Mass, Volume and Velocity of the Antarctic Ice Sheet: Present-Day Changes and Error Effects

Abstract

This study examines present-day changes of the Antarctic ice sheet (AIS) by means of different data sets. We make use of monthly gravity field solutions acquired by the Gravity Recovery and Climate Experiment (GRACE) to study mass changes of the AIS for a 10-year period. In addition to ‘standard’ solutions of release 05, solutions based on radial base functions were used. Both solutions reveal an increased mass loss in recent years. For a 6-year period surface-height changes were inferred from laser altimetry data provided by the Ice, Cloud, and land Elevation Satellite (ICESat). The basin-scale volume trends were converted into mass changes and were compared with the GRACE estimates for the same period. Focussing on the Thwaites Glacier, Landsat optical imagery was utilised to determine ice-flow velocities for a period of more than two decades. This data set was extended by means of high-resolution synthetic aperture radar (SAR) data from the TerraSAR-X mission, revealing an accelerated ice flow of all parts of the glacier. ICESat data over the Thwaites Glacier were complemented by digital elevation models inferred from TanDEM-X data. This extended data set exhibits an increased surface lowering in recent times. Passive microwave remote sensing data prove the long-term stability of the accumulation rates in a low accumulation zone in East Antarctica over several decades. Finally, we discuss the main error sources of present-day mass-balance estimates: the glacial isostatic adjustment effect for GRACE as well as the biases between laser operational periods and the volume–mass conversion for ICESat.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abshire J, Sun X, Riris H, Sirota J (2005) Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett 32:L21S02. doi:10.1029/2005GL024028

    Article  Google Scholar 

  2. Bamler R, Eineder M (2005) Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geosci Remote Sens Lett 2(2):151–155. doi:10.1109/LGRS.2004.843203

    Article  Google Scholar 

  3. Boening C, Lebsock M, Landerer F, Stephens G (2012) Snowfall-driven mass change on the East Antarctic ice sheet. Geophys Res Lett 39(21):L21,501. doi:10.1029/2012GL053316

    Google Scholar 

  4. Breit H, Fritz T, Balss U, Lachaise M, Niedermeier A, Vonavka M (2010) TerraSAR-X SAR processing and products. IEEE Trans Geosci Remote Sens 48(2):727–740. doi:10.1109/TGRS.2009.2035497

    Article  Google Scholar 

  5. Catania G, Hulbe C, Conway H, Scambos T, Raymond C (2012) Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium. J Glac 58(210):741–752. doi:10.3189/2012JoG11J219

    Article  Google Scholar 

  6. Cuffey K, Paterson W (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Amsterdam

    Google Scholar 

  7. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2012) GFZ GRACE level-2 processing standards document for level-2 product release 0005. Technical report, Potsdam. doi:10.2312/GFZ.b103-12020

  8. Dierking W, Linow S, Rack W (2012) Toward a robust retrieval of snow accumulation over the antarctic ice sheet using satellite radar. J Geophys Res Atmos 117(D9):D09,110. doi:10.1029/2011JD017227

    Article  Google Scholar 

  9. DLR-HR (2010) TanDEM-X Science Plan TD-PD-PL-0069. Technical report. https://tandemx-science.dlr.de/

  10. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134

    Article  Google Scholar 

  11. Domine F, Albert M, Huthwelker T, Jacobi HW, Kokhanovsky A, Lehning M, Picard G, Simpson W (2008) Snow physics as relevant to snow photochemistry. Atmos Chem Phys 8(2):171–208

    Article  Google Scholar 

  12. Ewert H, Groh A, Dietrich R (2012a) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J Geodyn 59–60:111–123. doi:10.1016/j.jog.2011.06.003

    Article  Google Scholar 

  13. Ewert H, Popov S, Richter A, Schwabe J, Scheinert M, Dietrich R (2012) Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys J Int 191(2):557–568. doi:10.1111/j.1365-246X.2012.05649.x

    Article  Google Scholar 

  14. Flach J, Partington K, Ruiz C, Jeansou E, Drinkwater M (2005) Inversion of the surface properties of ice sheets from satellite microwave data. IEEE Trans Geosci Remote Sens 43(4):743–752. doi:10.1109/TGRS.2005.844287

