Skip to main content

Advertisement

Log in

On the Coupling of Geodynamic and Resistivity Models: A Progress Report and the Way Forward

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Magnetotelluric (MT) studies represent the structure of crust and mantle in terms of conductivity anomalies, while geodynamic modelling predicts the deformation and evolution of crust and mantle subject to plate tectonic processes. Here, we review the first attempts to link MT models with geodynamic models. An integration of MT with geodynamic modelling requires the use of relationships between conductivity and rheological parameters such as viscosity and melt fraction, which are provided by laboratory measurements of rock properties. Owing to present limitations in our understanding of these relationships, and in interpreting the trade-off between scale and magnitude of conductivity anomalies from MT inversions, most studies linking MT and geodynamic models are qualitative rather than providing hard constraints. Some recent examples attempt a more quantitative comparison, such as a study from the Himalayan continental collision zone, where rheological parameters have been calculated from a resistivity model and compared to predictions from geodynamic modelling. We conclude by demonstrating the potential in combining MT results and geodynamic modelling with examples that directly use MT results as constraints within geodynamic models of ore bodies and studies of an active volcano-tectonic rift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afonso JC, Fullea J, Yang Y, Connolly JAD, Jones AG (2013) 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: general methodology and resolution analysis. J Geophys Res Solid Earth 118:1650–1676. doi:10.1002/jgrb.50123

    Article  Google Scholar 

  • Angiboust S, Wolf S, Burov E, Agard Yamato P (2012) Effect of fluid circulation on subduction interface tectonic processes: insights from thermo-mechanical numerical modelling. Earth Planet Sci Lett 358:238–248

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–62

    Google Scholar 

  • Arora B, Unsworth MJ, Rawat G (2007) Deep resistivity structure of the Northwest Indian Himalaya and its tectonic implications. Geophys Res Lett 34:L04307. doi:10.1029/2006GL029165

    Google Scholar 

  • Arzi AA (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184

    Article  Google Scholar 

  • Baba K, Chave AD, Evans RL, Hirth G, Mackie RL (2006) Mantle dynamics beneath the East Pacific Rise at 17°S: insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J Geophys Res 111:B02101. doi:10.1029/2004JB003598

    Google Scholar 

  • Bahr K, Simpson F (2002) Electrical anisotropy below slow and fast-moving plates: Paleoflow in the upper mantle? Science 295:1270–1272

    Article  Google Scholar 

  • Bahr K, Simpson F (2005) Practical magnetotellurics. Cambridge University Press, Cambridge. ISBN 978-0521817271

    Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Beaumont C, Jamieson RR, Nguyen MH, Medvedev S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan–Tibetan orogen. J Geophys Res 109:B06406. doi:10.1029/2003JB002809

    Google Scholar 

  • Beaumont C, Nguyen MH, Jamieson RA, Ellis SM (2006) Crustal flow modes in large hot orogens. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones. Geological Society of London. Geological Society special publication 268, London, pp 91–145

    Google Scholar 

  • Becken M, Ritter O, Park SK, Bedrosian PA, Weckmann U, Weber M (2008) A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophys J Int 173:718–732. doi:10.1111/j.1365-246X.2008.03754.x

    Article  Google Scholar 

  • Becker TW (2006) On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces. Geophys J Int 167:943–957. doi:10.1111/j.1365-246X.2006.03172.x

    Article  Google Scholar 

  • Bertrand EA, Caldwell TG, Hill GJ, Wallin EL, Bennie SL, Cozens N, Onacha SA, Ryan GA, Walter C, Zaino A, Wameyo P (2012) Magnetotelluric imaging of upper-crustal convection plumes beneath the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 39(2):L02304. doi:10.1029/2011GL050177

    Article  Google Scholar 

  • Bibby HM, Caldwell TG, Davey FJ, Webb TH (1995) Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J Volcanol Geotherm Res 68:29–58

