Surveys in Geophysics

, Volume 34, Issue 6, pp 731–753 | Cite as

Electromagnetic Methods of Lightning Detection

Article

Abstract

Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

Keywords

Lightning electromagnetic field signatures Lightning locating systems Detection efficiency Percentage of misclassified events Location accuracy Peak current estimation errors 

References

  1. Abarca SF, Corbosiero KL, Galarneau TJ Jr (2010) An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J Geophys Res 115:D18206. doi:10.1029/2009JD013411 CrossRefGoogle Scholar
  2. Betz H-D, Schmidt K, Oettinger WP (2009) LINET—an international VLF/LF lightning detection network in Europe. In: Betz H-D, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications, chap 5. Springer, Dordrecht, NLGoogle Scholar
  3. Biagi CJ, Cummins KL, Krider EP, Kehoe KE (2007) NLDN performance in Southern Arizona, Texas and Oklahoma in 2003–2004. J Geophys Res 112:D05208. doi:1029/2006JD007341 CrossRefGoogle Scholar
  4. Cianos N, Oetzel GN, Pierce ET (1972) A technique for accurately locating lightning at close ranges. J Appl Meteor 11:1120–1127CrossRefGoogle Scholar
  5. Cummins KL, Murphy MJ (2009) An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans EMC 51(3):499–518Google Scholar
  6. Demetriades NWS, Murphy MJ, Cramer JA (2010), Validation of Vaisala’s Global Lightning Dataset (GLD360) over the continental United States. Preprints, 29th Conference Hurricanes and Tropical Meteorology, 10–14 May, Tucson, AZ, 6 pGoogle Scholar
  7. Dowden RL, Brundell JB, Rodger CJ (2002) VLF lightning location by time of group arrival (TOGA) at multiple sites. J Atmos Solar Terr Phys 64(7):817–830CrossRefGoogle Scholar
  8. Dwyer JR (2005) A bolt out of the blue. Sci Am 292(5):64–71CrossRefGoogle Scholar
  9. Fleenor SA, Biagi CJ, Cummins KL, Krider EP, Shao X-M (2009) Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Great Plains. Atmos Res 91:333–352CrossRefGoogle Scholar
  10. Heckman S, Liu C (2010) The application of total lightning detection and cell tracking for severe weather prediction. In: Proceedings of GROUND’2010 & 4th LPE, Salvador, Brazil, Nov 2010, pp 234–240Google Scholar
  11. Hendry J (1993) Panning for lightning (including comments on the photos by M.A. Uman). Weatherwise 45(6):19CrossRefGoogle Scholar
  12. Horner F (1954) The accuracy of the location sources of atmospherics by radio direction finding. Proc IEEE 101:383–390Google Scholar
  13. Horner F (1957) Very–low–frequency propagation and direction finding. Proc IEEE 101B:73–80Google Scholar
  14. Hutchins ML, Holzworth RH, Brundell JB, Rodger CJ (2012a) Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci 47:RS6005. doi:10.1029/2012RS005049
  15. Hutchins ML, Holzworth RH, Rodger CJ, Brundell JB (2012b) Far field power of lightning strokes as measured by the World Wide Lightning Location Network. J Atmos Oceanic Technol 29:1102–1110. doi:10.1175/JTECH-D-11-00174.1 CrossRefGoogle Scholar
  16. Jerauld J, Rakov VA, Uman MA, Rambo KJ, Jordan DM, Cummins KL, Cramer JA (2005) An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning. J Geophys Res 110:D19106. doi:10.1029/2005JD005924 CrossRefGoogle Scholar
  17. Kidder RE (1973) The location of lightning flashes at ranges less than 100 km. J Atmos Terr Phys 35:283–290CrossRefGoogle Scholar
  18. Krider EP, Noggle RC, Uman MA (1976) A gated wideband magnetic direction finder for lightning return strokes. J Appl Meteor 15:301–306CrossRefGoogle Scholar
  19. Le Vine DM (1980) Sources of the strongest RF radiation from lightning. J Geophys Res 85:4091–4095CrossRefGoogle Scholar
  20. Lennon CL, Poehler HA (1982) Lightning detection and ranging. Astronaut Aeronautics 20:29–31CrossRefGoogle Scholar
  21. Lewis EA, Harvey RB, Rasmussen JE (1960) Hyperbolic direction finding with sferics of transatlantic origin. J Geophys Res 65:1879–1905CrossRefGoogle Scholar
  22. Lojou J-Y, Murphy MJ, Holle RL, Demetriades NWS (2009) Nowcasting of thunderstorms using VHF measurements. In: Betz H-D, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications, Chap 11. Springer, Dordrecht, NLGoogle Scholar
  23. Mach DM, MacGorman DR, Rust WD, Arnold RT (1986) Site errors and detection efficiency in a magnetic direction–finder network for locating lightning strikes to ground. J Atmos Ocean Tech 3:67–74CrossRefGoogle Scholar
  24. Mallick S, Rakov VA, Hill JD, Gamerota WR, Uman MA, Heckman S, Sloop CD, Liu C (2013) Calibration of the ENTLN against rocket-triggered lightning data. In: Proceedings of SIPDA 2013, Belo Horizonte, BrazilGoogle Scholar
  25. Mardiana R, Kawasaki Z-I (2000) Broadband radio interferometer utilizing a sequential triggering technique for locating fast-moving electromagnetic sources emitted from lightning. IEEE Trans lnstrum Meas 49:376–381CrossRefGoogle Scholar
