Skip to main content

Advertisement

Log in

Toward Better Understanding of Sprite Streamers: Initiation, Morphology, and Polarity Asymmetry

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This paper presents a literature survey on the recent developments related to modeling studies of transient luminous events termed sprites and sprite halos that are produced at mesospheric and lower ionospheric altitudes in the Earth’s atmosphere by lightning. The primary emphasis is placed on publications that appeared in the refereed literature starting from year 2010 and up to the present date. The survey focuses on the interpretation of morphological features observed in sprites. We introduce parameters typically used for quantitative description of electron avalanches and discuss the importance of space charge effects on different spatial scales, including sprite halos (exhibiting 10s of km transverse extents) and sprite streamers (requiring submeter resolution for accurate description). A special emphasis is placed on the interpretation of initiation and development of sprite streamers captured in high-speed video observations and a critical review of the most recent modeling efforts related to these observations. We also discuss fundamental reasons for polarity asymmetry in existing sprite observations indicating that vast majority of sprites with well-developed streamer structure are produced by positive cloud-to-ground lightning discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Achat S, Teisseyre Y, Marode E (1992) The scaling of the streamer-to-arc transition in a positive point-to-plane gap with pressure. J Phys D Appl Phys 25(4):661–668

    Google Scholar 

  • Adachi T, Fukunishi H, Takahashi Y, Hiraki Y, Hsu RR, Su HT, Chen AB, Mende SB, Frey HU, Lee LC (2006) Electric field transition between the diffuse and streamer regions of sprites estimated from ISUAL/array photometer measurements. Geophys Res Lett 33(17):L17803

    Google Scholar 

  • Allen NL, Ghaffar A (1995) The conditions required for the propagation of a cathode-directed positive streamer in air. J Phys D Appl Phys 28:331–337

    Google Scholar 

  • Babaeva NY, Naidis GV (1997) Dynamics of positive and negative streamers in air in weak uniform electric fields. IEEE Trans Plasma Sci 25:375–379

    Google Scholar 

  • Barrington-Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106(A2):1741–1750. doi:10.1029/2000JA000073

    Google Scholar 

  • Bazelyan EM, Raizer YP (2000) Lightning physics and lightning protection, IoP Publishing Ltd, Bristol

    Google Scholar 

  • Boeck WL, Vaughan OH, Blakeslee RJ, Vonnegut B, Brook M (1998) The role of the space shuttle videotapes in the discovery of sprites, jets and elves. J Atmos Sol Terr Phys 60:669–677

    Google Scholar 

  • Bourdon A, Pasko VP, Liu NY, Celestin S, Segur P, Marode E (2007) Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations. Plasma Source Sci Technol 16:656–678

    Google Scholar 

  • Briels TMP, Kos J, van Veldhuizen EM, Ebert U (2006) Circuit dependence of the diameter of pulsed positive streamers in air. J Phys D Appl Phys 39:5201–5210

    Google Scholar 

  • Bucsela E, Morrill J, Heavner M, Siefring C, Berg S, Hampton D, Moudry D, Wescott E, Sentman D (2003) \(\hbox{N}_2(\hbox{B}^3\Uppi_g)\) and \(\hbox{N}_2^+(\hbox{A}^2 \Uppi_u)\) vibrational distributions observed in sprites. J Atmos Sol Terr Phys 65:583–590

    Google Scholar 

  • Celestin S, Pasko VP (2010) Effects of spatial non-uniformity of streamer discharges on spectroscopic diagnostics of peak electric fields in transient luminous events. Geophys Res Lett 37:L07804

    Google Scholar 

  • Celestin S, Pasko VP (2011) Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J Geophys Res 116:A03315

    Google Scholar 

  • Chanrion O, Neubert T (2008) A PIC-MCC code for simulation of streamer propagation in air. J Comput Phys 227(15):7222–7245

    Google Scholar 

  • Chanrion O, Neubert T (2010) Production of runaway electrons by negative streamer discharges. J Geophys Res 115:A00E32. doi:10.1029/2009JA014774

    Google Scholar 

  • Cummer SA, Lyons WA (2005) Implication of lightning charge moment changes for sprite initiation. J Geophys Res 110:A04304. doi:10.1029/2004JA010812

    Google Scholar 

  • Cummer SA, Jaugey NC, Li JB, Lyons WA, Nelson TE, Gerken EA (2006) Submillisecond imaging of sprite development and structure. Geophys Res Lett 33:L04104. doi:10.1029/2005GL024969