    Article  Google Scholar 

  15. Flechtner F (2007) AOD1B product description document. Technical report, Potsdam

  16. Forsberg R, Keller K, Jacobsen S (2001) Laser monitoring of ice elevations and sea-ice thickness in Greenland. ISPRS Annapolis Workshop

  17. Förste C, Bruinsma B, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts 13

  18. Fritz T, Breit H, Rossi C, Balss U, Lachaise M, Duque S (2012) Interferometric processing and products of the TanDEM-X mission. In: IEEE international geoscience and remote sensing symposium, pp 1904–1907. doi:10.1109/IGARSS.2012.6351133

  19. Groh A, Ewert H, Scheinert M, Fritsche M, Rülke A, Richter A, Rosenau R, Dietrich R (2012) An investigation of glacial isostatic adjustment over the Amundsen Sea sector, West Antarctica. Glob Planet Change 98–99:45–53. doi:10.1016/j.gloplacha.2012.08.001

    Article  Google Scholar 

  20. Gruber C, Moon Y, Flechtner F, Dahle C, Novák P, König R, Neumayer K (2013) Submonthly GRACE solutions from localizing integral equations and Kalman filtering. In: Rizos C, Willis P (eds) IAG symposia “Earth on the Edge: Science for a Sustainable Planet”, vol 139. Springer, Berlin

  21. Gunter B, Didova O, Riva R, Ligtenberg S, Lenaerts J, King M, van den Broeke M, Urban T (2013) Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. Cryosphere Discuss 7(4):3497–3541. doi:10.5194/tcd-7-3497-2013

    Article  Google Scholar 

  22. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864. doi:10.1111/j.1365-246X.2009.04139.x

    Article  Google Scholar 

  23. Horwath M, Legrésy B, Rémy F, Blarel F, Lemoine JM (2012) Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys J Int 189(2):863–876. doi:10.1111/j.1365-246X.2012.05401.x

    Article  Google Scholar 

  24. Ivins E, James T (2005) Antarctic glacial isostatic adjustment: a new assessment. Ant Sci 14(4):541–553. doi:10.1017/S0954102005002968

    Article  Google Scholar 

  25. Ivins E, James T, Wahr J, Schrama OE, Landerer F, Simon K (2013) Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J Geophys Res Solid Earth 118(6):3126–3141. doi:10.1002/jgrb.50208

    Article  Google Scholar 

  26. Jenkins A, Dutrieux P, Jacobs S, McPhail S, Perrett J, Webb A, White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3(7):468–472. doi:10.1038/ngeo890

    Article  Google Scholar 

  27. Jezek K, Floricioiu D, Farness K, Yague-Martinez N, Eineder M (2009) TerraSAR-X observations of the recovery glacier system, Antarctica. In: IEEE international geoscience and remote sensing symposium, vol 2, pp 226–229. doi:10.1109/IGARSS.2009.5418049

  28. Joughin I, Tulaczyk S (2002) Positive mass balance of the ross ice streams, West Antarctica. Science 295:476–480

    Article  Google Scholar 

  29. King M, Bingham R, Moore P, Whitehouse P, Bentley M, Milne G (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature. doi:10.1038/nature11621

    Google Scholar 

  30. Krabill WB (2010) IceBridge ATM L2 Icessn elevation, slope, and roughness. [subsets 20111104 and 20121012]. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center

  31. Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–3341. doi:10.1109/TGRS.2007.900693

    Article  Google Scholar 

  32. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod. doi:10.1007/s00190-007-0143-3

    Google Scholar 

  33. Lee D, Storey J, Choate M, Hayes R (2004) Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Trans Geosci Remote Sens 42(12):2786–2795

    Article  Google Scholar 

  34. Lenaerts J, van den Broeke M, van de Berg W, van Meijgaard E (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett 39(4):L04,501. doi:10.1029/2011GL050713

    Google Scholar 

  35. Lenaerts J, van Meijgaard E, van den Broeke M, Ligtenberg S, Horwath M, Isaksson E (2013) Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys Res Lett 40(11):2684–2688. doi:10.1002/grl.50559

    Article  Google Scholar 

  36. Ligtenberg S, Helsen M, van den Broeke M (2011) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 5(4):809–819. doi:10.5194/tc-5-809-2011