    Article  Google Scholar 

  • Bibby HM, Risk GF, Caldwell TG, Bennie SL (2005) Misinterpretation of electrical resistivity data in geothermal prospecting: a case study from the Taupo Volcanic Zone. In: Proceedings world geothermal congress, Antalya, Turkey

  • Bittner D, Schmeling H (1995) Numerical modelling of melting processes and induced diapirism in the lower crust. Geophys J Int 123:59–70

    Article  Google Scholar 

  • Björnsson A, Hersir GP, Björnsson G (1986) The Hengill high-temperature area, S.W. Iceland: regional Geophysical Survey. Geotherm Res Counc Trans 10:205–210

    Google Scholar 

  • Bollinger L, Henry P, Avouac JP (2006) Mountain building in the Himalaya: thermal and kinematic model from 20 Ma to present. Earth Planet Sci Lett 244:58–71

    Article  Google Scholar 

  • Brasse H, Eydam D (2008) Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. J Geophys Res 113:B07109. doi:10.1029/2007JB005142

    Google Scholar 

  • Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107(B5):2096. doi:10.1029/2001JB000391

    Article  Google Scholar 

  • Bryan CJ, Sherburn S, Bibby HM, Bannister SC, Hurst AW (1999) Shallow seismicity of the central Taupo Volcanic Zone, New Zealand: Its distribution and nature. NZ J Geol Geophys 42:533–542. doi:10.1080/00288306.1999.9514859

    Article  Google Scholar 

  • Buck WR, Lavier LL (2001) A tale of two kinds of normal fault: the importance of strain weakening in fault development. Geol Soc Lond Spec Publ 187:289–303. doi:10.1144/GSL.SP.2001.187.01.14

    Article  Google Scholar 

  • Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy and field observations. Annu Rev Earth Planet Sci 36:531–567

    Article  Google Scholar 

  • Caricchi L, Gaillard F, Mecklenburgh J, Le Trong E (2011) Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: implications for electrical anisotropy in the oceanic low velocity zone. Earth Planet Sci Lett 302(1):81–94

    Article  Google Scholar 

  • Carter NL, Tsenn MC (1987) Flow properties of continental lithosphere. Tectonophysics 136:27–63

    Article  Google Scholar 

  • Chen L, Booker JR, Jones AG, Wu N, Unsworth MJ, Wei W, Tan H (1996) Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science 274:1694–1696

    Article  Google Scholar 

  • Clark MK, Royden LH (2000) Topographic ooze; building the eastern margin of Tibet by lower crustal flow. Geology 28:703–706

    Article  Google Scholar 

  • Copley A, McKenzie DP (2007) Models of crustal flow in the India–Asia collision zone. Geophys J Int 169:683–698

    Article  Google Scholar 

  • Didana YL, Thiel S, Heinson G (2014) Magnetotelluric imaging of upper crustal partial melt at Tendaho graben in Afar, Ethiopia. Geophys Res Lett 41:3089–3095. doi:10.1002/2014GL060000

    Article  Google Scholar 

  • Duba AG, Shankland TJ (1982) Free carbon & electrical conductivity in the Earth’s mantle. Geophys Res Lett 9:1271–1274. doi:10.1029/GL009i011p01271

    Article  Google Scholar 

  • Eaton DW, Jones AG, Ferguson IJ (2004) Lithospheric anisotropy structure from collocated teleseismic and magnetotelluric observations: great Slave Lake shear zone, Northern Canada. Geophys Res Lett 31:L19614. doi:10.1029/2004GL020939

    Article  Google Scholar 

  • Eberhart-Phillips D, Bannister SC, Ellis SM (2014) Imaging P and S Attenuation in the Termination Region of the Hikurangi Subduction Zone. Geophys J Int, New Zealand in review

    Google Scholar 

  • Ellis SM, Little TA, Wallace LM, Hacker BR, Buiter SJH (2011) Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks. Earth Planet Sci Lett 311:427–438. doi:10.1016/j.epsl.2011.09.031

