Advertisement

Surveys in Geophysics

, Volume 37, Issue 2, pp 503–527 | Cite as

Water and Food in the Twenty-First Century

  • Ghislain de MarsilyEmail author
  • Rodrigo Abarca-del-Rio
Article

Abstract

In 2000, the World population was 6.2 billion people; it reached 7 billion in 2012 and is expected to reach 9.5 billion (±0.4) in 2050 and 11 billion (±1.5) in 2100, according to the 2012 UN projections (Gerland et al. in Science 346:234–237, 2014). The trend after 2100 is still one of the global demographic growths, but after 2060, Africa is the only continent where the population would still increase. The amount of water consumed annually to produce the food necessary to meet the needs of the populations varies greatly between countries, from about 600 to 2500 m3/year per capita (Zimmer in L’empreinte eau. Les faces cachées d’une ressource vitale. Charles Léopold Meyer, Paris, 2013), depending on their wealth, their food habits, and the percentage of food waste they generate (on average, 30 % of the food produced is wasted). In 2000, the total food production was on the order of 3300 million tons (in cereal equivalents). In 2014, it is estimated that about 0.8 billion inhabitants of the planet suffer from hunger (FAO in World agriculture: towards 2030–2050. FAO, Rome, 2014. http://www.fao.org/docrep/004/Y3557E/y3557e00.HTM) and do not get the nutrition they need to be in good health or, in the case of children, to grow properly (both physically and intellectually). This food deficit was on the order of 40 million tons of cereal equivalents in 2014. The number of inhabitants with a food deficit was about 0.85 billion before the 2008 crisis and was decreasing annually, but it increased abruptly after 2008 up to 1 billion inhabitants and is slowly decreasing now. Assuming a World average water consumption for food of 1300 m3/year per capita in 2000, 1400 m3/year in 2050, and 1500 m3/year in 2100, a volume of water of around 8200 km3/year was needed in 2000, 13,000 km3/year will be needed in 2050, and 16,500 km3/year in 2100 (Marsily in L’eau, un trésor en partage. Dunod, Paris, 2009). Can bioenergy be added to food production? Will that much water be available on Earth, and where will it come from? Is climate change going to modify the answers to these questions? Can severe droughts occur? Can there be conflicts related to a food deficit? Some preliminary answers and scenarios for food production will be given in this paper from a hydrologist’s viewpoint.

Keywords

World water stocks and balance Climate change Food supply Bioenergy Green and blue water Virtual water El Niño Water conflicts 

Notes

Acknowledgments

The authors wish to thank the two reviewers, Prof. M. Besbes and one anonymous colleague, for their help in correcting and improving this article; they also wish to express their gratitude to the Guest Editor of this issue, Dr. Anny Cazenave, for her invitation to prepare this paper together and for organizing the reviewing and final editing of this work.