    Article  Google Scholar 

  37. Linow S (2011) Deriving accumulation rates of greenland and the antarctic ice sheet from microwave remote sensing data. PhD thesis, University of Bremen

  38. Linow S, Hörhold MW, Freitag J (2012) Grain-size evolution of polar firn: a new empirical grain growth parameterization based on x-ray microcomputer tomography measurements. J Glaciol 58(212):1245–1252. doi:10.3189/2012JoG11J256

    Article  Google Scholar 

  39. Loveland T, Dwyer J (2012) Landsat: building a strong future. Remote Sens Environ 122:22–29. doi:10.1016/j.rse.2011.09.022

    Article  Google Scholar 

  40. MacGregor J, Catania G, Markowski M, Andrews A (2012) Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011. J Glac 58(209):458–466. doi:10.3189/2012JoG11J262

    Article  Google Scholar 

  41. NSIDC (2012) National Snow and Ice Data Center: GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data (Release 33). ftp://n4ftl01u.ecs.nasa.gov/SAN/GLAS/GLA12.033/

  42. Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  43. Picciotto E, Crozaz G, De Breuck W (1971) Accumulation on the South Pole—Queen Maud Land Traverse, 1964–1968, Antarctic Snow and Ice Studies II, Antarct. Res. Ser., vol 16, AGU, Washington, DC, pp 257–315. doi:10.1029/AR016p0257

  44. Pritchard H, Arthern R, Vaughan D, Edwards L (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975. doi:10.1038/nature08471

    Article  Google Scholar 

  45. Pritchard H, Ligtenberg S, Fricker H, Vaughan D, van den Broeke M, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484(7395):502–505. doi:10.1038/nature10968

    Article  Google Scholar 

  46. Rabus B, Lang O, Adolphs U (2003) Interannual velocity variations and recent calving of Thwaites Glacier Tongue, West Antarctica. Ann Glac 36:215–224

    Article  Google Scholar 

  47. Richter A, Popov S, Dietrich R, Lukin V, Fritsche M, Lipenkov V, Matveev A, Wendt J, Yuskevich A, Masolov V (2008) Observational evidence on the stability of the hydro-glaciological regime of subglacial Lake Vostok. Geophys Res Lett 35(L11):502

    Google Scholar 

  48. Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn. doi:10.1016/j.jog.2011.02.003

  49. Rignot E (2008) Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys Res Lett 35:L12,505. doi:10.1029/2008GL033365

    Google Scholar 

  50. Rignot E, Bamber J, van den Broeke M, Davis C, Li Y (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110. doi:10.1038/ngeo102

    Article  Google Scholar 

  51. Rignot E, Mouginot J, Scheuchl B (2011a) Antarctic grounding line mapping from differential satellite radar interferometry. Geophys Res Lett 38(10). doi:10.1029/2011GL047109

  52. Rignot E, Mouginot J, Scheuchl B (2011b) Ice flow of the Antarctic ice sheet. Science 333(6048):1427–1430. doi:10.1126/science.1208336

    Article  Google Scholar 

  53. Rignot E, Velicogna I, van den Broeke M, Monaghan A, Lenaerts J (2011c) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(5):L05,503. doi:10.1029/2011GL046583

    Google Scholar 

  54. Riva R, Gunter B, Urban T, Vermeersen B, Lindenbergh R, Helsen M, Bamber J, van de Wal R, van den Broeke M, Schutz B (2009) Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288(3–4):516–523. doi:10.1016/j.epsl.2009.10.013

    Article  Google Scholar 

  55. Rosenau R, Dietrich R, Baessler M (2012) Temporal flow variations of major outlet glaciers in Greenland using landsat data. In: IEEE international geoscience and remote sensing symposium, pp 1557–1560. doi:10.1109/IGARSS.2012.6351100

  56. Rossi C, Rodriguez Gonzalez F (2012) TanDEM-X calibrated raw DEM generation. ISPRS J Photogramm Remote Sens 73:12–20. doi:10.1016/j.isprsjprs.2012.05.014

    Article  Google Scholar 

  57. Rotschky G, Rack W, Dierking W, Oerter H (2006) Retrieving snowpack properties and accumulation estimates from a combination of SAR and scatterometer measurements. IEEE Trans Geosci Remote Sens 44(4):943–956. doi:10.1109/TGRS.2005.862524

