Surveys in Geophysics

, Volume 35, Issue 6, pp 1393–1415 | Cite as

Combined Regional Gravity Model of the Andean Convergent Subduction Zone and Its Application to Crustal Density Modelling in Active Plate Margins

  • M. Hosse
  • R. Pail
  • M. Horwath
  • N. Holzrichter
  • B. D. Gutknecht
Article

Abstract

The Central Andean subduction system is one of the most active geological structures on Earth. Although there have been a few previous studies, the structure and dynamics of the system are still not well understood. In the present study, we determine a combined regional gravity model of the Andean convergent subduction region for constraining lithospheric models. After a thorough validation and cleaning of the terrestrial gravity and height databases, the method of Least Squares Collocation was applied to consistently combine terrestrial and satellite gravity data, putting much emphasis on the stochastic modelling of the individual data components. As a result, we computed the first high-resolution regional gravity model of the study region that includes GOCE satellite gravity information. The inclusion of GOCE is an essential distinction from the independent global gravity model EGM2008. Validation against EGM2008 reveals that our regional solution is very consistent in regions where terrestrial gravity data are available, but shows systematic differences in areas with terrestrial data gaps. Artefacts in the EGM2008 of up to 150 mGal could be identified. The new combined regional model benefits from the very homogeneous error characteristics and accuracy of GOCE gravity data in the long-to-medium wavelengths down to 80–100 km. Reliable density modelling became possible also in the region of Central Andes, which lacks terrestrial gravity data. Finally, density models were adapted to fit the new regional gravity field solution. The results clearly demonstrate the capabilities of GOCE to better constrain lithospheric models.

Keywords

Subduction GOCE GOCO Least Squares Collocation Terrain correction Density modelling Regional gravity model 

References

  1. Alvarado P, Beck S, Zandt G (2007) Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modelling. Geophys J Int 170(2):858–875. doi:10.1111/j.1365-246X.2007.03452.x CrossRefGoogle Scholar
  2. Andersen OB (2010) The DTU10 Gravity field and Mean sea surface. Second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, AK, USAGoogle Scholar
  3. Andersen OB, Knudsen P (2008) The DNSC08 global Mean sea surface and Bathymetry. EGU 2008, Vienna, AustriaGoogle Scholar
  4. Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114(C11). doi: 10.1029/2008JC005179
  5. Berry P, Smith R, Benveniste J (2008) ACE2: the new Global Digital Elevation Model. In: IAG international symposium on gravity, geoid & earth observation 2008, Chania, CreteGoogle Scholar
  6. Drinkwater M, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G (ed) Earth gravity field from space. Kluwer Academic Publishers/International Space Science Institute, Dordrecht, pp 419–432CrossRefGoogle Scholar
  7. Fecher T, Pail R, Gruber T (2013) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Observ Geoinf. doi:10.1016/j.jag.2013.10.005
  8. Feng M, van der Lee S, Assumpção M (2007) Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. J Geophys Res 112(B4). doi: 10.1029/2006JB004449
  9. Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Technical Report 355, The Ohio State University, Columbus, OHGoogle Scholar
  10. Förste C, Bruinsma S, Flechtner F, Marty J, Lemoine J, Dahle C, Abrikosov O, Neumayer KH, Biancale R, Barthelmes F, Balmino G (2012) A preliminary update of the Direct approach GOCE Processing and a new release of EIGEN-6C. Abstract No. G31B-0923. AGU Fall Meeting 2012, San Fransico, CA, USAGoogle Scholar
  11. Gisinger C (2010) Vorwärtsmodellierung des Schwerefeldes zur Analyse von Eismassenvariationen am Beispiel Novaya Zemlya. Master Thesis, TU GrazGoogle Scholar
  12. Götze H, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53(8):1096–1108. doi:10.1190/1.1442546 CrossRefGoogle Scholar
  13. Gutknecht BD, Götze H, Jahr T, Jentzsch G, Mahatsente R, Zeumann ST (2014) Structure and state of stress of the Chilean subduction zone from terrestrial and satellite-derived gravity and gravity gradient data. Surv Geophys. doi:10.1007/S10712-014-9296-9
  14. Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Company, San FranciscoGoogle Scholar
  15. Herceg M, Knudsen P, Tscherning CC (2012) GOCE data for local geoid enhancement. In print IAG Symposium proceedings no. 141, Geoid and Height Systems GGHS 2012, Venice, ItalyGoogle Scholar
  16. Holzrichter N (2013) Processing and interpretation of satellite and ground based gravity data at different lithospheric scales. Dissertation, Christian-Albrechts-Universität zu KielGoogle Scholar
  17. Köther N, Götze H, Gutknecht BD, Jahr T, Jentzsch G, Lücke O, Mahatsente R, Sharma R, Zeumann S (2012) The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? J Geodyn 59–60:207–218. doi:10.1016/j.jog.2011.11.004 CrossRefGoogle Scholar
  18. Krarup T (1969) A contribution to the mathematical foundation of physical geodesy. Geodætisk Instituts Meddelelse, 44, CopenhagenGoogle Scholar
  19. Mader K (1951) Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. In: Österreichische Kommission für Internationale Erdmessung (ed) Sonderheft 11 der ÖZfVw, Vienna, AustriaGoogle Scholar
  20. Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of coloured noise. J Geod 78:304–313CrossRefGoogle Scholar
  21. Moritz H (1972) Advanced least-squares methods. Reports of the Department of Geodetic Science, The Ohio State University, Columbus, OhioGoogle Scholar
  22. Moritz H (1978) Least-squares collocation. Rev Geophys Space Phys 16(3):421–430CrossRefGoogle Scholar
  23. Oncken O, Chong G, Franz G, Giese P, Götze H, Ramos VA, Strecker MR, Wigger P (2006) The Andes: active subduction orogeny. Frontiers in Earth Science Series, vol 1. Springer, BerlinCrossRefGoogle Scholar
  24. Pail R, Kühtreiber N, Wiesenhofer B, Hofmann-Wellenhof B, Of G, Steinbach O, Höggerl N, Imrek E, Ruess D, Ullrich C (2008) The Austrian Geoid 2007. vgi - Österreichische Zeitschrift für Vermessung und Geoinformation 1:3–14Google Scholar
  25. Pail R, Goiginger H, Schuh W, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37(20):n/a. doi: 10.1029/2010GL044906
  26. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi:10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  27. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117(B4). doi: 10.1029/2011JB008916
  28. Prezzi C, Götze H, Schmidt S (2009) 3D density model of the Central Andes. Phys Earth Planetary Inter 177:217–234CrossRefGoogle Scholar
  29. Schmidt S, Götze H (2006) Bouguer and isostatic maps of the Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker M, Wigger P (eds) The Andes: active subduction orogeny. Frontiers in Earth Science Series, 1. Springer, Berlin, pp 559–565CrossRefGoogle Scholar
  30. Schmidt S, Götze H, Fichler C, Alvers M (2010) IGMAS+: a new 3D gravity, FTG and Magnetic Modelling Software. In: Zipf A (ed) Geoinformatik 2010. Die Welt im Netz; Konferenzband 17.–19. März 2010, Kiel. AKA, Akademische Verlagsges., Heidelberg, pp 57–63Google Scholar
  31. Tapley BD (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9). doi: 10.1029/2004GL019920
  32. Tašárová ZA (2007) Towards understanding the lithospheric structure of the southern Chilean subduction zone (36 S-42 S) and its role in the gravity field. Geophys J Int 170(3):995–1014. doi:10.1111/j.1365-246X.2007.03466.x CrossRefGoogle Scholar
  33. Tassara A, Götze H, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111(B9). doi: 10.1029/2005JB003976
  34. Tscherning CC (1993) Computation of covariances of derivatives of the anomalous gravity potential in a rotated reference frame. Manusc Geod 18(3):115–123Google Scholar
  35. Tsoulis D (1999) Analytical and numerical methods in gravity field modelling of ideal and real masses. DGK Reihe C, vol 510, München  Google Scholar
  36. Turcotte DL, Schubert G (2002) Geodynamics, Cambridge Univ. Press, New York, pp 456Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Hosse
    • 1
  • R. Pail
    • 1
  • M. Horwath
    • 1
    • 3
  • N. Holzrichter
    • 2
  • B. D. Gutknecht
    • 2
  1. 1.Institute of Astronomical and Physical GeodesyTechnische Universität MünchenMunichGermany
  2. 2.Department of Geophysics, Institute of GeosciencesChristian-Albrechts-Universität KielKielGermany
  3. 3.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany

Personalised recommendations