    Google Scholar 

  • Dhali SK, Williams PF (1987) Two-dimensional studies of streamers in gases. J Appl Phys 62:4696–4707

    Google Scholar 

  • Ebert U, Sentman D (2008) Editorial Review: Streamers, sprites, leaders, lightning: from micro- to macroscales. J Phys D Appl Phys 41:230301

    Google Scholar 

  • Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E (2010) Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. J Geophys Res 115:A00E43

    Google Scholar 

  • Fishman GJ, Bhat PN, Mallozzi R, Horack JM, Koshut T, Kouveliotou C, Pendleton GN, Meegan CA, Wilson RB, Paciesas WS, Goodman SJ, Christian HJ (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264(5163):1313–1316

    Google Scholar 

  • Frey HU, Mende SB, Cummer SA, Li J, Adachi T, Fukunishi H, Takahashi Y, Chen AB, Hsu RR, Su HT, Chang YS (2007) Halos generated by negative cloud-to-ground lightning. Geophys Res Lett 34:L18801

    Google Scholar 

  • Gallimberti I, Bacchiega G, Bondiou-Clergerie A, Lalande P (2002) Fundamental processes in long air gap discharges. C R Phys 3(10):1335–1359. doi:10.1016/S1631-0705(02)01414-7

    Google Scholar 

  • Gerken EA, Inan US (2002) A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery. J Geophys Res 107(A11):1344. doi:10.1029/2002JA009248

    Google Scholar 

  • Gerken EA, Inan US (2003) Observations of decameter-scale morphologies in sprites. J Atmos Sol Terr Phys 65:567–572. doi:10.1016/S1364-6826(02)00333-4

    Google Scholar 

  • Gerken EA, Inan US, Barrington-Leigh CP (2000) Telescopic imaging of sprites. Geophys Res Lett 27:2637–2640

    Google Scholar 

  • Gordillo-Vazquez FJ, Luque A (2010) Electrical conductivity in sprite streamer channels. Geophys Res Lett 37:L16809. doi:10.1029/2010GL044349

    Google Scholar 

  • Haldoupis C, Amvrosialdi N, Cotts BRT, van der Velde OA, Chanrion O, Neubert T (2010) More evidence for a one-to-one correlation between Sprites and Early VLF perturbations. J Geophys Res 115:A07304

    Google Scholar 

  • Haldoupis C, Cohen M, Cotts B, Arnone E, Inan U (2012) Long-lasting D-region ionospheric modifications, caused by intense lightning in association with elve and sprite pairs. Geophys Res Lett 39:L16801

    Google Scholar 

  • Han F, Cummer SA (2010) Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales. J Geophys Res 115:A09323. doi:10.1029/2010JA015437

    Google Scholar 

  • Hayakawa M, Nakamura T, Hobara Y, Williams E (2004) Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J Geophys Res 109:A01312. doi:10.1029/2003JA009905

    Google Scholar 

  • Hu WY, Cummer SA, Lyons WA (2002) Lightning charge moment changes for the initiation of sprites. Geophys Res Lett 29(8):1279. doi:10.1029/2001GL014593

    Google Scholar 

  • Hu WY, Cummer SA, Lyons WA (2007) Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields. J Geophys Res 112(D13):D13115

    Google Scholar 

  • Inan US (2002) Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes. C R Phys 3(10):1411–1421

    Google Scholar 

  • Inan US, Cummer SA, Marshall RA (2010) A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J Geophys Res 115:A00E36

    Google Scholar 

  • Kanmae T, Stenbaek-Nielsen HC, McHarg MG (2007) Altitude resolved sprite spectra with 3 ms temporal resolution. Geophys Res Lett 34:L07810

    Google Scholar 

  • Kanmae T, Stenbaek-Nielsen HC, McHarg MG, Haaland RK (2012) Diameter–speed relation of sprite streamers. J Phys D Appl Phys 45(27):275203. doi:10.1088/0022-3727/45/27/275203

    Google Scholar 

  • Kosar BC, Liu NY, Rassoul HK (2012) Luminosity and propagation characteristics of sprite streamers initiated from small ionospheric disturbances at sub-breakdown conditions. J Geophys Res 117:A08328. doi:10.1029/2012JA017632

    Google Scholar 

  • Kuo CL (2012) The middle atmosphere: discharge phenomena. In: Ghadawala R (ed) Advances in spacecraft systems and orbit determination, InTech, Shanghai, pp 1–28