    Article  Google Scholar 

  • Ellis S, Heise W, Kissling W, Villamor P, Schreurs G (2014) The effect of crustal melt on rift dynamics in the central Taupo Volcanic Zone. N Z J Geol Geophys. doi:10.1080/00288306.2014.972961

    Google Scholar 

  • Evans RL, Tarits P, Chave AD, White A, Heinson G, Filloux JH, Toh H, Seama N, Utada H, Booker JR, Unsworth MJ (1999) Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science 286:752–756

    Article  Google Scholar 

  • Evans RL, Hirth G, Baba K, Forsyth D, Chave A, Mackie R (2005) Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437:249–252

    Article  Google Scholar 

  • Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218:215–228

    Article  Google Scholar 

  • Gaillard F, Marziano G (2005) Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition. J Geophys Res 110:B06204. doi:10.1029/2004JB003282

    Google Scholar 

  • Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365

    Article  Google Scholar 

  • Gatzemeier A, Moorkamp M (2005) 3D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms. Phys Earth Planet Int 749:225–242

    Article  Google Scholar 

  • Gerya TV, Meilick FI (2011) Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J Metamorph Geol 29:7–31. doi:10.1111/j.1525-1314.2010.00904.x

    Article  Google Scholar 

  • Gerya TV, Yuen DA (2003) Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett 212:47–62

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Glover PWJ (2010) A generalised Archie’s law for n phases. Geophysics 75:E247–E265. doi:10.1190/1.3509781

    Article  Google Scholar 

  • Glover P, Ádám A (2008) Correlation between crustal high conductivity zones and seismic activity and the role of carbon during shear deformation. J Geophys Res 113:B12210. doi:10.1029/2008JB005804

    Article  Google Scholar 

  • Glover PWJ, Hole MJ, Pous J (2000) A modified Archie’s law for two conducting phases. Earth Planet Sci Lett 180:369–383

    Article  Google Scholar 

  • Harris N (2007) Channel flow and the Himalayan–Tibetan orogen: a critical review. J Geol Soc 164:511–523

    Article  Google Scholar 

  • Hashim L, Gaillard F, Champallier R, Le Breton N, Arbaret L, Scaillet B (2013) Experimental assessment of the relationships between electrical resistivity, crustal melting and strain localization beneath the Himalayan–Tibetan Belt. Earth Planet Sci Lett 373:20–30. doi:10.1016/j.epsl.2013.04.026

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  Google Scholar 

  • Heinson GS, Direen NG, Gill RM (2006) Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper–gold deposit, southern Australia. Geology 34(7):573–576

    Article  Google Scholar 

  • Heise W, Caldwell TG, Bibby HM, Brown C (2006) Anisotropy and phase splits in magnetotellurics. Phys Earth Planet Inter 158:107–121

    Article  Google Scholar 

  • Heise W, Bibby HM, Caldwell TG, Bannister SC, Ogawa Y, Takakura S, Uchida T (2007) Melt distribution beneath a young continental rift: the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 34:L14313. doi:10.1029/2007GL029629

    Article  Google Scholar 

  • Heise W, Caldwell TG, Bibby HM, Bennie SL (2010) Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand. Geophys Res Lett 37:L10301. doi:10.1029/2010GL043110

    Article  Google Scholar 

  • Heise W, Caldwell TG, Hill GJ, Bennie SL, Wallin E, Bertrand EA (2012) Magnetotelluric imaging of fluid processes at the subduction interface of the Hikurangi margin, New Zealand. Geophys Res Lett 39:L04308. doi:10.1029/2011GL050150

    Article  Google Scholar 

  • Hill GJ, Caldwell TG, Heise W, Chertkoff DG, Bibby HM, Burgess MK, Cull JP, Cas RAF (2009) Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat Geosci 2:785–789

    Article  Google Scholar 

  • Hyndman RD, Wang K (1993) Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J Geophys Res 98:2039–2060. doi:10.1029/92JB02279