    Article  Google Scholar 

  58. Rott H, Sturm K, Miller H (1993) Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data. Ann Glac 17:337–343

    Google Scholar 

  59. Schutz B, Zwally H, Shuman C, Hancock D, DiMarzio J (2005) Overview of the ICESat mission. Geophys Res Lett 32:L21S01. doi:10.1029/2005GL024009

    Article  Google Scholar 

  60. Shepherd A, Wingham D, Rignot E (2004) Warm ocean is eroding West Antarctic ice sheet. Geophys Res Lett 31(L23):402. doi:10.1029/2004GL021106

    Google Scholar 

  61. Shepherd A, Ivins E, A G, Barletta V, Bentley M, Bettadpur S, Briggs K, Bromwich D, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King M, Lenaerts J, Li J, Ligtenberg S, Luckman A, Luthcke S, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas J, Paden J, Payne A, Pritchard H, Rignot E, Rott H, Sorensen L, Scambos T, Scheuchl B, Schrama E, Smith B, Sundal A, van Angelen J, van de Berg W, van den Broeke M, Vaughan D, Velicogna I, Wahr J, Whitehouse P, Wingham D, Yi D, Young D, Zwally H, (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi:10.1126/science.1228102

    Google Scholar 

  62. Solomon S, Qin D, Manning M, Alley R, Berntsen T, Bindoff N, Chen Z, Chidthaisong A, Gregory J, Hegerl G, Heimann M, Hewitson B, Hoskins B, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker T, Whetton P, Wood R, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  63. Studinger M, Koenig L, Martin S, Sonntag J (2010) Operation icebridge: using instrumented aircraft to bridge the observational gap between icesat and icesat-2. In: IEEE international geoscience and remote sensing symposium, pp 1918–1919. doi:10.1109/IGARSS.2010.5650555

  64. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09,607. doi:10.1029/2004GL019920

    Google Scholar 

  65. Thomas I, King M, Bentley M, Whitehouse P, Penna N, Williams S, Riva R, Lavallee D, Clarke P, King E, Hindmarsh R, Koivula H (2011) Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys Res Lett 38(22):L22,302. doi:10.1029/2011GL049277

    Google Scholar 

  66. Tinto K, Bell R (2011) Progressive unpinning of Thwaites Glacier from newly identified offshore ridge: constraints from aerogravity. Geophys Res Lett 38(20). doi:10.1029/2011GL049026

  67. Vaughan D, Bamber J, Giovinetto M, Russell J, Cooper A (1999) Reassessment of net surface mass balance in Antarctica. J Clim 12:933–946

    Article  Google Scholar 

  68. Wang X, Rummel R (2012) Using swarm for gravity field recovery: first simulation results. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy, international association of geodesy symposia, vol 137, pp 301–306. doi:10.1007/978-3-642-22078-4_45

  69. Werninghaus R, Buckreuss S (2010) The TerraSAR-X mission and system design. IEEE Trans Geosci Remote Sens 48(2):606–614. doi:10.1109/TGRS.2009.2031062

    Article  Google Scholar 

  70. Whitehouse P, Bentley M, Milne G, King M, Thomas I (2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys J Int 190(3):1464–1482. doi:10.1111/j.1365-246X.2012.05557.x

    Article  Google Scholar 

  71. Wiesmann A, Mätzler C (1998) Radiometric and structural measurements of snow samples. Radio Sci 33:273–289

    Article  Google Scholar 

  72. Zwally H, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445. doi:10.1016/S0264-3707(02)00042-X

    Article  Google Scholar 

  73. Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, Saba J, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glac 51(175):509–527

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the Priority Programme SPP1257 “Mass Transport and Mass Distribution in the Earth System”. TerraSAR-X and TanDEM-X data were provided by DLR within science proposals HYD1303 and XTI_GLAC0538, respectively. We gratefully acknowledge the helpful comments provided by two anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Groh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Groh, A., Ewert, H., Rosenau, R. et al. Mass, Volume and Velocity of the Antarctic Ice Sheet: Present-Day Changes and Error Effects. Surv Geophys 35, 1481–1505 (2014). https://doi.org/10.1007/s10712-014-9286-y

Download citation

Keywords

  • Antarctic ice sheet
  • Mass balance
  • Velocity
  • Accumulation