Skip to main content

Sea Surface Salinity Observations from Space with the SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle

Abstract

While it is well known that the ocean is one of the most important component of the climate system, with a heat capacity 1,100 times greater than the atmosphere, the ocean is also the primary reservoir for freshwater transport to the atmosphere and largest component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions, are now providing the first space-borne measurements of the sea surface salinity (SSS). In this paper, we present examples demonstrating how SMOS-derived SSS data are being used to better characterize key land–ocean and atmosphere–ocean interaction processes that occur within the marine hydrological cycle. In particular, SMOS with its ocean mapping capability provides observations across the world’s largest tropical ocean fresh pool regions, and we discuss from intraseasonal to interannual precipitation impacts as well as large-scale river runoff from the Amazon–Orinoco and Congo rivers and its offshore advection. Synergistic multi-satellite analyses of these new surface salinity data sets combined with sea surface temperature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall estimates, and in situ observations are shown to yield new freshwater budget insight. Finally, SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to examine the response of the upper ocean to tropical cyclone passage including the potential role that a freshwater-induced upper ocean barrier layer may play in modulating surface cooling and enthalpy flux in tropical cyclone track regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  • Alory G, Maes C, Delcroix T, Reul N, Illig S (2012) Seasonal dynamics of sea surface salinity off Panama: the far eastern Pacific fresh pool. J Geophys Res 117:C04028

    Google Scholar 

  • Anderson SP, Weller RA, Lukas R (1996) Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: observations and 1D model results. J Clim 9:3056–3085

    Article  Google Scholar 

  • Baklouti M, Devenon JL, Bourret A, Froidefond JM, Ternon JF, Fuda JL (2007) New insights in the French Guiana continental shelf circulation and its relation to the North Brazil Current retroflection. J Geophys Res 112:C02023

    Google Scholar 

  • Balaguru KP, Saravanan SR, Leung LR, Xu Z, Li M, Hsieh JS (2012) Ocean barrier layers’ effect on tropical cyclone intensification. PNAS. doi:10.1073/pnas.1201364109

    Google Scholar 

  • Banks CJ, Gommenginger CP, Srokosz MA, Snaith HM (2012) Validating SMOS ocean surface salinity in the Atlantic with Argo and operational ocean model data. IEEE Trans Geosci Remote Sens 50:1688–1702

    Article  Google Scholar 

  • Benway HM, Mix AC (2004) Oxygen isotopes, upper-ocean salinity, and precipitation sources in the eastern tropical Pacific, Earth Planet. Sci Lett 224:493–507

    Google Scholar 

  • Binet D, Marchal E (1993) The large marine ecosystem of shelf areas in the Gulf of Guinea: long-term variability induced by climatic changes. In: Sherman K et al (eds) Large marine ecosystems: stress, mitigation, and sustainability. American Association for the Advancement of Science, Washington, pp 104–118

  • Bingham FM, Foltz GR, McPhaden MJ (2010) Seasonal cycles of surface layer salinity in the Pacific Ocean. Ocean Sci 6:775–787

    Article  Google Scholar 

  • Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 509–546

    Chapter  Google Scholar 

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954

    Article  Google Scholar 

  • Bornhold BD (1973) Late quaternary sedimentation in the eastern Angola Basin. Massachusetts Institute of Technology, pp 1–213 (thesis)

  • Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res 114:C06023

    Google Scholar 

  • Boutin J, Martin N, Yin X, Reul N, Spurgeon P (2012a) First assessment of SMOS data over open Ocean: part II-sea surface salinity. IEEE Trans Geosci Remote Sens 50(5) Part 1: 1662–1675

    Google Scholar 

  • Boutin J, Martin N, Reverdin G, Yin X, Gaillard F (2012b) Sea surface freshening inferred from SMOS and Argo salinity: impact of rain. Ocean Sci Discuss 9:3331–3357

    Google Scholar 

  • Boyer TP, Levitus S (2002) Harmonic analysis of climatological sea surface salinity. J Geophys Res 107(C12):8006

