating river discharge from space. EOS Trans Am Geophys Union 93(45):457. doi:10.1029/2012EO450006 CrossRefGoogle Scholar
  54. Pavelsky TM, Durand MT, Andreadis KM, Beighley RE, Paiva RCD, Allen GH, Miller ZF (2014) Assessing the potential global extent of SWOT river discharge observations. J Hydrol 519:1516–1525. doi:10.1016/j.jhydrol.2014.08.044 CrossRefGoogle Scholar
  55. Pedinotti V, Boone A, Ricci S, Biancamaria S, Mognard NM (2014) Assimilation of satellite data to optimize large-scale hydrological model parameters: a case study for the SWOT mission. Hydrol Earth Syst Sci 18(11):4485–4507. doi:10.5194/hess-18-4485-2014 CrossRefGoogle Scholar
  56. Reichle RH, De Lannoy GJM, Forman BA, Drapper CS, Liu Q (2014) Connecting satellite observations with water cycle variables through land data assimilation: examples using the NASA GEOS-5 LDAS. Surv Geophys 35:577–606. doi:10.1007/s10712-013-9220-8 CrossRefGoogle Scholar
  57. Rodríguez E (2015) Surface Water and Ocean Topography mission (SWOT), Science Requirements Document. JPL document D-61923. https://swot.jpl.nasa.gov/files/swot/SRD_021215.pdf. Accessed 20 Feb 2015
  58. Rodríguez E, Moller D, Smith LC, Pavelsky TM, Alsdorf DE (2010) AirSWOT: an airborne monitoring platform for surface water monitoring. AGU Fall Meeting Abstract #H32D-06Google Scholar
  59. Schumann GJP, Neal JC, Voisin N, Andreadis KM, Pappenberger F, Phanthuwongpakdee N, Hall AC, Bates PD (2013) A first large-scale flood inundation forecasting model. Water Resour Res 49(10):6248–6257. doi:10.1002/wrcr.20521 CrossRefGoogle Scholar
  60. Schumann GJP, Bates PD, Neal JC, Andreadis KM (2014) Fight floods on a global scale. Nature 507(7491):169CrossRefGoogle Scholar
  61. Shiklomanov AI, Lammers RB (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4(4):045015. doi:10.1088/1748-9326/4/4/045015 CrossRefGoogle Scholar
  62. Skøien JO, Blöschl G, Western AW (2003) Characteristic space scales and timescales in hydrology. Water Resour Res 39(10):1304. doi:10.1029/2002WR001736 Google Scholar
  63. Smith LC (1997) Satellite remote sensing of river inundated area, stage, and discharge: a review. Hydrol Process 11:1427–1439CrossRefGoogle Scholar
  64. Smith LC, Pavelsky TM (2008) Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia. Water Resour Res 44:W03427. doi:10.1029/2008GL033268 Google Scholar
  65. Smith LC, Pavelsky TM (2009) Remote sensing of volumetric storage change in lakes. Earth Surf Process Landf 34:1353–1358CrossRefGoogle Scholar
  66. Smith LC, Isacks BL, Forster RR, Bloom AL, Preuss I (1995) Estimation of discharge from braided glacial rivers using ERS-1 SAR: first results. Water Resour Res 31(5):1325–1329CrossRefGoogle Scholar
  67. Smith LC, Isacks BL, Bloom AL, Murray AB (1996) Estimation of discharge from three braided rivers using synthetic aperture radar (SAR) satellite imagery: potential application to ungaged basins. Water Resour Res 32(7):2021–2034CrossRefGoogle Scholar
  68. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308(5727):1429. doi:10.1126/science.1108142 CrossRefGoogle Scholar
  69. Steunou N, Desjonquères JD, Picot N, Sengenes P, Noubel J, Poisson JC (2015) AltiKa altimeter: instrument description and in flight performance. Mar Geod 38(Suppl 1):22–42. doi:10.1080/01490419.2014.988835
  70. Verdin KL, Greenlee SK (1998) HYDRO1k documentation, US Geological Survey. https://lta.cr.usgs.gov/HYDRO1KReadMe. Accessed 24 Feb 2015
  71. Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high resolution satellite imagery. Geophys Res Lett 41(18):6396–6402. doi:10.1002/2014GL060641 CrossRefGoogle Scholar
  72. Walter KM, Smith LC, Chapin FS (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans R Soc A Math Phys Eng Sci 365(1856):1657–1676. doi:10.1098/rsta.2007.2036 CrossRefGoogle Scholar
  73. Wolf AT, Natharius JA, Danielson JJ, Ward BS, Pender JK (1999) International river basins of the world. Int J Water Resour Dev 15(4):387–427CrossRefGoogle Scholar
  74. Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P (2011) Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour Res 47(5):W05301. doi:10.1029/2010WR010090 Google Scholar
  75. Yamazaki D, Kanae S, Kim H, Oki T (2011) A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour Res 47(4):W04501. doi:10.1029/2010WR009726 Google Scholar
  76. Yoon Y, Durand MT, Merry CJ, Clark EA, Andreadis KM, Alsdorf DE (2012) Estimating river bathymetry from data assimilation of synthetic SWOT measurements. J Hydrol 464:363–375. doi:10.1016/j.jhydrol.2012.07.028 CrossRefGoogle Scholar
  77. Yoon Y, Durand MT, Merry CJ, Rodríguez E (2013) Improving temporal coverage of the SWOT mission using spatiotemporal kriging. IEEE IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1719–1729. doi:10.1109/JSTARS.2013.2257697 CrossRefGoogle Scholar
  78. Zhang S, Gao H, Naz BS (2014) Monitoring storage in South Asia from multisatellite remote sensing. Water Resour Res 50(11):8927–8943. doi:10.1002/2014WR015829 CrossRefGoogle Scholar
  79. Zhou T, Nijssen B, Gao H, Lettenmaier DP (2015) The contribution of reservoirs to global land surface water storage variations. J Hydrometeor. doi:10.1175/JHM-D-15-0002.1

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sylvain Biancamaria
    • 1
  • Dennis P. Lettenmaier
    • 2
  • Tamlin M. Pavelsky
    • 3
  1. 1.LEGOSUniversité de Toulouse, CNES, CNRS, IRD, UPSToulouseFrance
  2. 2.Department of GeographyUniversity of California - Los AngelesLos AngelesUSA
  3. 3.Department of Geological SciencesUniversity of North CarolinaChapel HillUSA

Personalised recommendations