    Article  Google Scholar 

  • Itasca Consulting Group (2002) FLAC User’s Guide. Itasca Consulting Group Inc, Minneapolis

    Google Scholar 

  • Jamieson RA, Unsworth MJ, Harris NBW, Rosenberg C, Schulmann K (2011) Crustal melting and the flow of mountains. Elements 7(4):253–260. doi:10.2113/gselements.7.4.253

    Article  Google Scholar 

  • Ji S, Rondenay S, Mareschal M, Senechal G (1996) Obliquity between seismic and electrical anisotropies as a potential indicator of movement sense for ductile shear zones in the upper mantle. Geology 24:1033–1036

    Article  Google Scholar 

  • Jiracek GR, Gonzalez VM, Caldwell TG, Wannamaker PE, Kilb D (2007) Seismogenic, electrically conductive, and fluid zones at continental plate boundaries in New Zealand, Himalaya, and California, USA. In: Okaya DA, Stern TA, Davey FJ (eds) A continental plate boundary: tectonics at South Island, New Zealand. American Geophysical Union: Washington. Geophys Monogr 175: 347–369

  • Jones AG (2014) Reconciling different equations for proton conduction using the Meyer–Neldel compensation rule. G-Cubed 15:337–349. doi:10.1002/2013GC004911

    Google Scholar 

  • Jones AG, Lezaeta P, Ferguson IJ, Chave AD, Evans Garcia X, Spratt J (2003) The electrical structure of the Slave craton. Lithos 71:505–527. doi:10.1016/j.lithos.2003.08.001

    Article  Google Scholar 

  • Kaminski E, Ribe NM, Browaeys JT (2004) D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophys J Int 158(2):744–752

    Article  Google Scholar 

  • Karato S (2006) Remote sensing of hydrogen in earth’s mantle. In: Keppler H, Smyth J (eds) Water in nominally anhydrous minerals. Mineralogical Society of America, Washington, DC, pp 343–375

    Google Scholar 

  • Karato S (2011) Water distribution across the mantle transition zone and its implications for the global material circulation. Earth Planet Sci Lett 301:413–423

    Article  Google Scholar 

  • Kelbert A, Schultz A, Egbert G (2009a) Global electromagnetic induction constraints on transition-zone water content variations. Nature 460:1003–1006. doi:10.1038/nature08257

    Article  Google Scholar 

  • Kelbert A, Egbert G, Schultz A (2009b) Spatial variability of mantle transition zone water content: evidence from global electromagnetic induction data. Abstracts of AGU Fall Meeting, San-Francisco

    Google Scholar 

  • Keller T, May DA, Kaus BJP (2013) Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys J Int 195:1406–1442

    Article  Google Scholar 

  • Key K, Constable S, Liu L, Pommier A (2013) Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495:499–502

    Article  Google Scholar 

  • Khan A, Shankland TJ (2012) A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet Sci Lett. doi:10.1016/j.epsl.2011.11.031

    Google Scholar 

  • Khan A, Kuvshinov A, Semenov A (2010) On the heterogeneous electrical conductivity structure of the earth’s mantle with implications for transition zone water content. J Geophys Res 116:B01103. doi:10.1029/2010JB007458

    Google Scholar 

  • Kissling W, Ellis SM (2011) Modelling the flow of hydrothermal fluids above an evolving continental rift. Paper no. 86. In: NZ Geothermal Workshop, 21–23 November 2011, Auckland: Workshop programme. Auckland. Proceedings of the New Zealand Geothermal Workshop 33

  • Klemperer SL (2006) Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geol Soc Lond Spec Publ 2006(268):39–70. doi:10.1144/GSL.SP.2006.268.01.03

    Article  Google Scholar 

  • Kohlstedt D, Mackwell S (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207:147–162

    Article  Google Scholar 

  • Koons PO, Craw D, Cox SC, Upton P, Templeton AS, Chamberlain CP (1998) Fluid flow during active oblique convergence : a Southern Alps model from mechanical and geochemical observations. Geology 26(2):159–162