References

  1. Académie des Sciences (2006) Les Eaux Continentales, coordinated by Marsily G de. EDP Sciences; ParisGoogle Scholar
  2. Académie des Sciences (2011) Démographie, Climat et Alimentation Mondiale, coordinated by Leridon H and Marsily G de. EDP Sciences: ParisGoogle Scholar
  3. Agrimonde (2010) Scénarios et défis pour nourrir le monde en 2050. Coordinated by Paillard S, Treyer S, Dorin B. Quae: VersaillesGoogle Scholar
  4. Allan JA (1998) Moving water to satisfy uneven global needs. Trading water as an alternative to engineering it. ICID J 47(2):1–8Google Scholar
  5. Azmeh S (2014), The uprising of the marginalised: a socio-economic perspective of the syrian uprising. LSE Middle East Centre Paper Series 06, p 28, http://eprints.lse.ac.uk/60243/
  6. Baraer M, Mark B, McKenzie J, Condom T, Bury J, Huh K, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58(207):134–150CrossRefGoogle Scholar
  7. Besbes M, Chahed J, Hamdane A, Marsily G de (2009) Water resources assessment and food production in arid zones : the example of Tunisia with a global change context. In: Courel MF, Schneider-Madanes G (eds) Water ecosystems and sustainable development in arid and semi-arid zones. Springer, BerlinGoogle Scholar
  8. Besbes M, Chahed J, Hamdane A (2014) Sécurité Hydrique de la Tunisie, gérer l’eau en conditions de pénurie. L’Harmattan, ParisGoogle Scholar
  9. Bradley R, Vuille M, Diaz H, Vergara W (2006) Threats to water supplies in the tropical andes. Science 312:1755–1756CrossRefGoogle Scholar
  10. Buhaug H (2015) Climate–conflict research: some reflections on the way forward. WIREs Clim Change. doi: 10.1002/wcc.336 Google Scholar
  11. Cai W, Borlace S, Lengaigne M, Rensch PV, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin FF (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4(2):111–116. doi: 10.1038/nclimate2100 CrossRefGoogle Scholar
  12. Cane MA, Miguel E, Burke M, Hsiang SM, Lobell DB, Meng KC, Satyanath S (2014) Temperature and violence. Nat Clim Change 4:234–235. doi: 10.1038/nclimate2171 CrossRefGoogle Scholar
  13. Chahed J, Hamdane A, Besbes M (2008) A comprehensive water balance of Tunisia : blue water, green water and virtual water. Water Int 33:4CrossRefGoogle Scholar
  14. Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Sciencexpress 1–3www.sciencexpress.org. doi: 10.1126/science.1154580
  15. Chevallier P, Pouyaud B, Suarez W, Condom T (2011) Climate change threats to environment in the tropical Andes: glaciers and water resources. Suppl Reg Environ Change 11(1):179–187CrossRefGoogle Scholar
  16. Cook ER (2013) Megadroughts, ENSO, and the Invasion of Late-Roman Europe by the Huns and Avars, In: Harris WV (ed) The Ancient Mediterranean Environment between Sciences and History. Leiden-Boston, Brill, pp 103–170. ISBN: 978-90-04-25343-8Google Scholar
  17. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. doi: 10.1038/nclimate1633 CrossRefGoogle Scholar
  18. Dalin C, Konar M, Hanasaki N, Rinaldo A, Rodriguez-Iturbe I (2012) Evolution of the global virtual water trade network. Proc Nat Acad Sci PNAS 109(16). www.pnas.org/cgi/doi/10.1073/pnas.1203176109
  19. Davies BJ, Glasser NF (2012) Accelerating recession in Patagonian glaciers from the “Little Ice Age” (c. A.D. 1870) to 2011. J Glaciol 58(212):1063–1084CrossRefGoogle Scholar
  20. Davis M (2001) Late Victorian Holocausts, El Niño Famines and the Making of the Third World, Verso, London. ISBN: 1-85984-739-0Google Scholar
  21. De Stefano L, Duncan J, Dinar S, Stahl K, Strzepek K, Wolf AT (2012) Climate change and the institutional resilience of international river basins. J Peace Res 49(1):193–209CrossRefGoogle Scholar
  22. Demarest A (2004) Ancient Maya. The rise and fall of a Rainforest Civilization. Cambridge University Press. ISBN-13_: 9780521592246Google Scholar
  23. Denommee KC, Bentley SJ, Droxler AW (2014) Climatic controls on hurricane patterns: a 1200-y near-annual record from Lighthouse Reef, Belize. Nat Sci Rep 4:3876. doi: 10.1038/srep03876 Google Scholar
  24. Diamond J (2005) Collapse. How societies choose to fail or succeed. Viking Penguins, New-York. ISBN-13: 978-0670033379Google Scholar
  25. Diaz HF, Bradley RS, Ning L (2014) Climatic changes in mountain regions of the American Cordillera and the Tropics: historical changes and future outlook. Arct Antarct Alp Res 46(4):1–9CrossRefGoogle Scholar
