Abstract
This study examines present-day changes of the Antarctic ice sheet (AIS) by means of different data sets. We make use of monthly gravity field solutions acquired by the Gravity Recovery and Climate Experiment (GRACE) to study mass changes of the AIS for a 10-year period. In addition to ‘standard’ solutions of release 05, solutions based on radial base functions were used. Both solutions reveal an increased mass loss in recent years. For a 6-year period surface-height changes were inferred from laser altimetry data provided by the Ice, Cloud, and land Elevation Satellite (ICESat). The basin-scale volume trends were converted into mass changes and were compared with the GRACE estimates for the same period. Focussing on the Thwaites Glacier, Landsat optical imagery was utilised to determine ice-flow velocities for a period of more than two decades. This data set was extended by means of high-resolution synthetic aperture radar (SAR) data from the TerraSAR-X mission, revealing an accelerated ice flow of all parts of the glacier. ICESat data over the Thwaites Glacier were complemented by digital elevation models inferred from TanDEM-X data. This extended data set exhibits an increased surface lowering in recent times. Passive microwave remote sensing data prove the long-term stability of the accumulation rates in a low accumulation zone in East Antarctica over several decades. Finally, we discuss the main error sources of present-day mass-balance estimates: the glacial isostatic adjustment effect for GRACE as well as the biases between laser operational periods and the volume–mass conversion for ICESat.
This is a preview of subscription content, access via your institution.









References
Abshire J, Sun X, Riris H, Sirota J (2005) Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett 32:L21S02. doi:10.1029/2005GL024028
Bamler R, Eineder M (2005) Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geosci Remote Sens Lett 2(2):151–155. doi:10.1109/LGRS.2004.843203
Boening C, Lebsock M, Landerer F, Stephens G (2012) Snowfall-driven mass change on the East Antarctic ice sheet. Geophys Res Lett 39(21):L21,501. doi:10.1029/2012GL053316
Breit H, Fritz T, Balss U, Lachaise M, Niedermeier A, Vonavka M (2010) TerraSAR-X SAR processing and products. IEEE Trans Geosci Remote Sens 48(2):727–740. doi:10.1109/TGRS.2009.2035497
Catania G, Hulbe C, Conway H, Scambos T, Raymond C (2012) Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium. J Glac 58(210):741–752. doi:10.3189/2012JoG11J219
Cuffey K, Paterson W (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Amsterdam
Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2012) GFZ GRACE level-2 processing standards document for level-2 product release 0005. Technical report, Potsdam. doi:10.2312/GFZ.b103-12020
Dierking W, Linow S, Rack W (2012) Toward a robust retrieval of snow accumulation over the antarctic ice sheet using satellite radar. J Geophys Res Atmos 117(D9):D09,110. doi:10.1029/2011JD017227
DLR-HR (2010) TanDEM-X Science Plan TD-PD-PL-0069. Technical report. https://tandemx-science.dlr.de/
Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134
Domine F, Albert M, Huthwelker T, Jacobi HW, Kokhanovsky A, Lehning M, Picard G, Simpson W (2008) Snow physics as relevant to snow photochemistry. Atmos Chem Phys 8(2):171–208
Ewert H, Groh A, Dietrich R (2012a) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J Geodyn 59–60:111–123. doi:10.1016/j.jog.2011.06.003
Ewert H, Popov S, Richter A, Schwabe J, Scheinert M, Dietrich R (2012) Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys J Int 191(2):557–568. doi:10.1111/j.1365-246X.2012.05649.x
Flach J, Partington K, Ruiz C, Jeansou E, Drinkwater M (2005) Inversion of the surface properties of ice sheets from satellite microwave data. IEEE Trans Geosci Remote Sens 43(4):743–752. doi:10.1109/TGRS.2005.844287
Flechtner F (2007) AOD1B product description document. Technical report, Potsdam
Forsberg R, Keller K, Jacobsen S (2001) Laser monitoring of ice elevations and sea-ice thickness in Greenland. ISPRS Annapolis Workshop
Förste C, Bruinsma B, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts 13
Fritz T, Breit H, Rossi C, Balss U, Lachaise M, Duque S (2012) Interferometric processing and products of the TanDEM-X mission. In: IEEE international geoscience and remote sensing symposium, pp 1904–1907. doi:10.1109/IGARSS.2012.6351133
Groh A, Ewert H, Scheinert M, Fritsche M, Rülke A, Richter A, Rosenau R, Dietrich R (2012) An investigation of glacial isostatic adjustment over the Amundsen Sea sector, West Antarctica. Glob Planet Change 98–99:45–53. doi:10.1016/j.gloplacha.2012.08.001
Gruber C, Moon Y, Flechtner F, Dahle C, Novák P, König R, Neumayer K (2013) Submonthly GRACE solutions from localizing integral equations and Kalman filtering. In: Rizos C, Willis P (eds) IAG symposia “Earth on the Edge: Science for a Sustainable Planet”, vol 139. Springer, Berlin