    Article  Google Scholar 

  • Korja T, Engels M, Zhamaletdinov AA, Kovtun AA, Palshin NA, Smirnov MY, Tokarev AD, Asming VE, Vanyan LL, Vardaniants IL, BEAR Working Group (2002) Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54:535–558

    Article  Google Scholar 

  • Kreutzmann A, Schmeling H, Junge A, Ruedas T, Marquart G, Bjarnason IT (2004) Temperature and melting of a ridge-centered plume with application to Iceland, part II: predictions for electromagnetic and seismic observables. Geophys J Int 159:1097–1111

    Article  Google Scholar 

  • Kuvshinov A (2011) Deep electromagnetic studies from land, sea, and space: progress status in the past 10 years. Surv Geophys. doi:10.1007/s10712-011-9118-2

    Google Scholar 

  • Kuvshinov A, Utada H, Avdeev DB, Koyama T (2005) 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited. Geophys J Int 160:505–526

    Article  Google Scholar 

  • Laumonier M, Gaillard F, Sifré D (2014) The effect of pressure and water concentration on the electrical conductivity of Dacitic melts: implication for magnetotelluric imaging in subduction areas. Chem Geol. doi:10.1016/j.chemgeo.2014.09.019

    Google Scholar 

  • Lemmonier C, Marquis G, Perrier F, Avouac JP, Chitrakar G, Kafle B, Sapkota S, Gautam U, Tiwari D, Bano M (1999) Electrical structure of the Himalaya of Central Nepal: high conductivity around the mid-crustal ramp along the MHT. Geophys Res Lett 26:3261–3264

    Article  Google Scholar 

  • Li S, Unsworth MJ, Booker JR, Wei W, Tan H, Jones AG (2003) Partial melt or aqueous fluid in the mid-crust of southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys J Int 153:289–304

    Article  Google Scholar 

  • Litchfield N, Van Dissen R, Sutherland R, Barnes P, Cox S, Norris R, Beavan RJ, Langridge R, Villamor P, Berryman K (2014) A model of active faulting in New Zealand. N Z J Geol Geophys 1:1–25

    Google Scholar 

  • Liu L, Wan C, Zhao C, Zhao Y (2011) Geodynamic constraints on orebody localization in the Anqing orefield, China: computational modeling and facilitating predictive exploration of deep deposits. Ore Geol Rev 43:249–263

    Article  Google Scholar 

  • Liu J, Karrech A, Regenauer-Lieb K (2014) Combined mechanical and melting damage model for geomaterials. Geophys J Int 198:1319–1328

    Article  Google Scholar 

  • McGary RS, Evans RL, Wannamaker PE, Elsenbeck J, Rondenay S (2014) Subducting slab to surface pathway for melt and fluids beneath Mount Rainier. Nature 511:338–341

    Article  Google Scholar 

  • Meqbel NM, Egbert GD, Wannamaker PE, Kelbert A, Schultz A (2014) Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data. Earth Planet Sci Lett. doi:10.1016/j.epsl.2013.12.026

    Google Scholar 

  • Miyazaki T, Sueyoshi K, Hiraga T (2013) Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature 502:321–326

    Article  Google Scholar 

  • Naif S, Key K, Constable S, Evans RL (2013) Melt-rich channel observed at the lithosphere–asthenosphere boundary. Nature 495:356–359

    Article  Google Scholar 

  • Nelson KD et al (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1688

    Article  Google Scholar 

  • Nicol A, Wallace LM (2007) Temporal stability of deformation rates : comparison of geological and geodetic observations, Hikurangi subduction margin, New Zealand. Earth Planet Sci Lett 258(3/4):397–413. doi:10.1016/j.epsl.2007.03.039

    Article  Google Scholar 

  • Norris RJ, Koons PO, Cooper AF (1990) The obliquely-convergent plate boundary in the South Island of New Zealand: implications for ancient collision zones. J Struct Geol 12:715–725