  26. Dillon P, Gale I, Contreras S, Pavelic P, Evans R, Ward (2009) Managing aquifer recharge and discharge to sustain irrigation livelihoods under water scarcity and climate change. In: Blöschl G, van de Giesen N, Muralidharan D, Ren L, Seyler F, Sharma U, Vrba J (eds) Improving integrated surface and groundwater resources management in a vulnerable and changing world. IAHS Publishers, 330, IAHS, Wallingford, pp 1–12Google Scholar
  27. Döll P, Müller Schmied H, Schuh C, Portman FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res. doi: 10.1002/2014WR015595 Google Scholar
  28. Döll P, Douville H, Güntner A, Müller Schmied H, Wada Y (2015) Modelling the continental water cycle: challenges and prospects. Remote Sensing and Water Resources. In: ISSI Workshop. To appear, Survey in Geophysics, this volumeGoogle Scholar
  29. FAO Food and Agriculture Organization (2002) World agriculture: towards 2030–2050. FAO, Rome. http://www.fao.org/docrep/004/Y3557E/y3557e00.HTM
  30. FAO Food and Agriculture Organization (2003) World agriculture : towards 2015–2030. FAO, Rome http://www.fao.org/fileadmin/user_upload/esag/docs/y4252e.pdf
  31. FAO Food and Agriculture Organization (2006) World agriculture: towards 2030–2050 (Interim report). FAO, Rome. ftp://fao.org/docrep/fao/009/a0607e/a0607e00.pdf
  32. FAO Food and Agricultural Organization (2012) Energy-smart food at FAO; an overview. http://www.fao.org/3/a-an913e.pdf
  33. FAO Food and Agricultural Organization (2014) Hunger map. http://www.fao.org/fileadmin/templates/ess/foodsecurity/poster_web_001_WFS.jpg
  34. FAO Food and Agricultural Organzation (2015a) World food situation, cereals supply and demand brief. http://www.fao.org/worldfoodsituation/csdb/en/
  35. FAO Food and Agricultural Organization (2015b) The contribution of insects to food security, livelihood and the environment. http://www.fao.org/forestry/edibleinsects/en/
  36. Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J (2014) World population stabilization unlikely this century. Science 346:234–237. doi: 10.1126/science.1257469 CrossRefGoogle Scholar
  37. Gleick PH (2014) Water, drought, climate change, and conflict in Syria. Weather Clim Soc 6:331–340. doi: 10.1175/WCAS-D-13-00059.1 CrossRefGoogle Scholar
  38. Griffon M (2006) Nourrir la planète. Odile Jacob, ParisGoogle Scholar
  39. Hodell DA, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of Classic maya civilization. Nature 375:391–394. doi: 10.1038/375391a0 CrossRefGoogle Scholar
  40. Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. PNAS 109:3232–3237. doi: 10.1073/pnas.1109936109 CrossRefGoogle Scholar
  41. Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan: London. ISBN: 978-1-84971-279-8Google Scholar
  42. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José (Costa Rica), p 206Google Scholar
  43. Hsiang SM, Burke M (2014) Climate, conflict, and social stability: What does the evidence say? Clim Change 123:39–55. doi: 10.1007/s10584-013-0868-3 CrossRefGoogle Scholar
  44. IPCC (2014) Fifth assessment report. Intergovernmental panel on climate change. GenevaGoogle Scholar
  45. IWMI (2007) Water for food, water for life : the comprehensive assessment of water management in agriculture. Molden D (ed) International water management institute. Colombo; Sri Lanka. Earthscan: LondonGoogle Scholar
  46. Kaniewski D, Van Campo E, Guiot J, Le Burel S, Otto T, et al (2013) Environmental roots of the late bronze age crisis. PLoS One. 8(8):e71004. doi:  10.1371/journal.pone.0071004 CrossRefGoogle Scholar
  47. Kelley CP, Mohtadi S, Cane MK, Seager R, Kushnir Y (2015) Climate change in the Fertile Crescent and implications of the recent Syrian drought. PNAS. doi: 10.1073/pnas.1421533112 Google Scholar
  48. Kennett DJ, Breitenbach SFM, Aquino VV, Asmerom Y et al (2012) Development and disintegration of maya political systems in response to climate change. Science 338(6108):788–791. doi: 10.1126/science.1226299 CrossRefGoogle Scholar
  49. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:17. doi: 10.1029/2011GL048604 CrossRefGoogle Scholar
  50. Kramer A, Wolf AT, Carius A, Dabeklo GD (2013) The key to managing conflict and cooperation over water. World Sci 11(1):4–12Google Scholar
  51. Leemans R (1992) Global holdridge life zone classifications. In: Global Ecosystems Database Version 2.0, NOAA National Geophysical Data Center, Boulder, CO, USAGoogle Scholar
  52. Lizumi T, Luo J, Challinor A, Sakurai G, Yokozawa M, Sakuma H, Brown M, Yamagata T (2014) Impacts of El Niño southern oscillation on the global yields of major crops. Nat Commun 5:3712. doi: 10.1038/ncomms4712 Google Scholar
