Perspectives in Modelling Climate–Hydrology Interactions

Abstract

Various land–atmosphere coupling mechanisms exist that may lead to large-scale impacts on climate and hydrology. Some of them are still less understood and not adequately represented in state-of-the-art climate modelling. But, as the current generation of climate models enables consideration and implementation of important coupling processes, the present study provides perspectives for the modelling of relevant climate–hydrology interactions. On a more short-term perspective, these comprise anthropogenic land use and especially irrigation, which has been shown that it may even affect remote regions. On a long-term perspective, the coupling of hydrology to carbon cycle and vegetation becomes important, specifically the dynamics of permafrost and wetlands. Here, we present a review of current knowledge combined with some exemplary studies from a large-scale point of view. Therefore, we focus on climate–hydrology interactions that are relevant on scales utilized in the current or forthcoming global and regional climate modelling exercises.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, p 1042. http://www.acia.uaf.edu

  2. Asharaf S, Dobler A, Ahrens B (2012) Soil moisture-precipitation feedback processes in the Indian summer monsoon season. J Hydrometeorol 13:1461–1474. doi:10.1175/JHM-D-12-06.1

    Google Scholar 

  3. Asokan SM, Jarsjö J, Destouni G (2010) Vapor flux by evapotranspiration: effects of changes in climate, land-use and water-use. J Geophys Res 115:D24102. doi:10.1029/2010JD014417

    Google Scholar 

  4. Barling R, Moore I, Grayson R (1994) A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resour Res 30:1029–1044. doi:10.1029/93WR03346

    Google Scholar 

  5. Bathiany S, Claussen M, Brovkin V, Raddatz T, Gayler V (2010) Combined biogeophysical and biogeochemical effects of large-scale land-cover change in the MPI Earth system model. Biogeosciences 7:1383–1399. doi:10.5194/bg-7-1383-2010

    Google Scholar 

  6. Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Letters 36:L22401. doi:10.1029/2009GL039225

    Google Scholar 

  7. Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Ménard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011) The joint UK land environment simulator (JULES), model description—part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi:10.5194/gmd-4-677-2011

    Google Scholar 

  8. Beven K, Kirkby M (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Google Scholar 

  9. Bohn T, Lettenmaier D, Sathulur K, Bowling L, Podest E, McDonald K (2007) Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change. Environ Res Lett 2:045015. doi:10.1088/1748-9326/2/4/045015

    Google Scholar 

  10. Boike J, Roth K, Overduin PP (1998) Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resour Res 34(3):355–363

    Google Scholar 

  11. Bolton WR (2006) Dynamic modelling of the hydrologic processes in areas of discontinuous permafrost. Ph.D. dissertation, University of Alaska, Fairbanks, US, p 163

  12. Bonan G (1995) Sensitivity of a GCM simulation to inclusion of inland water surfaces. J Clim 8:2691–2704

    Google Scholar 

  13. Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapor and climate. Clim Dyn 22:597–603. doi:10.1007/s00382-004-0402-4

    Google Scholar 

  14. Bowling L, Lettenmaier DP (2010) Modeling the effects of lakes and wetlands on the water balance of arctic environments. J Hydrometeorol 11:276–295. doi:10.1175/2009JHM1084.1

    Google Scholar 

  15. Breckle S-W, Geldyeva GV (2012) Dynamics of the Aral Sea in geological and historical times. In: Breckle S-W et al (eds) Aralkum—a man-made desert: the desiccated floor of the Aral Sea (Central Asia), ecological studies, vol 218. Springer, Berlin, pp 13–35. doi:10.1007/978-3-642-21117-1_2

  16. Brown J, Ferrians OJ Jr., Heginbottom JA, Melnikov ES (eds.) (1997) Circum-Arctic map of permafrost and ground-ice conditions. U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources. Circum-Pacific Map Series CP-45, scale 1:10,000,000, Washington, DC

  17. Bullock A, Acreman M (2003) The role of wetlands in the hydrological cycle. Hydrol Earth Syst Sci 7:358–389. doi:10.5194/hess-7-358-2003