    Article  Google Scholar 

  • Ogawa Y, Honkura Y (2004) Mid-crustal electrical conductors and their correlations to seismicity and deformation at Itoigawa-Shizuoka Tectonic Line, Central Japan. Earth Planets Space 56:1285–1291

    Article  Google Scholar 

  • Pek J, Santos FAM (2006) Magnetotelluric inversion for anisotropic conductivities in layered media. Phys Earth Planet Int 158:139–158

    Article  Google Scholar 

  • Pellerin L, Johnston JM, Hohmann GW (1996) A numerical evaluation of electromagnetic methods in geothermal exploration. Geophysics 61:121–130

    Article  Google Scholar 

  • Poe BT, Romano C, Varchi V, Misiti V, Scarlato P (2008) Electrical conductivity of a phonotephrite from Mt. Vesuvius: the importance of chemical composition on the electrical conductivity of silicate melts. Chem Geol 256:192–201

    Article  Google Scholar 

  • Poe B, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181:103–111

    Article  Google Scholar 

  • Pommier A (2013) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys. doi:10.1007/s10712-013-9226-2

    Google Scholar 

  • Pommier A, LeTrong E (2011) “SIGMELTS”: a webportal for electrical conductivity calculations in geosciences. Comput Geosci 37:1450–1459

    Article  Google Scholar 

  • Pommier A, Gaillard F, Pichavant M, Scaillet B (2008) Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure. J Geophys Res. doi:10.1029/2007jb005269

    Google Scholar 

  • Pommier A, Evans RL, Key K, Tyburczy J, Mackwell S, Elsenbeck J (2013) Prediction of silicate melt viscosity from electrical conductivity: a model and its geophysical implications. G-Cubed. doi:10.1002/2012GC004467

    Google Scholar 

  • Pous J, Muñoz JA, Ledo JJ, Liesa M (1995) Partial melting of subducted continental lower crust in the Pyrenees. J Geol Soc (London) 152:217–220

    Article  Google Scholar 

  • Pous J, Muñoz G, Heise W, Melgarejo JC, Quesada C (2004) Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite. Earth Planet Sci Lett 217:435–450

    Article  Google Scholar 

  • Quinquis MET, Buiter SJH (2014) Testing the effects of basic numerical implementations of water migration on models of subduction dynamics. Solid Earth 5:537–555. doi:10.5194/se-5-537-2014

    Article  Google Scholar 

  • Rey PF, Teyssier C, Whitney DL (2009) Extension rates, crustal melting, and core complex dynamics. Geology 37:391–394

    Article  Google Scholar 

  • Rippe D, Unsworth MJ (2010) Quantifying crustal flow in Tibet with magnetotelluric data. Phys Earth Planet Inter 179:107–121. doi:10.1016/j.pepi.2010.01.009

    Article  Google Scholar 

  • Rippe D, Unsworth MJ, Currie CA (2013) Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: implications for rheology. J Geophys Res 118(10):5601–5624

    Article  Google Scholar 

  • Roberts JJ, Tyburczy JA (1999) Partial-melt electrical conductivity: influence of melt composition. J Geophys Res 104:7055–7065

    Article  Google Scholar 

  • Rodi WL, Mackie RL (2012) The inverse problem. In: Chave A, Jones AG, Mackie RL, Rodi WL (eds) The magnetotelluric method—theory and practice, vol 8. Cambridge University Press, New York. ISBN 9780521819275

    Google Scholar 

  • Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28

    Article  Google Scholar 

  • Rosenberg CL, Medvedev S, Handy M (2007) On the effects of melting on continental deformation and faulting. In: Handy M, Hirth G, Hovius N (eds) Tectonic faults: agents of change on a dynamic earth. In: Dahlem Workshop Report 95, MIT Press, pp 357–402

  • Ruedas T, Schmeling H, Marquart G, Kreutzmann A, Junge A (2004) Dynamics and melting of a ridge-centered plume with application to Iceland, part I: evolution and crust production. Geophys J Int 158:729–743

    Article  Google Scholar 

  • Saffer DM, Lockner DA, McKiernan A (2012) Effects of smectite to illite transformation on the frictional strength and sliding stability of intact marine mudstones. Geophys Res Lett 39:L11304. doi:10.1029/2012GL051761

    Article  Google Scholar 

  • Schäfer A, Houpt L, Brasse H, Hoffmann N, EMTESZ Working Group (2011) The North German conductivity anomaly revisited. Geophys J Int 187:85–98. doi:10.1111/j.1365-246X.2011.05145.x

    Article  Google Scholar 

  • Schilling FR, Partzsch GM (2001) Quantifying partial melt fraction in the crust beneath the central Andes and the Tibetan Plateau. Phys Chem Earth 26:239–246

    Article  Google Scholar 

  • Schilling FR, Partzsch GM, Brasse H, Schwarz G (1997) Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys Earth Planet Inter 103:17–31

    Article  Google Scholar 

  • Schmeling H (2010) Dynamics models of continental rifting with melt generation. Tectonophysics 480:33–47

    Article  Google Scholar 

  • Selway KM (2013) On the causes of electrical conductivity in stable lithosphere. Surv Geophys 35:219–257. doi:10.1007/s10712-013-9235-1

    Article  Google Scholar 

  • Semenov A, Kuvshinov A (2012) Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses—II. Data analysis and results. Geophys J Int. doi:10.1111/j.1365-246X.2012.05665.x

    Google Scholar 

  • Simpson F (2001) Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature 412:632–635

    Article  Google Scholar 

  • Simpson F (2013) Distribution functions for anisotropic electrical resistivities due to hydrogen diffusivity in aligned peridotite and their application to the lithosphere–asthenosphere boundary. Tectonophysics 592:31–38

    Article  Google Scholar 

  • Siripunvaraporn W, Egbert G (2009) WSINV3DMT: vertical magnetic field transfer function inversion and parallel implementation. Phys Earth Planet 173(3–4):317–329

    Article  Google Scholar 

  • Smith JT, Hoversten GM, Gasperikova E, Morrison HF (1999) Sharp boundary inversion of two-dimensional magnetotelluric data. Geophys Prospect 47:469–486

    Article  Google Scholar 

  • Spratt JE, Jones AG, Nelson KD, Unsworth MJ, The INDEPTH MT Team (2005) Crustal structure of the India–Asia collision zone, southern Tibet, from INDEPTH MT investigations. Earth Planet Sci Lett 150:227–237

    Article  Google Scholar 

  • Stanley WD, Mooney WD, Fuis GS (1990) Deep crustal structure of the Cascade range and surrounding regions from seismic refraction and magnetotelluric data. J Geophys Res 95:19419–19438

    Article  Google Scholar 

  • ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res 109:B06203. doi:10.1029/2003JB002799

    Google Scholar 

  • Tommasi A, Mainprice D, Canova G, Chastel Y (2000) Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: implications for the upper mantle seismic anisotropy. J Geophys Res 105(B4):7893–7908. doi:10.1029/1999JB900411

    Article  Google Scholar 

  • Toomey DR, Wilcock WSD, Conder JA, Forsyth DW, Blundy JD, Parmentier EM, Hammond WC (2002) Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth Planet Sci Lett 200:287–295

    Article  Google Scholar 

  • Toussaint G, Burov E, Avouac J-P (2004) Tectonic evolution of a continental collision zone: a thermomechanical numerical model. Tectonics 23. TC001604

  • Tyburczy J, Waff HS (1983) Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: geophysical significance and implications for the charge transport and melt structure. J Geophys Res 88:2413–2430

    Article  Google Scholar 

  • Unsworth MJ (2010) Magnetotelluric studies of continent–continent collisions. Surv Geophys 31:137–161

    Article  Google Scholar 

  • Unsworth MJ, Rondenay S (2013) Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in crustal and upper mantle processes series, Lecture notes in earth system sciences. Springer-Verlag, Berlin, pp 535–598

  • Unsworth MJ, Wei W, Jones AG, Li S, Bedrosian PA, Booker JR, Jin S, Deng M (2004) Crustal and upper mantle structure of Northern Tibet imaged with magnetotelluric data. J Geophys Res. doi:10.1029/2002JB002305

    Google Scholar 

  • Unsworth MJ, Jones AG, Wei W, Marquis G, Gokarn S, Spratt JE, the INDEPTH-MT team (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438:78–81. doi:10.1038/nature04154

    Article  Google Scholar 

  • Upton P (1998) Modelling localization of deformation and fluid flow in a compressional orogen : implications for the Southern Alps of New Zealand. Am J Sci 298(4):296–323

    Article  Google Scholar 

  • Upton P, Craw D (2008) Modelling the role of graphite in development of a mineralised mid-crustal shear zone, Macraes mine, New Zealand. Earth Planet Sci Lett 266(3/4):245–255. doi:10.1016/j.epsl.2007.10.048

    Article  Google Scholar 

  • Upton P, Caldwell TG, Chamberlain CP, Craw D, James Z, Jiracek GJ, Koons PO, Wannamaker PE (2000) Fluids in a backthrust regime (Southern Alps, New Zealand). J Geochem Explor 69(70):517–521

    Article  Google Scholar 

  • Ussher G, Harvey C, Johnstone R, Anderson E (2000) Understanding resistivities observed in Geothermal Systems. In: Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan

  • Villamor P, Berryman KR (2006) Evolution of the southern termination of the Taupo Rift, New Zealand. N Z J Geol Geophys 49:23–37

    Article  Google Scholar 

  • Waff HS (1974) Theoretical consideration of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res 79:4003–4010

    Article  Google Scholar 

  • Waff HS, Weill DF (1975) Electrical conductivity of magmatic liquids: effects of temperature, oxygen fugacity and composition. Earth Planet Sci Lett 28:254–260

    Article  Google Scholar 

  • Wang D, Mookherjee M, Xu YS, Karato S (2006) The effect of hydrogen on the electrical conductivity in olivine. Nature 443:977–980

    Article  Google Scholar 

  • Wang X, Zhang G, Fang H, Luo W, Zhang W, Zhong Q, Cai X, Luo H (2013) Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau. Tectonophysics. doi:10.1016/j.tecto.2013.09.011

    Google Scholar 

  • Wannamaker PE, Jiracek GR, Stodt JA, Caldwell TG, Gonzalez VM, McKnight JD, Porter AD (2002) Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from Magnetotellurics (MT) data. J Geophys Res 107(ETG 6):1–20

    Google Scholar 

  • Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature. doi:10.1038/nature08204

    Google Scholar 

  • Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28

    Article  Google Scholar 

  • Ye G, Jin S, Wei W, Unsworth MJ (2007) Research of the conductive structure of crust and the upper mantle beneath the South-Central Tibetan Plateau. J China Univ Geosci 18:334–343

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288:291–300

    Article  Google Scholar 

  • Zhao G, Unsworth MJ, Zhan Y, Wang L, Chen X, Jones A, Tang J, Xiao Q, Wang J, Cai J, Li T, Wang Y, Zhang J (2012) Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology 40:1139–1142. doi:10.1130/G33703.1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Grant Caldwell, Warwick Kissling and Phaedra Upton for discussions and helpful reviews of the draft manuscript. We also thank three anonymous reviewers whose comments significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiebke Heise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heise, W., Ellis, S. On the Coupling of Geodynamic and Resistivity Models: A Progress Report and the Way Forward. Surv Geophys 37, 81–107 (2016). https://doi.org/10.1007/s10712-015-9334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9334-2

Keywords

Navigation