    Google Scholar 

  • Braga ES, Andrie C, Bourles B, Vangriesheim A, Baurand F, Chuchla R (2004) Congo river signature and deep circulation in the eastern Guinea Basin. Deep Sea Res Part I Oceanogr Res Papers 51(8):1057–1073

    Article  Google Scholar 

  • Cherubin LM, Richardson PL (2007) Caribbean current variability and the influence of the Amazon and Orinoco freshwater plumes. Deep Sea Res Part I Oceanogr Res Papers 54(9):1451–1473

    Article  Google Scholar 

  • Conmy RN, Coble PG, Cannizzaro JP, Heil CA (2009) Influence of extreme storm events on West Florida shelf CDOM distributions. J Geophys Res 114:G00F04

    Google Scholar 

  • Cravatte S, Delcroix T, Zhang D, McPhaden MJ, Leloup J (2009) Observed freshening and warming of the western Pacific warm pool. Clim Dyn 33:565–589

    Article  Google Scholar 

  • Dare RA, McBride JL (2011) The threshold sea surface temperature condition for tropical cyclogenesis. J Clim 24:4570–4576

    Google Scholar 

  • De Boyer Montégut C, Mignot J, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 1. General description. J Geophys Res 112:C06011

  • Del Vecchio R, Subramaniam A (2004) Influence of the Amazon River on the surface optical properties of the Western Tropical North Atlantic Ocean. J Geophys Res 109:C11001

    Article  Google Scholar 

  • Delcroix T, Alory G, Cravatte S, Corrège T, McPhaden MJ (2011) A gridded sea surface salinity data set for the tropical Pacific with sample applications (1950–2008). Deep Sea Res Part I 58(1):38–48

    Google Scholar 

  • DeMaster DJ, Smith W, Nelson DM, Aller JY (1996) Biogeochemical processes in Amazon shelf waters: chemical distributions and uptake rates of silicon, carbon and nitrogen. Cont Shelf Res 16:617–643

    Article  Google Scholar 

  • Dessier A, Donguy J (1994) The sea-surface salinity in the tropical Atlantic between 10-degrees-S and 30-degrees-N—seasonal and interannual variations (1977–1989). Deep Sea Res Part I Oceanogr Res Papers 41(1):81–100

    Article  Google Scholar 

  • Dickson RR, Yashayaev I, Meincke J, Turrell W, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837

    Article  Google Scholar 

  • D’Sa EJ, Hu C, Muller-Karger FE, Carder KL (2002) Estimation of colored dissolved organic matter and salinity fields in case 2 waters using SeaWiFS: examples from Florida Bay and Florida Shelf. J Earth Syst Sci 111:197–207

    Article  Google Scholar 

  • Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458

    Article  Google Scholar 

  • Eisma D, Van Bennekom AJ (1978) The Zaire River and estuary and the Zaire outflow in the Atlantic Ocean. Neth J Sea Res 12(3/4):255–272

    Article  Google Scholar 

  • Ferrari GM, Dowell MD (1998) CDOM absorption characteristics with relation to fluorescence and salinity in coastal areas of the southern Baltic Sea. Estuar Coast Shelf Sci 47:91–105

    Article  Google Scholar 

  • Ffield A (2005) North Brazil current rings viewed by TRMM microwave imager SST and the influence of the Amazon Plume. Deep Sea Res I 52:137–160

    Article  Google Scholar 

  • Ffield A (2007) Amazon and Orinoco River plumes and NBC rings: bystanders or participants in hurricane events? J Clim 20:316–333

    Article  Google Scholar 

  • Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):143–180

    Article  Google Scholar 

  • Flagg CN, Gordon RL, McDowell S (1986) Hydrographic and current observations on the continental slope and shelf of the western equatorial Atlantic. J Phys Oceanogr 16(8):1412–1429

    Article  Google Scholar 

  • Foltz GR, McPhaden JM (2009) Impact of barrier layer thickness on SST in the central tropical North Atlantic. J Clim 22:285–299

    Article  Google Scholar 

  • Font J, Camps A, Borges A, Martín-Neira M, Boutin J, Reul N, Kerr YH, Hahne A, Mecklenburg S (2010) SMOS: the challenging sea surface salinity measurement from space. Proc IEEE 98(5):649–665

    Article  Google Scholar 

  • Font J, Boutin J, Reul N, Spurgeon P, Ballabrera-Poy J, Chuprin A, Gabarró C, Gourrion J, Guimbard S, Hénocq C, Lavender S, Martin N, Martínez J, McCulloch M, Meirold-Mautner I, Mugerin C, Petitcolin F, Portabella M, Sabia R, Talone M, Tenerelli J, Turiel A, Vergely JL, Waldteufel P, Yin X, Zine X, Delwart S (2013) SMOS first data analysis for sea surface salinity determination. Int J Remote Sens. doi:10.1080/01431161.2012.716541

    Google Scholar 

  • Froelich PN, Atwood DK, Giese GS (1978) Influence of Amazon River discharge on surface salinity and dissolved silicate concentration in the Caribbean Sea. Deep Sea Res 25(8):735–744

    Article  Google Scholar 

  • Gaillard F, Autret E, Thierry V, Galaup P, Coatanoan C, Loubrieu T (2009) Quality control of large Argo datasets. J Atmos Ocean Tech 26:337–351

    Article  Google Scholar 

  • Garzoli SL, Ffield A, Johns WE, Yao Q (2004) North Brazil current retroflection and transports. J Geophys Res 109:C01013

    Google Scholar 

  • Goni GJ, Johns W (2001) A census of North Brazil current rings observed from T/P altimetry: 1992–1998. Geophys Res Let 28(1):1–4

    Google Scholar 

  • Gordon A, Guilivi CF (2008) Sea surface salinity trends over 50 years within the subtropical North Atlantic. Oceanography 20(1):20–29

    Article  Google Scholar 

  • Gouriou Y, Delcroix T (2002) Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000. J Geophys Res 107:3185

    Article  Google Scholar 

  • Grodsky SA, Reul N, Lagerloef G, Reverdin G, Carton JA, Chapron B, Quilfen Y, Kudryavtsev VN, Kao HY (2012) Haline hurricane wake in the Amazon/Orinoco plume: a QUARIUS/SACD and SMOS observations. Geophys Res Lett 39:L20603

    Article  Google Scholar 

  • Grunseich G, Subrahmanyam B, Murty VSN, Giese BS (2011) Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean. J Geophys Res 116:C11013

    Article  Google Scholar 

  • Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error-estimates. J Phys Oceanogr 13(7):1093–1104

    Article  Google Scholar 

  • Hellweger F, Gordon A (2002) Tracing Amazon River water into the Caribbean Sea. J Marine Res 60:537–549

    Article  Google Scholar 

  • Hisard P (1980) Observation de réponses de type “El Niño” dans l’Atlantique tropical oriental, Golfe de Guinée. Oceanol Acta 3:69–78

    Google Scholar 

  • Hu C, Montgomery ET, Schmitt RW, Muller-Karger FE (2004) The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep Sea Res Part II 51:1151–1171

    Article  Google Scholar 

  • Johns WE, Lee TN, Schott FA, Zantopp RJ, Evans RH (1990) The north Brazil current retroflection: seasonal structure and eddy variability. J Geophys Res 95:22103–22120

    Article  Google Scholar 

  • Katsaros KB, Buettner KJK (1969) Influence of rainfall on temperature and salinity at the Ocean surface. J Appl Meteorol 8:15–18

    Article  Google Scholar 

  • Kerr Y, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela MJ, Font J, Reul N, Gruhier C (2010) The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687

    Article  Google Scholar 

  • Klein LA, Swift CT (1977) Improved model for dielectric constant of seawater at microwave frequencies. IEEE Trans Antennas Propag 25:104–111

    Google Scholar 

  • Koleshnikov AG (1973) Equalant I and Equalant II, physical oceanography. UNESCO Paris 1:1–289