    Google Scholar 

  18. Cess RD, Potter GL, Zhang MH, Blanchet JP, Chalita S, Colman R, Dazlich DA, Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, LE Treut H, Liang XZ, Mahfouf JF, McAvaney BJ, Meleshko VP, Mitchell JF, Morcrette JJ, Norris PM, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo JM, Sokolov AS, Taylor KE, Washington WM, Wetherald RT, Yagai I (1991) Interpretation of snow-climate feedback as produced by 17 general circulation models. Science 253:888–892. doi:10.1126/science.253.5022.888

  19. Christensen JH (1999) Relaxation of soil variables in a regional climate model. Tellus 51A:474–685

    Google Scholar 

  20. Claussen M (2004) The global climate. In: Kabat P et al. (eds) Vegetation, water, humans and the climate. Global change—the IGBP series 24. Springer, Heidelberg, pp 33–57

  21. Coe M (1997) Simulating continental surface waters: an application to Holocene Northern Africa. J Clim 10:1680–1689

    Google Scholar 

  22. Coe M (1998) A linked global model of terrestrial hydrologic processes: simulation of modern rivers, lakes, and wetlands. J Geophys Res (D Atmos) 103:8885–8899. doi:10.1029/98JD00347

    Google Scholar 

  23. Coe M (2000) Modeling terrestrial hydrological systems at the continental scale: testing the accuracy of an atmospheric GCM. J Clim 13:686–704. doi:10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2

    Google Scholar 

  24. Coe M, Bonan G (1997) Feedbacks between climate and surface water in northern Africa during the middle Holocene. J Geophys Res (D Atmos) 102:11087–11101. doi:10.1029/97JD00343

    Google Scholar 

  25. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Google Scholar 

  26. Dale VH (1997) The relationship between land-use change and climate change. Ecol Appl 7:753–769

    Google Scholar 

  27. De Rosnay P, Polcher J, Laval K, Sabre M (2003) Integrated parameterization of irrigation in the land surface model ORCHIDEE: validation over Indian Peninsula. Geophys Res Lett 30:1986. doi:10.1029/2003GL018024

    Google Scholar 

  28. Decharme B, Douville H, Prigent C, Papa F, Aires F (2008) A new river flooding scheme for global climate applications: offline evaluation over South America. J Geophys Res (D Atmos) 113:D11110. doi:10.1029/2007JD009376

    Google Scholar 

  29. Decharme B, Alkama R, Papa F, Faroux S, Douville H, Prigent C (2011) Global off-line evaluation of the ISBA-TRIP flood model. Clim Dyn 38:1–24. doi:10.1007/s00382-011-1054-9

    Google Scholar 

  30. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  31. Destouni G, Jaramillo F, Prieto C (2013) Hydroclimatic shifts driven by human water use for food and energy production. Nat Clim Change 3:213–217

    Google Scholar 

  32. Dirmeyer P, Koster R, Guo ZAD (2006) Do global models properly represent the feedback between land and atmosphere? J Hydrometeorol 7:1177–1198

    Google Scholar 

  33. Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon BR (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59(60):143–156

    Google Scholar 

  34. Douglas EM, Niyogi D, Frolking S, Yeluripati JB, Pielke RA Sr, Niyogi N, Vörösmarty CJ, Mohanty UC (2006) Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophys Res Lett 33:L14403. doi:10.1029/2006GL026550

    Google Scholar 

  35. Douglas EM, Beltrán-Przekurat A, Niyogi D, Pielke RA Sr, Vörösmarty CJ (2009) The impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation—A mesoscale modeling perspective. Global Planet Change 67:117–128. doi:10.1016/j.gloplacha.2008.12.007

    Google Scholar 

  36. Ekici A, Beer C, Hauck C, Hagemann S (2013) Improved soil physics for simulating high latitude permafrost regions by the JSBACH terrestrial ecosystem model. Geosci Model Dev Discuss 6:2655–2698. doi:10.5194/gmdd-6-2655-2013