Gunter B, Didova O, Riva R, Ligtenberg S, Lenaerts J, King M, van den Broeke M, Urban T (2013) Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. Cryosphere Discuss 7(4):3497–3541. doi:10.5194/tcd-7-3497-2013
Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864. doi:10.1111/j.1365-246X.2009.04139.x
Horwath M, Legrésy B, Rémy F, Blarel F, Lemoine JM (2012) Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys J Int 189(2):863–876. doi:10.1111/j.1365-246X.2012.05401.x
Ivins E, James T (2005) Antarctic glacial isostatic adjustment: a new assessment. Ant Sci 14(4):541–553. doi:10.1017/S0954102005002968
Ivins E, James T, Wahr J, Schrama OE, Landerer F, Simon K (2013) Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J Geophys Res Solid Earth 118(6):3126–3141. doi:10.1002/jgrb.50208
Jenkins A, Dutrieux P, Jacobs S, McPhail S, Perrett J, Webb A, White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3(7):468–472. doi:10.1038/ngeo890
Jezek K, Floricioiu D, Farness K, Yague-Martinez N, Eineder M (2009) TerraSAR-X observations of the recovery glacier system, Antarctica. In: IEEE international geoscience and remote sensing symposium, vol 2, pp 226–229. doi:10.1109/IGARSS.2009.5418049
Joughin I, Tulaczyk S (2002) Positive mass balance of the ross ice streams, West Antarctica. Science 295:476–480
King M, Bingham R, Moore P, Whitehouse P, Bentley M, Milne G (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature. doi:10.1038/nature11621
Krabill WB (2010) IceBridge ATM L2 Icessn elevation, slope, and roughness. [subsets 20111104 and 20121012]. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center
Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–3341. doi:10.1109/TGRS.2007.900693
Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod. doi:10.1007/s00190-007-0143-3
Lee D, Storey J, Choate M, Hayes R (2004) Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Trans Geosci Remote Sens 42(12):2786–2795
Lenaerts J, van den Broeke M, van de Berg W, van Meijgaard E (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett 39(4):L04,501. doi:10.1029/2011GL050713
Lenaerts J, van Meijgaard E, van den Broeke M, Ligtenberg S, Horwath M, Isaksson E (2013) Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys Res Lett 40(11):2684–2688. doi:10.1002/grl.50559
Ligtenberg S, Helsen M, van den Broeke M (2011) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 5(4):809–819. doi:10.5194/tc-5-809-2011
Linow S (2011) Deriving accumulation rates of greenland and the antarctic ice sheet from microwave remote sensing data. PhD thesis, University of Bremen
Linow S, Hörhold MW, Freitag J (2012) Grain-size evolution of polar firn: a new empirical grain growth parameterization based on x-ray microcomputer tomography measurements. J Glaciol 58(212):1245–1252. doi:10.3189/2012JoG11J256
Loveland T, Dwyer J (2012) Landsat: building a strong future. Remote Sens Environ 122:22–29. doi:10.1016/j.rse.2011.09.022
MacGregor J, Catania G, Markowski M, Andrews A (2012) Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011. J Glac 58(209):458–466. doi:10.3189/2012JoG11J262
NSIDC (2012) National Snow and Ice Data Center: GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data (Release 33). ftp://n4ftl01u.ecs.nasa.gov/SAN/GLAS/GLA12.033/
Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149
Picciotto E, Crozaz G, De Breuck W (1971) Accumulation on the South Pole—Queen Maud Land Traverse, 1964–1968, Antarctic Snow and Ice Studies II, Antarct. Res. Ser., vol 16, AGU, Washington, DC, pp 257–315. doi:10.1029/AR016p0257
Pritchard H, Arthern R, Vaughan D, Edwards L (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975. doi:10.1038/nature08471
Pritchard H, Ligtenberg S, Fricker H, Vaughan D, van den Broeke M, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484(7395):502–505. doi:10.1038/nature10968
Rabus B, Lang O, Adolphs U (2003) Interannual velocity variations and recent calving of Thwaites Glacier Tongue, West Antarctica. Ann Glac 36:215–224
Richter A, Popov S, Dietrich R, Lukin V, Fritsche M, Lipenkov V, Matveev A, Wendt J, Yuskevich A, Masolov V (2008) Observational evidence on the stability of the hydro-glaciological regime of subglacial Lake Vostok. Geophys Res Lett 35(L11):502
Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn. doi:10.1016/j.jog.2011.02.003
Rignot E (2008) Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys Res Lett 35:L12,505. doi:10.1029/2008GL033365
Rignot E, Bamber J, van den Broeke M, Davis C, Li Y (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110. doi:10.1038/ngeo102
Rignot E, Mouginot J, Scheuchl B (2011a) Antarctic grounding line mapping from differential satellite radar interferometry. Geophys Res Lett 38(10). doi:10.1029/2011GL047109
Rignot E, Mouginot J, Scheuchl B (2011b) Ice flow of the Antarctic ice sheet. Science 333(6048):1427–1430. doi:10.1126/science.1208336