    Google Scholar 

  • Kuo CL, Hsu RR, Su HT, Chen AB, Lee LC, Mende SB, Frey HU, Fukunishi H, Takahashi Y (2005) Electric fields and electron energies inferred from the ISUAL recorded sprites. Geophys Res Lett 32:L19103. doi:10.1029/2005GL023389

    Google Scholar 

  • Kuo CL, Chou JK, Tsai LY, Chen AB, Su HT, Hsu RR, Cummer SA, Frey HU, Mende SB, Takahashi Y, Lee LC (2009) Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets. J Geophys Res 114:A04314

    Google Scholar 

  • Lang TJ, Li J, Lyons WA, Cummer SA, Rutledge SA, MacGorman DR (2011) Transient luminous events above two mesoscale convective systems: charge moment change analysis. J Geophys Res 116:A10306. doi:10.1029/2011JA016758

    Google Scholar 

  • Li C, Ebert U, Hundsdorfer W (2009) 3D hybrid computations for streamer discharges and production of runaway electrons. J Phys D Appl Phys 42(20):202003. doi:10.1088/0022-3727/42/20/202003

    Google Scholar 

  • Li J, Cummer S (2011) Estimation of electric charge in sprites from optical and radio observations. J Geophys Res 116:A01301. doi:10.1029/2010JA015391

    Google Scholar 

  • Li J, Cummer SA (2009) Measurement of sprite streamer acceleration and deceleration. Geophys Res Lett 36:L10812

    Google Scholar 

  • Li J, Cummer SA (2012) Relationship between sprite streamer behavior and lightning-driven electric fields. J Geophys Res 117:A01317

    Google Scholar 

  • Li J, Cummer SA, Lu G, Zigoneanu L (2012) Charge moment change and lightning-driven electric fields associated with negative sprites and halos. J Geophys Res 117:A09310. doi:10.1029/2012JA017731

    Google Scholar 

  • Liu NY (2010) Model of sprite luminous trail caused by increasing streamer current. Geophys Res Lett 37:L04102. doi:10.1029/2009GL042214

    Google Scholar 

  • Liu NY (2012) Multiple ion species fluid modeling of sprite halos and the role of electron detachment of O in their dynamics. J. Geophys. Res. 117:A03308. doi:10.1029/2011JA017062

    Google Scholar 

  • Liu NY, Pasko VP (2004) Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J Geophys Res 109:A04301. doi:10.1029/2003JA010064

    Google Scholar 

  • Liu NY, Pasko VP (2005) Molecular nitrogen LBH band system far-UV emissions of sprite streamers. Geophys Res Lett 32:L05104. doi:10.1029/2004GL022001

    Google Scholar 

  • Liu NY, Pasko VP (2006) Effects of photoionization on similarity properties of streamers at various pressures in air. J Phys D Appl Phys 39:327–334. doi:10.1088/0022-3727/39/2/013

    Google Scholar 

  • Liu NY, Pasko VP (2010) NO-gamma emissions from streamer discharges: direct electron impact excitation versus resonant energy transfer. J Phys D Appl Phys 43:082001

    Google Scholar 

  • Liu NY, Pasko VP, Burkhardt DH, Frey HU, Mende SB, Su H-T, Chen AB, Hsu R-R, Lee L-C, Fukunishi H, Takahashi Y (2006) Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT-2 satellite. Geophys Res Lett 33:L01101. doi:10.1029/2005GL024243

    Google Scholar 

  • Liu NY, Pasko VP, Adams K, Stenbaek-Nielsen HC, McHarg MG (2009) Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations. J Geophys Res 114:A00E03

    Google Scholar 

  • Liu NY, Pasko VP, Frey HU, Mende SB, Su H-T, Chen AB, Hsu R-R, Lee L-C (2009) Assessment of sprite initiating electric fields and quenching altitude of \(\hbox{a}^1\Uppi_g\) state of N2 using sprite streamer modeling and ISUAL spectrophotometric measurements. J Geophys Res 114:A00E02

    Google Scholar 

  • Liu NY, Kosar B, Sadighi S, Dwyer JR, Rassoul HK (2012) Formation of streamer discharges from an isolated ionization column at subbreakdown conditions. Phys Rev Lett 109(2):025002. doi:10.1103/PhysRevLett.109.025002

    Google Scholar 

  • Loeb LB, Meek JM (1940) The mechanism of spark discharge in air at atmospheric pressure. J Appl Phys 11:438–447

    Google Scholar 

  • Lu G, Blakeslee RJ, Li J, Smith DM, Shao XM, McCaul EW, Buechler DE, Christian HJ, Hall JM, Cummer SA (2010) Lightning mapping observation of a terrestrial gamma-ray flash. Geophys Res Lett 37:L11806. doi:10.1029/2010GL043494

    Google Scholar 

  • Lu G, Cummer SA, Li J, Han F, Smith DM, Grefenstette BW (2011) Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes. J Geophys Res 116:A03316. doi:10.1029/2010JA016141

    Google Scholar 

  • Lu G, Cummer SA, Blakeslee RJ, Weiss S, Beasley WH (2012) Lightning morphology and impulse charge moment change of high peak current negative strokes. J Geophys Res 117:D04212. doi:10.1029/2011JD016890

    Google Scholar 

  • Luque A, Ebert U (2009) Emergence of sprite streamers from screening-ionization waves in the lower ionosphere. Nat Geosci 2(11):757–760. doi:10.1038/NGEO662

    Google Scholar 

  • Luque A, Ebert U (2010) Sprites in varying air density: charge conservation, glowing negative trails and changing velocity. Geophys Res Lett 37:L06806. doi:10.1029/2009GL041982

    Google Scholar 

  • Luque A, Gordillo-Vazquez FJ (2011) Sprite beads originating from inhomogeneities in the mesospheric electron density. Geophys Res Lett 38:L04808. doi:10.1029/2010GL046403

    Google Scholar 

  • Luque A, Gordillo-Vazquez FJ (2012) Mesospheric electric breakdown and delayed sprite ignition caused by electron detachment. Nat Geosci 5(1):22–25. doi:10.1038/NGEO1314

    Google Scholar 

  • Lyons WA (1996) Sprite observations above the U.S. high plains in relation to their parent thunderstorm systems. J Geophys Res 101:29,641–29, 652

    Google Scholar 

  • Lyons WA, Nelson TE, Armstrong RA, Pasko VP, Stanley MA (2003) Upward electrical discharges from thunderstorm tops. Bull Am Meteorol Soc 84(4):445–454. doi:10.1175/BAMS-84-4-445

    Google Scholar 

  • Marshall RA (2012) An improved model of the lightning electromagnetic field interaction with the D-region ionosphere. J Geophys Res 117:A03316

    Google Scholar 

  • Marshall RA, Inan US (2006) High-speed measurements of small-scale features in sprites: Sizes and lifetimes. Radio Sci 41:RS6S43. doi:10.1029/2005RS003353

    Google Scholar 

  • Marshall TC, Rust WD (1993) Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull Am Meteorol Soc 74(11):2159–2170

    Google Scholar 

  • McHarg MG, Stenbaek-Nielsen HC, Kanmae T (2007) Streamer development in sprites. Geophys Res Lett 34:L06804. doi:10.1029/2006GL027854

    Google Scholar 

  • McHarg MG, Stenbaek-Nielsen HC, Kanmae T, Haaland RK (2010) Streamer tip splitting in sprites. J Geophys Res 115:A00E53. doi:10.1029/2009JA014850

    Google Scholar 

  • McHarg MG, Stenbaek-Nielsen HC, Kanmae T, Haaland RK (2011) High-speed imaging of sprite streamers. IEEE Trans Plasma Sci 39(11, Part 1, SI):2266–2267. doi:10.1109/TPS.2011.2165299

    Google Scholar 

  • Meek J (1940) A theory of spark discharge. Phys Rev 57(8):722–728

    Google Scholar 

  • Mishin EV, Milikh GM (2008) Blue jets: upward lightning. Space Sci Rev 137(1–4):473–488

    Google Scholar 

  • Montijn C, Ebert U (2006) Diffusion correction to the Raether–Meek criterion for the avalanche-to-streamer transition. J Phys D Appl Phys 39(14):2979–2992. doi:10.1088/0022-3727/39/14/017

    Google Scholar 

  • Morrill J, Bucsela E, Siefring C, Heavner M, Berg S, Moudry D, Slinker S, Fernsler R, Wescott E, Sentman D, Osborne D (2002) Electron energy and electric field estimates in sprites derived from ionized and neutral N2 emissions. Geophys Res Lett 29(10):1462. doi:10.1029/2001GL014018

    Google Scholar 

  • Morrill JS, Bucsela EJ, Pasko VP, Berg SL, Benesch WM, Wescott EM, Heavner MJ (1998) Time resolved N2 triplet state vibrational populations and emissions associated with red sprites. J Atmos Sol Terr Phys 60:811–829

    Google Scholar 

  • Morrow R, Lowke JJ (1997) Streamer propagation in air. J Phys D Appl Phys 30:614–627

    Google Scholar 

  • Moss GD, Pasko VP, Liu NY, Veronis G (2006) Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J Geophys Res 111:A02307. doi:10.1029/2005JA011350

    Google Scholar 

  • Naidis GV (2009) Positive and negative streamers in air: velocity–diameter relation. Phys Rev E 79(5, Part 2):057401. doi:10.1103/PhysRevE.79.057401

    Google Scholar 

  • Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, CF CFE, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, van der Velde O, Soula O, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29(2):71–137

    Google Scholar 

  • Neubert T, Chanrion O, Arnone E, Zanotti F, Cummer S, Li J, Fuellekrug M, Soula S, van der Velde O (2011) The properties of a gigantic jet reflected in a simultaneous sprite: observations interpreted by a model. J Geophys Res 116:A12329. doi:10.1029/2011JA016928

    Google Scholar 

  • Pachter J, Qin J, Pasko VP (2012) Investigation of long-delayed sprite inception mechanism and the role of electron detachment. NSF EE REU Penn State Annu Res J 10:1–12

    Google Scholar 

  • Pasko VP (2006) Theoretical modeling of sprites and jets. In: Füllekrug M, Mareev EA, Rycroft MJ (eds) Sprites, elves and intense lightning discharges, NATO science series II: mathematics, physics and chemistry, 225th edn. Springer, Heidleberg, pp 253–311

    Google Scholar 

  • Pasko VP (2007) Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Sci Technol 16:S13–S29. doi:10.1088/0963-0252/16/1/S02

    Google Scholar 

  • Pasko VP (2008) Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere. Plasma Phys Control. Fusion 50:124050

    Google Scholar 

  • Pasko VP (2010) Recent advances in theory of transient luminous events. J Geophys Res 50:A00E35

    Google Scholar 

  • Pasko VP, Stenbaek-Nielsen HC (2002) Diffuse and streamer regions of sprites. Geophys Res Lett 29(10):1440. doi:10.1029/2001GL014241

    Google Scholar 

  • Pasko VP, Inan US, Bell TF (1995) Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud fields. Geophys Res Lett 22(4):365–368

    Google Scholar 

  • Pasko VP, Inan US, Bell TF, Taranenko YN (1997) Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J Geophys Res 102(A3):4529–4561. doi:10.1029/96JA03528

    Google Scholar 

  • Pasko VP, Inan US, Bell TF (1998) Spatial structure of sprites. Geophys Res Lett 25:2123–2126

    Google Scholar 

  • Pasko VP, Inan US, Bell TF, Reising SC (1998) Mechanism of ELF radiation from sprites. Geophys Res Lett 25(18):3493–3496

    Google Scholar 

  • Pasko VP, Inan US, Bell TF (1999) Mesospheric electric field transients due to tropospheric lightning discharges. Geophys Res Lett 26:1247–1250

    Google Scholar 

  • Pasko VP, Inan US, Bell TF (2000) Fractal structure of sprites. Geophys Res Lett 27(4):497–500. doi:10.1029/1999GL010749

    Google Scholar 

  • Pasko VP, Inan US, Bell TF (1996) Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields. Geophys Res Lett 23(6):649–652

    Google Scholar 

  • Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci Rev 168(1–4):475–516. doi:10.1007/s11214-011-9813-9

    Google Scholar 

  • Petrov NI, Petrova GN (1999) Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere. Tech Phys 44:472–475

    Google Scholar 

  • Qin J, Celestin S, Pasko VP (2011) On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity. J Geophys Res 116:A06305

    Google Scholar 

  • Qin J, Celestin S, Pasko VP (2012) Formation of single and double-headed streamers in sprite-halo events. Geophys Res Lett 39:L05810. doi:10.1029/2012GL051088

    Google Scholar 

  • Qin J, Celestin S, Pasko VP (2012) Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites. Geophys Res Lett 39:L22801. doi:2012GL053951

    Google Scholar 

  • Qin J, Celestin S, Pasko VP (2012) Low frequency electromagnetic radiation from sprite streamers. Geophys Res Lett 39:L22803. doi:2012GL053991

    Google Scholar 

  • Qin J, Celestin S, Pasko VP (2013) Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions. J Geophys Res 118:2623–2638. doi:10.1029/2012JA017908

    Google Scholar 

  • Raizer YP (1991) Gas discharge physics, 225th edn, Springer, New York, NY

    Google Scholar 

  • Raizer YP, Milikh GM, Shneider MN, Novakovski SV (1998) Long streamers in the upper atmosphere above thundercloud. J Phys D Appl Phys 31:3255–3264

    Google Scholar 

  • Raizer YP, Milikh GM, Shneider MN (2010) Streamer- and leader-like processes in the upper atmosphere: models of red sprites and blue jets. J Geophys Res 115:A00E42

    Google Scholar 

  • Rocco A, Ebert U, Hundsdorfer W (2002) Branching of negative streamers in free flight. Phys Rev E 66:035102(R). doi:10.1103/PhysRevE.66.035102

    Google Scholar 

  • Rodger CJ (1999) Red sprites, upward lightning and VLF perturbations. Rev Geophys 37:317–336

    Google Scholar 

  • Roth RJ (1995) Industrial plasma engineering, vol 1: principles, IOP Publishing Ltd, Bristol

    Google Scholar 

  • Roussel-Dupre R, Colman JJ, Symbalisty E, Sentman D, Pasko VP (2008) Physical processes related to discharges in planetary atmospheres. Space Sci Rev 137(1–4):51–82

    Google Scholar 

  • Sentman DD, Stenbaek-Nielsen HC (2009) Chemical effects of weak electric fields in the trailing columns of sprite streamers. Plasma Sources Sci Technol 18(3):034012

    Google Scholar 

  • Sentman DD, Wescott EM, Osborne DL, Hampton DL, Heavner MJ (1995) Preliminary results from the Sprites94 campaign: red sprites. Geophys Res Lett 22:1205–1208

    Google Scholar 

  • Sentman DD, Stenbaek-Nielsen HC, McHarg MG, Morrill JS (2008) Plasma chemistry of sprite streamers. J Geophys Res 113:D11112

    Google Scholar 

  • Shao X-M, Lay EH, Jacobson AR (2013) Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nat Geosci 6(1):29–33. doi:10.1038/NGEO1668

    Google Scholar 

  • Shepherd TR, Rust WD, Marshall TC (1996) Electric fields and charges near 0 degrees C in stratiform clouds. Mon Weather Rev 124(5):919–938

    Google Scholar 

  • Siingh D, Singh AK, Patel RP, Singh R, Singh RP, Veenadhari B, Mukherjee M (2008) Thunderstorms, lightning, sprites and magnetospheric whistler-mode radio waves. Surv Geophys 29(6):499–551

    Google Scholar 

  • Smith DM, Lopez LI, Lin RP, Barrington-Leigh CP (2005) Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307(5712):1085–1088. doi:10.1126/science.1107466

    Google Scholar 

  • Stanley M, Krehbiel P, Brook M, Moore C, Rison W, Abrahams B (1999) High speed video of initial sprite development. Geophys Res Lett 26:3201–3204

    Google Scholar 

  • Stenbaek-Nielsen HC, McHarg MG (2008) High time-resolution sprite imaging: observations and implications. J Phys D Appl Phys 41:234009

    Google Scholar 

  • Stenbaek-Nielsen HC, Moudry DR, Wescott EM, Sentman DD, Sabbas FTS (2000) Sprites and possible mesospheric effects. Geophys Res Lett 27:3829–3832

    Google Scholar 

  • Stenbaek-Nielsen HC, McHarg MG, Kanmae T, Sentman DD (2007) Observed emission rates in sprite streamer heads. Geophys Res Lett 34:L11105. doi:10.1029/2007GL029881

    Google Scholar 

  • Stenbaek-Nielsen HC, Kanmae T, McHarg MG, Haaland R (2013) High speed observations of sprite streamers. Surv Geophys. doi:10.1007/s10712-013-9224-4

  • Stenbaek-Nielsen HC, Haaland R, McHarg MG, Hensley BA, Kanmae T (2010) Sprite initiation altitude measured by triangulation. J Geophys Res 115:A00E12. doi:10.1029/2009JA014543