    Google Scholar 

  37. Falloon P, Betts RA (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci Total Environ 408:5667–5687

    Google Scholar 

  38. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310:1674–1678

    Google Scholar 

  39. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture - atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099

    Google Scholar 

  40. Frampton A, Painter SL, Lyon SW, Destouni G (2011) Nonisothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. J Hydrol 403:352–359. doi:10.1016/j.jhydrol.2011.04.010

    Google Scholar 

  41. Frampton A, Painter SL, Destouni G (2013) Permafrost degradation and subsurface-flow changes caused by surface warming trends. Hydrogeol J 21:271–280

    Google Scholar 

  42. French HM (1990) Editorial. Permafr Periglac Process 1:1. doi:10.1002/ppp.3430010102

    Google Scholar 

  43. French HM (2007) The periglacial environment, 3rd edn. Wiley, West Sussex, p 457

    Google Scholar 

  44. Friborg T, Soegaard H, Christensen T, Lloyd C, Panikov N (2003) Siberian wetlands: where a sink is a source, Geophys Res Lett 30:CLM 5–1–CLM 5–4. doi:10.1029/2003GL017797

  45. Gao X, Luo Y, Lin W, Zhao Z, Giorgi F (2003) Simulation of effects of land use change on climate in China by a regional climate model. Adv Atmos Sci 20(4):583–592

    Google Scholar 

  46. Gedney N, Cox P, Huntingford C (2004) Climate feedback from wetland methane emissions. Geophys Res Lett 31:L20503. doi:10.1029/2004GL020919

    Google Scholar 

  47. Gerten D (2013) A vital link: water and vegetation in the Anthropocene. Hydrol Earth Syst Sci Discuss 10:4439–4462. doi:10.5194/hessd-10-4439-2013

    Google Scholar 

  48. Gerten D, Rost S, von Bloh W, Lucht W (2008) Causes of change in 20th century global river discharge. Geophys Res Lett 35:L20405. doi:10.1029/2008GL035258

    Google Scholar 

  49. Gerten D, Hagemann S, Biemans H, Saeed F, Konzmann M (2011) Climate change and irrigation: feedbacks and impacts. WATCH technical report 47

  50. Gordon LJ, Steffen W, Jonsson BF, Folke C, Falkenmark M, Johannessen A (2005) Human modification of global water vapour flows from the land surface. Proc Natl Acad Sci USA 102:7612–7617

    Google Scholar 

  51. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195. doi:10.2307/1941811

    Google Scholar 

  52. Göttel H, Alexander J, Keup-Thiel E, Rechid D, Hagemann S, Blome T, Wolf A, Jacob D (2008) Influence of changed vegetations fields on regional climate simulations in the Barents Sea Region. Clim Change 87:35–50. doi:10.1007/s10584-007-9341-5

    Google Scholar 

  53. Gouttevin I, Krinner G, Ciais P, Polcher J, Legout C (2012) Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology. Cryosphere 6:407–430. doi:10.5194/tc-6-407-2012

    Google Scholar 

  54. Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39:1329–1348

    Google Scholar 

  55. Harding RJ, Best M, Blyth E, Hagemann S, Kabat P, Tallaksen LM, Warnaars T, Wiberg D, Weedon GP, van Lanen H, Ludwig F, Haddeland I (2011) Current knowledge of the terrestrial global water cycle. J Hydrometeorol 12:1149–1156. doi:10.1175/JHM-D-11-024.1

    Google Scholar 

  56. Hashimoto S, Wattenbach M, Smith P (2011) A new scheme for initializing process-based ecosystem models by scaling soil carbon pools. Ecolog Model 222:3598–3602

    Google Scholar 

  57. Haugen RK, Slaughter CW, Howe KE, Dingman SL (1982) Hydrology and climatology of the Caribou-Poker Creeks Research Watershed, Alaska, CRREL report 82-26, p 42

  58. Hinzman LD, Kane DI (1991) Snow hydrology of a headwater arctic basin, 2. Conceptual analysis and computer modeling. Water Resour Res 27(6):95–100

    Google Scholar 

  59. International Permafrost Association (1998) Circumpolar active-layer permafrost system (CAPS), version 1.0

  60. Jacob D, Bärring L, Christensen OB, Christensen JH, Hagemann S, Hirschi M, Kjellström E, Lenderink G, Rockel B, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81(Suppl 1):31–52

    Google Scholar 

  61. Karim A, Veizer J (2002) Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalaya: implications from hydrogen and oxygen isotopes in river water. J Geophys Res 107(D18):4362. doi:10.1029/2000JD000253

    Google Scholar 

  62. Khan S, Rana T, Gabriel HF, Ullah M (2008) Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrogeol J 16:1635–1654. doi:10.1007/s10040-008-0336-8

    Google Scholar 

  63. Kleinen T, Brovkin V, Getzieh R (2012) A dynamic model of wetland extent and peat accumulation: results for the Holocene. Biogeosciences 9:235–248. doi:10.5194/bg-9-235-2012

    Google Scholar 

  64. Koren V, Schaake J, Mitchell K, Duan OY, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res 104:19569–19585

    Google Scholar 

  65. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140

    Google Scholar 

  66. Koster RD, Guo Z, Dirmeyer PA, Bonan G, Chan E, Cox P, Davies H, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson KW, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2006) GLACE: the global land-atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610

    Google Scholar 

  67. Koven CD, Riley WJ, Stern A (2012) Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J Clim. doi:10.1175/JCLI-D-12-00228.1

    Google Scholar 

  68. Krinner G, Lézine A-M, Braconnot P, Sepulchre P, Ramstein G, Grenier C, Gouttevin I (2012) A reassessment of lake and wetland feedbacks on the North African Holocene climate. Geophys Res Lett 39:L07701. doi:10.1029/2012GL050992

    Google Scholar 

  69. Kumar P, Wiltshire A, Mathison C, Asharaf S, Ahrens B, Lucas-Picher P, Christensen JH, Gobiet A, Saeed F, Hagemann S, Jacob D (2013) Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Sci Total Environ. doi:10.1016/j.scitotenv.2013.01.051

    Google Scholar 

  70. Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z-L, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst 3:MS000 045. doi:10.1029/2011MS000045

  71. Lee E, Chase T, Rajagopalan B, Barry R, Wiggs T, Lawrence P (2009) Effects of irrigation and vegetation activity on early Indian summer monsoon variability. Int J Climatol 29:573–581. doi:10.1002/joc.1721

    Google Scholar 

  72. Levin D, Hopper I, Ernst F, Trivett M, Worthy N (2000) Evidence for a link between climate and northern wetland methane emissions. J Geophys Res (D Atmos) 105:4031–4038. doi:10.1029/1999JD901100

    Google Scholar 

  73. Lobell D, Bala G, Mirin A, Phillips T, Maxwell R, Rotman D (2009) Regional differences in the influence of irrigation on climate. J Clim 22:2248–2255. doi:10.1175/2008JCLI2703.1

    Google Scholar 

  74. Loew A, Holmes T, de Jeu R (2009) The European heat wave 2003: early indicators from multisensoral microwave remote sensing? J Geophys Res 114:D05103

    Google Scholar 

  75. Lucas-Picher P, Christensen JH, Saeed F, Kumar P, Asharaf S, Ahrens B, Wiltshire A, Jacob D, Hagemann S (2011) Can regional climate models represent the Indian monsoon? J Hydrometeorol 12:849–868. doi:10.1175/2011JHM1327.1

    Google Scholar 

  76. Luo LF, Robock A, Vinnikov KY, Schlosser CA, Slater AG, Boone A, Braden H, Cox P, de Rosnay P, Dickinson RE, Dai YJ, Duan QY, Etchevers P, Henderson-Sellers A, Gedney N, Gusev YM, Habets F, Kim JW, Kowalczyk E, Mitchell K, Nasonova ON, Noilhan J, Pitman AJ, Schaake J, Shmakin AB, Smirnova TG, Wetzel P, Xue YK, Yang ZL, Zeng QC (2003) Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia. J Hydrometeorol 4:334–351

    Google Scholar 

  77. Mackay JR (1988) Catastrophic lake drainage, Tuktoyaktuk peninsula area, District of Mackenzie. Geological Survey of Canada, paper 88-1D: 83–90

  78. Mahajan PN, Talwalkar DR, Chinthalu GR, Rajamaniet S (1995) Use of INSAT winds for better depiction of monsoon depression over Indian region. Meteorol Appl 2:333–339

    Google Scholar 

  79. Marengo J, Nobre CA (2001) The hydroclimatological framework in Amazonia. In: McClaine M, Victoria R, Richey J (eds) Biogeochemistry of the Amazon basin. Oxford University Press, Oxford, pp 17–42

    Google Scholar 

  80. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555. doi:10.1890/08-2025.1

    Google Scholar 

  81. Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The coupled model intercomparison project (CMIP). Bull Am Meteor Soc 81:313–318

    Google Scholar 

  82. Mishra V, Cherkauer K, Bowling L (2010) Parameterization of lakes and wetlands for energy and water balance studies in the great lakes region. J Hydrometeorol 11:1057–1082. doi:10.1175/2010JHM1207.1

    Google Scholar 

  83. Niu G-Y, Yang Z-L (2006) Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol 7:937–952. doi:10.1175/JHM538.1

    Google Scholar 

  84. O’Connor F, Boucher O, Gedney N, Jones C, Folberth G, Coppell R, Friedlingstein P, Collins W, Chappellaz J, Ridley J, Johnson C (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48:RG4005. doi:10.1029/2010RG000326

    Google Scholar 

  85. Oleson K, Dai Y, Bonan GB, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G-Y, Thornton P, Vertenstein M, Yang Z-L, Zeng X (2004): Technical description of the community land model (CLM). NCAR technical note NCAR/TN-461 + STR. doi:10.5065/D6N877R0

  86. Oyama MD, Nobre CA (2004) Climatic consequences of a large-scale desertification in northeast Brazil: a GCM simulation study. J Clim 17:3203–3213

    Google Scholar 

  87. Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land-use changes. J Clim 22:114–132. doi:10.1175/2008JCLI2390.1

    Google Scholar 

  88. Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci USA 104:15242–15247

    Google Scholar 

  89. Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DDS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond A 360:1705–1719. doi:10.1098/rsta.2002.1027

    Google Scholar 

  90. Puma MJ, Cook BI (2010) Effects of irrigation on global climate during the 20th century. J Geophys Res 115:D16120. doi:10.1029/2010JD014122

    Google Scholar 

  91. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333. doi:10.1063/1.1745010

    Google Scholar 

  92. Ridder De (2008) Soil temperature spin-up in land surface schemes. Theor Appl Climatol. doi:10.1007/s00704-008-0011-y

    Google Scholar 

  93. Ringeval B, De Noblet-Ducoudré N, Ciais P, Bousquet P, Prigent C, Papa F, Rossow W (2010) An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Global Biogeochem Cycles 24:GB2003. doi:10.1029/2008GB003354

    Google Scholar 

  94. Ringeval B, Friedlingstein P, Koven C, Ciais P, de Noblet-Ducoudré N, Decharme B, Cadule P (2011) Climate-CH4 feedback from wetlands and its interaction with the climate-CO2 feedback. Biogeosciences 8:2137–2157. doi:10.5194/bg-8-2137-2011

    Google Scholar 

  95. Riseborough D, Shiklomanov N, Etzelmüller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modelling. Permafr Periglac Process 19:137–156. doi:10.1002/ppp.615

    Google Scholar 

  96. Romanovskii NN, Hubberten H-W, Gavrilov AV, Tumskoy VE, Tipenko GS, Grigoriev MN (2000) Thermokarst and land-ocean interactions, Laptev Sea region, Russia. Permafr Periglac Process 11:137–152

    Google Scholar 

  97. Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008a) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi:10.1029/2007WR006331

    Google Scholar 

  98. Rost S, Gerten D, Heyder U (2008b) Human alterations of the terrestrial water cycle through land management. Adv Geosci 18:43–50. doi:10.5194/adgeo-18-43-2008

    Google Scholar 

  99. Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2009) Effects of global irrigation on the near-surface climate. Clim Dyn 33:159–175. doi:10.1007/s00382-008-0445-z

    Google Scholar 

  100. Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the South Asian Summer Monsoon. Geophys Res Letters 36:L20711. doi:10.1029/2009GL040625

    Google Scholar 

  101. Saeed F, Hagemann S, Jacob D (2011) A framework for the evaluation of the South Asian Summer Monsoon in a regional climate model applied to REMO. Int J Climatol. doi:10.1002/joc.2285

    Google Scholar 

  102. Saeed F, Hagemann S, Saeed S, Jacob D (2012) Influence of mid-latitude circulation on upper Indus basin precipitation: the explicit role of irrigation. Clim Dyn. doi:10.1007/s00382-012-1480-3

    Google Scholar 

  103. Schramm I, Boike J, Bolton WR, Hinzman LD (2007) Application of TopoFlow, a spatially distributed hydrological model, to the Imnavait Creek watershed, Alaska. J Geophys Res 112:46. doi:10.1029/2006JG000326

    Google Scholar 

  104. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714. doi:10.1641/B580807

    Google Scholar 

  105. Seneviratne SI, Stöckli R (2008) The role of land-atmosphere interactions for climate variability in Europe. In: Brönnimann et al. (ed) Climate variability and extremes during the past 100 years. Advances in Global Change Research 33, Springer, Heidelberg. (Book chapter)

  106. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    Google Scholar 

  107. Seneviratne SI, Corti T, Davin E, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi:10.1016/j.earscirev.2010.02.004

    Google Scholar 

  108. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Global Planet Change 77:85–96. doi:10.1016/j.gloplacha.2011.03.004

    Google Scholar 

  109. Siebert S, Döll P, Hoogeveen J, Faurés J-M, Frenken K, Feick S (2005) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci 9:535–547

    Google Scholar 

  110. Singh D, Bhadram CVV, Mandal GS (1995) New regression model for Indian summer monsoon rainfall. Meteorol Atmos Phys 55:77–86. doi:10.1007/BF01029603

    Google Scholar 

  111. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Google Scholar 

  112. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing arctic lakes. Science 308:1429

    Google Scholar 

  113. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  114. Stacke T, Hagemann S (2012) Development and validation of a global dynamical wetlands extent scheme. Hydrol Earth Syst Sci 16:2915–2933. doi:10.5194/hess-16-2915-2012

    Google Scholar 

  115. Staehli M, Jansson P-E, Lundin LC (1999) Soil moisture redistribution and infiltration in frozen sandy soils. Water Resour Res 35:95–103. doi:10.1029/1998WR900045

    Google Scholar 

  116. St-Hilaire F, Wu J, Roulet N, Frolking S, Lafleur P, Humphreys E, Arora V (2010) McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments. Biogeosciences 7:3517–3530. doi:10.5194/bg-7-3517-2010

    Google Scholar 

  117. Swenson SC, Lawrence DM, Lee H (2012) Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. J Adv Model Earth Syst 4. doi:10.1029/2012MS000165

  118. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23. doi:10.1029/2008GB003327

  119. Taylor CM, Lambin EF, Stephenne N, Harding RJ, Essery RLH (2002) The influence of land use change on climate in the Sahel. J Clim 15:3615–3629

    Google Scholar 

  120. Ter Maat HW, Hutjes RWA, Ohba R, Ueda H, Bisselink B, Bauer T (2006) Meteorological impact assessment of possible large scale irrigation in Southwest Saudi Arabia. Global Planet Change 54:183–201

    Google Scholar 

  121. Teuling AJ, Hirschi M, Ohmura A, Wild M, Reichstein M, Ciais P, Buchmann N, Ammann C, Montagnani L, Richardson AD, Wohlfahrt G, Seneviratne SI (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett 36:L02404. doi:10.1029/2008GL036584

    Google Scholar 

  122. Tuinenburg OA, Hutjes RWA, Stacke T, Wiltshire A, Lucas-Picher P (2013) Effects of irrigation in India on the atmospheric water budget. J Hydrometeorol (submitted)

  123. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen ACM, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Van Beljaars ACM, de Berg L, Bidlot J, Bormann N, Caires S, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, McNally AP, Mahfouf JF, Jenne R, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The Era-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Google Scholar 

  124. van der Velde Y, Lyon SW, Destouni G (2013) Data-driven regionalization of river discharges and emergent land cover-evapotranspiration relationships across Sweden. J Geophys Res 118:1–12. doi:10.1002/jgrd.50224

    Google Scholar 

  125. Verseghy DL (1991) Class—a Canadian land surface scheme for GCMs. I. Soil model. Int J Climatol 11:111–133

    Google Scholar 

  126. Vörösmarty C, Gutowski W, Person M, Chen T-C, Case D (1993) Linked atmosphere-hydrology models at the macroscale. In: Wilkinson W (ed) Macroscale modeling of the hydrosphere, no. 214 in International Association of Hydrological Sciences, pp 3–27

  127. Walker HJ (1978) Lake tapping in the Colville River delta. In: Permafrost, proceedings of the third international conference on permafrost, 10–13 July, Edmonton, Alberta, Canada. National Research Council of Canada, Ottawa, vol 1, pp 233–238

  128. Walsh JE, Anisimov O, Hagen JOM, Jakobsson T, Oerlemans J, Prowse TD, Romanovsky V, Savelieva N, Serreze M, Shiklomanov A, Shiklomanov I, Solomon S, Arendt A, Atkinson D, Demuth MN, Dowdeswell J, Dyurgerov M, Glazovsky A, Koerner RM, Meier M, Reeh N, Sigurosson O, Steffen K, Truffer M (2005) Cryosphere and hydrology. In: Symon C, Arris L, Heal B (eds) Arctic climate impact assessment, chapter 6. Cambridge University Press, Cambridge, pp 184–242

    Google Scholar 

  129. Willmott CJ, Matsuura K (2009) Terrestrial precipitation: 1900–2008 gridded monthly time series. University of Delaware, Newark. http://climate.geog.udel.edu

  130. Woo MK (1986) Permafrost hydrology in North America. Atmos Ocean 24(3):201–234

    Google Scholar 

  131. Woo M, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19:237–254

    Google Scholar 

  132. Wutzler T, Reichstein M (2007) Soils apart from equilibrium—consequences for soil carbon balance modelling. Biogeosciences 4:125–136

    Google Scholar 

  133. Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD (2002) Impacts of wildfire on the permafrost in the boreal forests of interior Alaska. J Geophys Res 107:8148. doi:10.1029/2001JD000438, [printed 108(D1), 2003]

  134. Yu Z, Pollard D, Cheng L (2006) On continental-scale hydrologic simulations with a coupled hydrologic model. J Hydrol 331:110–124. doi:10.1016/j.jhydrol.2006.05.021

    Google Scholar 

  135. Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin III FS (2006) Permafrost carbon: Stock and decomposability of a globally significant carbon pool. Geophys Res Lett 33. doi:10.1029/2006GL027484

Download references

Acknowledgments

The authors acknowledge the financial support of T. Blome by the European Union FP7-ENV project PAGE21 under contract number GA282700. S. Hagemann was supported by funding from the European Union within the EMBRACE project (grant no. 282672). We also acknowledge previous work that was supported by funding from the European Union within the WATCH project (contract No. 036946).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Hagemann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hagemann, S., Blome, T., Saeed, F. et al. Perspectives in Modelling Climate–Hydrology Interactions. Surv Geophys 35, 739–764 (2014). https://doi.org/10.1007/s10712-013-9245-z

Download citation

Keywords

  • Irrigation
  • Land atmosphere feedbacks
  • Land-use impacts
  • Modelling perspectives
  • Permafrost and wetland dynamics