Rignot E, Velicogna I, van den Broeke M, Monaghan A, Lenaerts J (2011c) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(5):L05,503. doi:10.1029/2011GL046583
Riva R, Gunter B, Urban T, Vermeersen B, Lindenbergh R, Helsen M, Bamber J, van de Wal R, van den Broeke M, Schutz B (2009) Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288(3–4):516–523. doi:10.1016/j.epsl.2009.10.013
Rosenau R, Dietrich R, Baessler M (2012) Temporal flow variations of major outlet glaciers in Greenland using landsat data. In: IEEE international geoscience and remote sensing symposium, pp 1557–1560. doi:10.1109/IGARSS.2012.6351100
Rossi C, Rodriguez Gonzalez F (2012) TanDEM-X calibrated raw DEM generation. ISPRS J Photogramm Remote Sens 73:12–20. doi:10.1016/j.isprsjprs.2012.05.014
Rotschky G, Rack W, Dierking W, Oerter H (2006) Retrieving snowpack properties and accumulation estimates from a combination of SAR and scatterometer measurements. IEEE Trans Geosci Remote Sens 44(4):943–956. doi:10.1109/TGRS.2005.862524
Rott H, Sturm K, Miller H (1993) Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data. Ann Glac 17:337–343
Schutz B, Zwally H, Shuman C, Hancock D, DiMarzio J (2005) Overview of the ICESat mission. Geophys Res Lett 32:L21S01. doi:10.1029/2005GL024009
Shepherd A, Wingham D, Rignot E (2004) Warm ocean is eroding West Antarctic ice sheet. Geophys Res Lett 31(L23):402. doi:10.1029/2004GL021106
Shepherd A, Ivins E, A G, Barletta V, Bentley M, Bettadpur S, Briggs K, Bromwich D, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King M, Lenaerts J, Li J, Ligtenberg S, Luckman A, Luthcke S, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas J, Paden J, Payne A, Pritchard H, Rignot E, Rott H, Sorensen L, Scambos T, Scheuchl B, Schrama E, Smith B, Sundal A, van Angelen J, van de Berg W, van den Broeke M, Vaughan D, Velicogna I, Wahr J, Whitehouse P, Wingham D, Yi D, Young D, Zwally H, (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi:10.1126/science.1228102
Solomon S, Qin D, Manning M, Alley R, Berntsen T, Bindoff N, Chen Z, Chidthaisong A, Gregory J, Hegerl G, Heimann M, Hewitson B, Hoskins B, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker T, Whetton P, Wood R, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Studinger M, Koenig L, Martin S, Sonntag J (2010) Operation icebridge: using instrumented aircraft to bridge the observational gap between icesat and icesat-2. In: IEEE international geoscience and remote sensing symposium, pp 1918–1919. doi:10.1109/IGARSS.2010.5650555
Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09,607. doi:10.1029/2004GL019920
Thomas I, King M, Bentley M, Whitehouse P, Penna N, Williams S, Riva R, Lavallee D, Clarke P, King E, Hindmarsh R, Koivula H (2011) Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys Res Lett 38(22):L22,302. doi:10.1029/2011GL049277
Tinto K, Bell R (2011) Progressive unpinning of Thwaites Glacier from newly identified offshore ridge: constraints from aerogravity. Geophys Res Lett 38(20). doi:10.1029/2011GL049026
Vaughan D, Bamber J, Giovinetto M, Russell J, Cooper A (1999) Reassessment of net surface mass balance in Antarctica. J Clim 12:933–946
Wang X, Rummel R (2012) Using swarm for gravity field recovery: first simulation results. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy, international association of geodesy symposia, vol 137, pp 301–306. doi:10.1007/978-3-642-22078-4_45
Werninghaus R, Buckreuss S (2010) The TerraSAR-X mission and system design. IEEE Trans Geosci Remote Sens 48(2):606–614. doi:10.1109/TGRS.2009.2031062
Whitehouse P, Bentley M, Milne G, King M, Thomas I (2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys J Int 190(3):1464–1482. doi:10.1111/j.1365-246X.2012.05557.x
Wiesmann A, Mätzler C (1998) Radiometric and structural measurements of snow samples. Radio Sci 33:273–289
Zwally H, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445. doi:10.1016/S0264-3707(02)00042-X
Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, Saba J, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glac 51(175):509–527
Acknowledgments
This work was supported by the German Research Foundation (DFG) within the Priority Programme SPP1257 “Mass Transport and Mass Distribution in the Earth System”. TerraSAR-X and TanDEM-X data were provided by DLR within science proposals HYD1303 and XTI_GLAC0538, respectively. We gratefully acknowledge the helpful comments provided by two anonymous reviewers.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Groh, A., Ewert, H., Rosenau, R. et al. Mass, Volume and Velocity of the Antarctic Ice Sheet: Present-Day Changes and Error Effects. Surv Geophys 35, 1481–1505 (2014). https://doi.org/10.1007/s10712-014-9286-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10712-014-9286-y
Keywords
- Antarctic ice sheet
- Mass balance
- Velocity
- Accumulation