  53. Makkar HPS, Tran G, Henze V et al (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33CrossRefGoogle Scholar
  54. Manning SW (2013) The Roman world and climate: context, relevance of climate change, and some issues. In: Harris WV (ed) The Ancient Mediterranean environment between sciences and history. pp 103–170. Leiden-Boston: Brill. ISBN: 978-90-04-25343-8Google Scholar
  55. Marsily G de (2007) An overview of the world’s water resources problems in 2050. Ecohydrol Hydrobiol 7(2):147–155CrossRefGoogle Scholar
  56. Marsily G de (2009) L’eau, un trésor en partage. Dunod, ParisGoogle Scholar
  57. Masson MA (2012) Maya collapse cycles. PNAS 109(45):18237–18238. doi: 10.1073/pnas.1213638109 CrossRefGoogle Scholar
  58. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press: Washington. ISBN: 1-59726-040-1Google Scholar
  59. Mithen SJ (2012) Thirst: water and power in the ancient world. Weidenfeld & Nicolson: London. ISBN: 978-0-674-06693-6Google Scholar
  60. Moya Quiroga V, Mano A, Asaoka Y, Udo K, Kure S, Mendoza J (2014) Estimation of glacier melt water contribution for human consumption in the royal andes considering temperature measurement errors. Open J Mod Hydrol 2014(4):27–43CrossRefGoogle Scholar
  61. Musy A, Higy C (2010) Hydrology: a science of nature. CRC Press: Boca Raton. ISBN: 9781578087099 - CAT# N10334Google Scholar
  62. Nicholson L, Marin J, Lopez D, Rabatel A, Brown F, Rivera A (2009) Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison with central Chile. Ann Glaciol 50(53):111–118CrossRefGoogle Scholar
  63. Nordas R, Gleditsch NP (2015) Climate change and conflict. In: Hartard S, Lieber W (eds) Competition and conflicts on resource use. Natural Resources Management and Policy, 46, pp 21–38. doi: 10.1007/978-3-319-10954-1_3
  64. Ortlieb L (2000) The documented historical period of El Niño events in Peru: an update of the Quinn record (16th to 19th centuries). In: Diaz HF, Markgraf V (eds) El Niño and the southern oscillation. Multiscale variability and local and regional impacts. Cambridge University Press, Cambridge, pp 207–295Google Scholar
  65. Post VEA, Groen J, Kooi H, Person M, Ge S, Edmunds WM (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature 504(5):12. doi: 10.1038/nature12858 Google Scholar
  66. Rabatel A, Francou B, Soruco A, Gomez J, Caceres B et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere 7(1):81–102CrossRefGoogle Scholar
  67. Rahaman MM (2012) Water wars in 21st century: speculation or Reality? Int J Sustain Soc 4:3–10CrossRefGoogle Scholar
  68. Raleigh C, Linke A, O’Loughlin J (2014) Extreme temperatures and violence. Nat Clim Change 4:76–77CrossRefGoogle Scholar
  69. Ramirez E, Olmos C, Romàn J (2007) Deshielo de la cuenca Tuni Condoriri y su impacto sobre los recursos hídricos de las ciudades de La Paz y El Alto. Quinquenal P (ed) La Paz: GRANT—GREAT ICE, IHH-IRDGoogle Scholar
  70. Renault D, Wallender WW (2000) Nutritional water productivity and diets: from crop per drop towards nutrition per drop. Agric Water Manag 45:275–296CrossRefGoogle Scholar
  71. Rijsberman FR (2006) Water scarcity: Fact or fiction? Agric Water Manag 80(1–3):5–22CrossRefGoogle Scholar
  72. Rockström J (2004) Magnitude of the hunger alleviation challenge—implications for consumptive use. Stockholm International Water Institute, Balancing food and environmental security. Finding opportunities for improving livelihoods, StockholmGoogle Scholar
  73. Rojas O, Li Y, Cumani R (2014) Understanding the drought impact of El Niño on the global agricultural areas: an assessment using FAO’s Agricultural Stress Index (ASI), FAO, Climate, energy and tenure division (nRc) publications. ISBN: 978-92-5-108671-1, ISSN 2071-0992Google Scholar
  74. Rumpold BA, Schlueter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57:141–160CrossRefGoogle Scholar
  75. Sen A, Drèze J (1999) Omnibus. Oxford University Press: New Delhi. ISBN: -13:978-0195648317Google Scholar
  76. Sheffield J, Wood EF (2011) Drought: past problems and future scenarios. Earthscan: UK. ISBN: -13: 978-1849710824Google Scholar
  77. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. doi: 10.1038/nature11575 CrossRefGoogle Scholar
  78. Shelton LM (2009) Hydroclimatology: perspectives and applications. Cambridge University Press, Cambridge, p 418Google Scholar