  26. Morimoto T, Hirata A, Kawasaki Z, Ushio T, Matsumoto A, Lee JH (2004) An operational VHF broadband digital interferometer for lightning monitoring. IEEJ Trans Fundam Mater 124(12):1232–1238CrossRefGoogle Scholar
  27. Naccarato KP, Pinto O Jr, Garcia SAM, Murphy M, Demetriades N, Cramer J (2010) Validation of the new GLD360 dataset in Brazil: first results, ILDC, Orlando, FL, 19–22 July, 2010, 6 pGoogle Scholar
  28. Nag A, Rakov VA (2012) Positive lightning: an overview, new observations, and inferences. J Geophys Res 117:D08109. doi:10.1029/2012JD017545 CrossRefGoogle Scholar
  29. Nag A, Rakov VA, Tsalikis D, Cramer JA (2010) On phenomenology of compact intracloud lightning discharges. J Geophys Res 115:D14115. doi:10.1029/2009JD012957 CrossRefGoogle Scholar
  30. Nag A et al (2011) Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J Geophys Res 116:D02123. doi:10.1029/2010JD014929 CrossRefGoogle Scholar
  31. Nishino M, Iwai A, Kashiwagi M (1973) Location of the sources of atmospherics in and around Japan. In: Proceedings of Research Institute Atmospherics, Nagoya University, Japan, 20, pp 9–21Google Scholar
  32. Orville RE (2008) Development of the National Lightning Detection Network. Bull Am Meteorol Soc 89(2):180–190CrossRefGoogle Scholar
  33. Pierce ET (1977) Atmospherics and radio noise. In: Golde RH (ed) Lightning, vol. 1, Physics of Lightning. Academic Press, New York, pp 351–384Google Scholar
  34. Poelman DR, Schulz W, Vergeiner C (2013) Performance characteristics of distinct lightning detection networks covering Belgium. J Atmos Ocean Technol 30:942–951. doi:10.1175/JTECH-D-12-00162.1 CrossRefGoogle Scholar
  35. Ponjola H, Makela A (2013) The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos Res 123:117–128CrossRefGoogle Scholar
  36. Proctor DE (1971) A hyperbolic system for obtaining VHF radio pictures of lightning. J Geophys Res 76:1478–1489CrossRefGoogle Scholar
  37. Rakov VA (1999) Lightning electric and magnetic fields. In: Proceedings of the 13th International Zurich Symposium on EMC, Zurich, Switzerland, 16–18 Feb, 1999, pp 561–566Google Scholar
  38. Rakov VA (2005) Evaluation of the performance characteristics of lightning locating systems using rocket-triggered lightning. In: Proceedings of the International Symposium on Lightning Protection (VIII SIPDA), Sao Paulo, Brazil, pp 697–715Google Scholar
  39. Rakov VA, Uman MA (2003) Lightning: Physics and Effects. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Ray PS, MacGorman DR, Rust WD, Taylor WL, Rasmussen LW (1987) Lightning location relative to storm structure in a supercell storm and a multicell storm. J Geophys Res 92:5713–5724CrossRefGoogle Scholar
  41. Rison W, Thomas RJ, Krehbiel PR, Hamlin T, Harlin J (1999) A GPS-based three-dimensional lightning mapping system: initial observations in central New Mexico. Geophys Res Lett 26:3573–3576CrossRefGoogle Scholar
  42. Said RK, Inan US, Cummins KL (2010) Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J Geophys Res 115:D23108. doi:10.1029/2010JD013863 CrossRefGoogle Scholar
  43. Said RK, Cohen MB, Inan US (2013) Highly intense lightning over the oceans: estimated peak currents from global GLD360 observations. J Geophys Res Atmos 118. doi:10.1002/jgrd.50508
  44. Shao XM, Holden DN, Krehbiel PR (1996) Broadband radio interferometry for lightning observation. Geophys Res Lett 23:1917–1920CrossRefGoogle Scholar
  45. Smith DA, Shao XM, Holden DN, Rhodes CT, Brook M, Krehbiel PR, Stanley M, Rison W, Thomas RJ (1999) A distinct class of isolated intracloud discharges and their associated radio emissions. J Geophys Res 104(D4):4189–4212. doi:10.1029/1998JD200045 Google Scholar
  46. Smith DA, Eack KB, Harlin J, Heavner MJ, Jacobson AR, Shao XM, Massey RS, Wiens KC (2002) The Los Alamos Sferic Array: a research tool for lightning investigations. J Geophys Res 107(D13):4183. doi:10.1029/2001JD000502 Google Scholar
  47. Stolzenburg M, Marshall TC, Karunarathne S, Karunarathna N, Warner TA, Orville RE, Betz H-D (2012) Strokes of upward illumination occurring within a few milliseconds after typical lightning return strokes. J Geophys Res 117:D15203. doi:10.1029/2012JD017654 CrossRefGoogle Scholar
  48. Taylor WL (1978) A VHF technique for space–time mapping of lightning discharge processes. J Geophys Res 83:3575–3583CrossRefGoogle Scholar
  49. Thomas RJ, Krehbiel PR, Rison W, Hunyady SJ, Winn WP, Hamlin T, Harlin J (2004) Accuracy of the Lightning Mapping Array. J Geophys Res 109:D14207. doi:10.1029/2004JD004549 CrossRefGoogle Scholar
  50. Wilson N, Myers J, Cummins K, Hutchinson M, Nag A (2013) Lightning attachment to wind turbines in Central Kansas: video observations, correlation with the NLDN and in situ peak current measurements. European Wind Energy Association (EWEA), Vienna, Austria, 4–7 Feb, 2013, 8 pGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations