Skip to main content
Log in

Comparative Study of the Spherical Downward Continuation

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Downward continuation of the potential data (gravity or magnetic) helps to interpret contributing sources by transforming the physical signal to their neighborhood. This paper applies three continuation approaches (Landweber’s iteration, the direct method and the inverse-matrix approach with Tikhonov’s regularization), based on the Poisson integral equation, and four integration schemes to the second vertical derivative of the anomalous potential \(T_{\rm zz}\) obtained from GOCE data. In the experiments, \(T_{\rm zz}\) was downward continued for 250 km in the area of Central Europe with special attention to edge effects. For the integration schemes, which use prior information outside the region of interest to reduce edge effects, the best agreement with TIM-r4 was achieved by the inverse-matrix approach with Tikhonov’s regularization (RMS = 1.15 eotvos). On the contrary, without prior information the iterative approach performed with RMS = 1.17 eotvos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. \(T\) is obtained from \(V\) by subtracting some reference field; we have used GRS80 up to degree 10 (Moritz 1980).

  2. Poisson integral can rigorously be applied to z-derivative of any order in the local frame as long as the term \((R/r)^{i}\) with positive integers \(i\) is constant for two concentric spheres (input and output altitudes), see, e.g., discussion in Hotine (1969, p. 316).

References

  • Arfken GB, Weber HJ (2005) Mathematical methods for physicists, 6th edn. Academic Press, London

    Google Scholar 

  • Elysseieva I, Pašteka R (2009) Direct interpretation of 2D potential fields for deep structures by means of the quasi-singular points method. Geophys Prospect 57(4):683–705

    Article  Google Scholar 

  • ESA (1999) Gravity field and steady-state ocean circulation. Reports for mission selection—the four candidate Earth Explorer core missions. ESA publication division, SP-1233(1)

  • Eshagh M (2011) Inversion of satelite gradiometry data using statistically modified integral formulas for local gravity field recovery. Adv Space Res 47:74–85

    Article  Google Scholar 

  • Fedi M, Florio G (2002) A stable downward continuation by using the ISVD method. Geophys J Int 151(1):146–156

    Article  Google Scholar 

  • Fedi M, Florio G (2011) Normalized downward continuation of potential fields within the quasi-harmonic region. Geophys Prospect 59(6):1087–1100

    Article  Google Scholar 

  • Gruber T, Rummel R, Abrikosov O, van Hees R (2010) Goce level 2 product data handbook. Technical report, GO-MA-HPF-GS-0110

  • Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1-D FFT, and a comparison with existing methods for Stokes’ integral. Manuscr Geod 18:227–241

    Google Scholar 

  • Hansen P, O’FLeary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14:1487–1503

    Article  Google Scholar 

  • Hansen PC (2007) Regularization tools version 4.0 for matlab 7.3. Numer Algorithms 46(2):189–194

    Article  Google Scholar 

  • Hees VS (1990) Stokes formula using FFT techniques. Manuscr Geod 15:235–239

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman, San Francisco

    Google Scholar 

  • Hotine M (1969) Mathematical geodesy. Washington DC, U.S. Department of Commerce

  • Huestis SP, Parker RL (1979) Upward and downward continuation as inverse problems. Geophys J R Astron Soc 57(1):171–188

    Article  Google Scholar 

  • Janák J, Fukuda Y, Xu P (2009) Application of GOCE data for regional gravity field modeling. Earth Planets Space 61(7):835–843

    Article  Google Scholar 

  • Janák J, Pitoňák M, Minarechová Z (2014) Regional quasigeoid from GOCE and terrestrial measurements. Stud Geophys Geod 58(4):626–649

  • Jekeli C (2007) 3.02—potential theory and static gravity field of the Earth. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 11–42

  • Kellogg OD (1929) Foundation of potential theory. Frederick Ungar, New York

    Book  Google Scholar 

  • Kern M (2003) An analysis of the combination and downward continuation of satellite, airborne and terrestrial gravity data. University of Calgary, Calgary

  • King JT, Chillingworth D (1979) Approximation of generalized inverses by iterated regularization. Numer Funct Anal Optim 1(5):499–513

    Article  Google Scholar 

  • Landweber L (1951) An iteration formula for Fredholm integral equations of the first kind. Am J Math 73:615–624

    Article  Google Scholar 

  • Lee JB (2001) FALCON gravity gradiometer technology. Explor Geophys 32(3/4):247–250

    Article  Google Scholar 

  • Li Y, Devriese S et al (2009) Enhancement of magnetic data by stable downward continuation for uxo applications. In: International exposition and annual meeting, SEG Houston, pp 1464–1468

  • Ma T, Chen L, Wu Z, Hu X, Wu M (2012) An improved iteration method for downward continuation of potential fields. In: 2nd international conference on industrial technology and management (ICITM 2012), Phuket Island, Thailand

  • Miller K (1970) Least squares methods for ill-posed problems with a prescribed bound. SIAM J Math Anal 1(1):52–74