  79. Shiklomanov IA (1999) World freshwater resources and their Use. Database on CD Rom. UNESCO, ParisGoogle Scholar
  80. Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the twenty-first century. Cambridge University Press, CambridgeGoogle Scholar
  81. SIWI (2008) Stockholm International Water Institute. Saving water: from field to fork. Cutting losses and wastage in the food chain. StockholmGoogle Scholar
  82. Soruco A (2012) Medio siglo de fluctuaciones glaciares en la Cordillera Real, y su efectos hidrológicos en la ciudad de La Paz. IRD, La Paz. ISBN: 978-99954-55-62-. pp 228Google Scholar
  83. Subramanian A, Brown B, Wolf A (2012) Reaching across the waters: facing the risks of cooperation in international waters. The World Bank Press, Washington DCCrossRefGoogle Scholar
  84. Tardieu F (2005) Plant tolerance to water deficit: physical limits and possibilities for progress. Académie des Sciences, Comptes Rendus Geoscience, n 337:57–67CrossRefGoogle Scholar
  85. TFDD (2015) Transboundary freshwater dispute database, international freshwater treaty database. Oregon State University. http://www.transboundarywaters.orst.edu/database/interfreshtreatdata.html
  86. Trenberth KE, Smith L, Qian T, Dai A, Fasulo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol Special Section 8:758–769CrossRefGoogle Scholar
  87. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4:17–22CrossRefGoogle Scholar
  88. Turner BL, Sabloff JA (2012), Classic period collapse of the Central Maya Lowlands: insights about human–environment relationships for sustainability. Proc Natl Acad Sci USA 109(35): 13908–13914. doi: 10.1073/pnas.1210106109 CrossRefGoogle Scholar
  89. Vicente-Serrano SM, López-Moreno JI, Gimeno L, Nieto R, Morán-Tejeda E, Lorenzo-Lacruz J, Beguería S, Azorin-Molina C (2011) A multiscalar global evaluation of the impact of ENSO on droughts. J Geophys Res 116:D20109. doi: 10.1029/2011JD016039 CrossRefGoogle Scholar
  90. Viviroli D, Dürr HH, Meybeck M, Weingartner R, Messerli B (2007) Mountains of the world—water towers for humanity: typology, mapping and global significance. Water Resour Res 43:W07447. doi: 10.1029/2006WR005663 Google Scholar
  91. Vuille M (2013) Climate change and water resources in the tropical Andes. Interamerican Development Bank Technical Note, No. IDB-TN-515Google Scholar
  92. Vuille M, Francou B, Wagnon P, Irmgard J, Kaser G, Mark B, Bradley R (2008) Climate change and tropical Andean glaciers: past, present and future. Earth-Sci Rev 89:79–96CrossRefGoogle Scholar
  93. Wada Y, Van Beek LPH, Bierkens MFP (2012) Non-sustainable groundwater sustaining irrigation : a global assessment. Water Resour Res. doi: 10.1029/2011WR010562 Google Scholar
  94. Welzer H (2012) Climate Wars: what people will be killed for in the 21st century. Wiley. ISBN: 978-0-7456-5145-3Google Scholar
  95. Willis M, Melkonian A, Pritchard M, Rivera A (2012) Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys Res Lett. doi: 10.1029/2012GL053136 Google Scholar
  96. Wils W, Carael M, Tondeur G (1986) Le Kivu Montagneux: surpopulation, sous-nutrition, érosion du sol. Mem. Acad. Royale Sc.Outremer Belgique, tome 21,fasc.no 3Google Scholar
  97. Wolf A (1995) Hydropolitics along the Jordan River: the impact of scarce water resources on the Arab–Israeli conflict. United Nations University Press, New York, Paris, p 283Google Scholar
  98. Wolf A (2014) Where will the world’s water conflicts erupt? A heatmap of war over water. Peek K (ed). Popular Science, Posted June 13, 2014. http://www.popsci.com/article/science/where-will-worlds-water-conflicts-erupt-infographic
  99. WWAP(2012) United Nations Educational, Scientific and Cultural Organization (UNESCO), United Nations World Water Assessment Programme (WWAP), UN-Water. March 2012; see also World Resources Institute http://www.wri.org/resource/physical-and-economic-water-scarcity
  100. WWDR (2012) Managing Water under Uncertainty and Risk, in 4th edition of the UN World Water Development Report (WWDR4), World Water Assessment Programme (WWAP)Google Scholar
  101. Zimmer D (2013) L’empreinte eau. Les faces cachées d’une ressource vitale. Charles Léopold Meyer, ParisGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Univ. Paris 06, CNRS, EPHE, UMR 7619 MetisParisFrance
  2. 2.French Academy of SciencesParisFrance
  3. 3.Departamento de Geofísica (DGEO), Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónConcepciónChile

Personalised recommendations