    Google Scholar 

  • Surkov VV, Hayakawa M (2012) Underlying mechanisms of transient luminous events: a review. Ann Geophys Atmos Hydrospheres Space Sci 30(8):1185–1212. doi:10.5194/angeo-30-1185-2012

    Google Scholar 

  • Tardiveau P, Marode E, Agneray A, Cheaib M (2001) Pressure effects on the development of an electric discharge in non-uniform fields. J Phys D Appl Phys 34:1690–1696

    Google Scholar 

  • Tavani M, Marisaldi M, Labanti C, Fuschino F, Argan A, Trois A, Giommi P, Colafrancesco S, Pittori C, Palma F, Trifoglio M, Gianotti F, Bulgarelli A, Vittorini V, Verrecchia F, Salotti L, Barbiellini G, Caraveo P, Cattaneo PW, Chen A, Contessi T, Costa E, D’Ammando F, Del Monte E, De Paris G, Di Cocco G, Di Persio G, Donnarumma I, Evangelista Y, Feroci M, Ferrari A, Galli M, Giuliani A, Giusti M, Lapshov I, Lazzarotto F, Lipari P, Longo F, Mereghetti S, Morelli E, Moretti E, Morselli A, Pacciani L, Pellizzoni A, Perotti F, Piano G, Picozza P, Pilia M, Pucella G, Prest M, Rapisarda M, Rappoldi A, Rossi E, Rubini A, Sabatini S, Scalise E, Soffitta P, Striani E, Vallazza E, Vercellone S, Zambra A, Zanello D, AGILE Team (2011) Terrestrial gamma-ray flashes as powerful particle accelerators. Phys Rev Lett 106(1):018501. doi:10.1103/PhysRevLett.106.018501

    Google Scholar 

  • Vadislavsky E, Yair Y, Erlick C, Price C, Greenberg E, Yaniv R, Ziv B, Reicher N, Devir A (2009) Indication for circular organization of column sprite elements associated with Eastern Mediterranean winter thunderstorms. J Atmos Sol Terr Phys 71(17–18):1835–1839. doi:10.1016/j.jastp.2009.07.001

    Google Scholar 

  • Veronis G, Pasko VP, Inan US (2001) Characteristics of mesospheric optical emissions produced by lightning discharges. J Geophys Res 104(A6):12645–12656

    Google Scholar 

  • Vitello PA, Penetrante BM, Bardsley JN (1993) Multidimensional modeling of the dynamic morphology of streamer coronas. In: Penetrante BM, Schultheis SE (eds) Non-thermal plasma techniques for pollution control, NATO ASI Series. G34, part A edn. Springer, New York, pp 249–271

    Google Scholar 

  • Vitello PA, Penetrante BM, Bardsley JN (1994) Simulation of negative-streamer dynamics in nitrogen. Phys Rev E 49:5574–5598

    Google Scholar 

  • Wait JR, Spies KP (1964) Characteristics of the Earth-ionosphere waveguide for VLF radio waves, Tech note 300, National Bureau of Standards, Boulder, CO

  • Williams E, Downes E, Boldi R, Lyons W, Heckman S (2007) Polarity asymmetry of sprite-producing lightning: a paradox? Radio Sci 42:RS2S17. doi:10.1029/2006RS003488

    Google Scholar 

  • Williams E, Kuo CL, Bor J, Satori G, Newsome R, Adachi T, Boldi R, Chen A, Downes E, Hsu RR, Lyons W, Saba MMF, Taylor M, Su HT (2012) Resolution of the sprite polarity paradox: the role of halos. Radio Sci 47:RS2002. doi:10.1029/2011RS004794

    Google Scholar 

  • Wilson CTR (1925) The electric field of a thundercloud and some of its effects. Proc Phys Soc Lond 37:32D–37D

    Google Scholar 

  • Zabotin NA, Wright JW (2001) Role of meteoric dust in sprite formation. Geophys Res Lett 28(13):2593–2596. doi:10.1029/2000GL012699

    Google Scholar 

Download references

Acknowledgments

This research was supported by the United States National Science Foundation under AGS-0734083 Grant to Penn State University. S. Celestin’s research is supported by the French Space Agency (CNES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor P. Pasko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasko, V.P., Qin, J. & Celestin, S. Toward Better Understanding of Sprite Streamers: Initiation, Morphology, and Polarity Asymmetry. Surv Geophys 34, 797–830 (2013). https://doi.org/10.1007/s10712-013-9246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9246-y

Keywords

Navigation