    Article  Google Scholar 

  • Moritz H (1980) Geodetic reference system 1980. J Geod 54(3):395–405

    Google Scholar 

  • Novák P, Heck B (2002) Downward continuation and geoid determination based on band-limited airborne gravity data. J Geod 76(5):269–278

    Article  Google Scholar 

  • Novák P, Kern M, Schwarz K-P (2001) Numerical studies on the harmonic downward continuation of band-limited airborne gravity. Stud Geophys Geod 45(4):327–345

    Article  Google Scholar 

  • Oldenburg D (1974) The inversion and interpretation of gravity anomalies. Geophysics 39(4):526–536

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Foerste C, Goiginger H, Schuh W-D, Hoeck E, Reguzzoni M, Brockmann J, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sans F, Tscherning C (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843

    Article  Google Scholar 

  • Parker RL (1973) The rapid calculation of potential anomalies. Geophys J R Astron Soc 31(4):447–455

    Article  Google Scholar 

  • Pašteka R, Karcol R, Kušnirák D, Mojzeš A (2012) REGCONT: a matlab based program for stable downward continuation of geophysical potential fields using tikhonov regularization. Comput Geosci 49:278–289

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res (Solid Earth) 117(B16):4406

    Article  Google Scholar 

  • Phillips J (1996) Potential-field continuation: past practice vs. modern methods. In: SEG annual meeting, Denver, CO. Society of Exploration Geophysicists

  • Pick M, Vyskočil V, Pícha J (1973) Theory of the earth’s gravity field. Elsevier Scientific, New York

    Google Scholar 

  • Press WH (1996) Numerical recipes in FORTRAN 77 and FORTRAN 90 the art of scientific and parallel computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt P, Clark D, Leslie K, Bick M, Tilbrook D, Foley C (2004) Getmaga squid magnetic tensor gradiometer for mineral and oil exploration. Explor Geophys 35(4):297–305

    Article  Google Scholar 

  • Sebera J, Šprlák M, Novák P, Bezděk A, Vaľko M (2014) Iterative spherical downward continuation applied to magnetic and gravitational data from satellite. Surv Geophys 35(4):941–958

    Article  Google Scholar 

  • Shen Y, Xu P, Li B (2012) Bias-corrected regularized solution to inverse ill-posed models. J Geod 86(8):597–608

    Article  Google Scholar 

  • Šprlák M, Sebera J, Vaľko M, Novák P (2014) Spherical integral formulas for upward/downward continuation of gravitational gradients onto gravitational gradients. J Geod 88(2):179–197

    Article  Google Scholar 

  • The MathWorks (2011) MATLAB version R2011a. The MathWorks, Inc., Natick, Massachusetts, United States

  • Tikhonov AN (1963a) Solution of incorrectly formulated problems and the regularization method. Sov Math Dokl 5:1035–1038

    Google Scholar 

  • Tikhonov AN (1963b) Regularization of incorrectly posed problems. Sovi Math Dokl 4:1624–1627

    Google Scholar 

  • Wahba G (1990) Spline models for observational data, vol 59. SIAM, Philadelphia, PA

  • Xu P (1992) Determination of surface gravity anomalies using gradiometric observables. Geophys J Int 110(2):321–332

    Article  Google Scholar 

  • Xu P, Fukuda Y, Liu Y (2006a) Multiple parameter regularization: numerical solutions and applications to determination of geopotential from precise satelite orbits. J Geod 80:17–27

    Article  Google Scholar 

  • Xu P, Shen YZ, Fukuda Y, Liu Y (2006b) Variance components estimation in linear inverse ill-posed models. J Geod 80:69–81

    Article  Google Scholar 

  • Xu S-Z, Yang J, Yang C, Xiao P, Chen S, Guo Z (2007) The iteration method for downward continuation of a potential field from a horizontal plane. Geophys Prospect 55(6):883–889

    Article  Google Scholar 

  • Zeng X, Li X, Su J, Liu D, Zou H (2013) An adaptive iterative method for downward continuation of potential-field data from a horizontal plane. Geophysics 78(4):J43–J52

    Article  Google Scholar 

  • Zhang H, Ravat D, Hu X (2013) An improved and stable downward continuation of potential field data: the truncated taylor series iterative downward continuation method. Geophysics 78(5):J75–J86

    Article  Google Scholar 

Download references

Acknowledgments

Josef Sebera has been supported by the project EXLIZ—CZ.1.07/2.3.00/30.0013, Martin Pitoňák and Eliška Hamáčková were supported by the project CZ.1.05/1.1.00/02.0090 NTIS—New Technologies for the Information Society. Martin Pitoňák has been supported by the national project APVV-0072-11. We thank Prof. M. Fedi, an anonymous reviewer and an Associate Editor for constructive discussion that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Sebera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (M 4 kb)

Supplementary material 2 (M 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebera, J., Pitoňák, M., Hamáčková, E. et al. Comparative Study of the Spherical Downward Continuation. Surv Geophys 36, 253–267 (2015). https://doi.org/10.1007/s10712-014-9312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9312-0

Keywords

Navigation