    Google Scholar 

  • Lagerloef GSE (2012) Satellite mission monitors Ocean surface Salinity. Eos Trans AGU 93(25):233. doi:10.1029/2012EO250001

    Article  Google Scholar 

  • Lagerloef GSE, Mitchum G, Lukas R, Niiler P (1999) Tropical Pacific near surface currents estimated from altimeter, wind and drifter data. J Geophys Res 104:23313–23326

    Google Scholar 

  • Lagerloef GSE, Colomb FR, Le Vine D, Wentz F, Yueh S, Ruf C, Lilly J, Gunn J, Chao Y, deCharon A, Feldman G, Swift C (2008) The Aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge. Oceanography 21(1):68–81

    Article  Google Scholar 

  • Lagerloef GSE, Boutin J, Chao Y, Delcroix T, Font J, Niiler P, Reul N, Riser S, Schmitt R, Stammer D, Wentz F (2010) Resolving the global surface salinity field and variations by blending satellite and in situ observations, Oceanobs’09: sustained Ocean observations and information for society, Venise, Italy, 21–25 September 2009, ESA Publication WPP-306

  • Lefèvre N (2009) Low C02 concentrations in the gulf of guinea during the upwelling season in 2006. Mar Chem 113(1–2):93

    Article  Google Scholar 

  • Lentz SJ (1995) Seasonal-variations in the horizontal structure of the Amazon plume inferred from historical hydrographic data. J Geophys Res 100(C2):2391–2400

    Google Scholar 

  • Lentz SJ, Limeburner R (1995) The Amazon River Plume during AMASSEDS: spatial characteristics and salinity variability. J Geophys Res 100:2355–2375

    Article  Google Scholar 

  • Maes C (2008) On the ocean salinity stratification observed at the eastern edge of the equatorial Pacific warm pool. J Geophys Res 113:C03027

    Google Scholar 

  • Maes C, Picaut J, Belamari S (2002) Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett 29(24):2206

    Article  Google Scholar 

  • Maes C, Picaut J, Belamari S (2005) Importance of salinity barrier layer for the buildup of El Niño. J Clim 18:104–118

    Article  Google Scholar 

  • Meade RH, Nordin CF, Hernandez DP, Mejia A, Godoy JMP (1983) Sediment and water discharge in Rio Orinoco, Venezuela and Colombia. In: Proceedings of the 2nd international symposium on river sedimentation. Water Resources and Electric Poers Press, Beijing, China, pp 1134–1144

  • Mecklenburg S, Drusch M, Kerr YH, Font J, Martin-Neira M, Delwart S, Buenadicha G, Reul N, Daganzo-Eusebio E, Oliva R, Crapolicchio R (2012) ESA’s soil moisture and Ocean salinity mission: mission performance and operations. IEEE Trans Geosci Remote Sens 50(5) Part 1:1354–1366

    Google Scholar 

  • Merle J (1980) Variabilité thermique annuelle et interannuelle de l’océan Atlantique équatorial est. L’hypothèse d’un “ El Niño “ Atlantique. Oceanol Acta 3:209–220

    Google Scholar 

  • Meulenbergh J (1968) Diffusion des eaux du fleuve Congo dans les eaux de l’Atlantique Sud. Acad R Sci Outre Mer Bruxelles 16(6):148

    Google Scholar 

  • Meybeck M, Ragu A (1997) River discharges to the oceans: an assessment of suspended solids, major ions, and nutrients. IAHS Publ 243:1–245

    Google Scholar 

  • Michel S, Chapron B, Tournadre J, Reul N (2007) Sea surface salinity variability from a simplified mixed layer model of the global ocean. Ocean Sci Discuss 4:41–106

    Article  Google Scholar 

  • Mignot J, de Boyer Montégut C, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. J Geophys Res 112:C10010

    Article  Google Scholar 

  • Miller R, Zepp RG (1995) Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys Res Lett 22:417–420

    Article  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91(1):1–21

    Article  Google Scholar 

  • Molleri GSF, de Novo EMLM, Kampel M (2010) Space-time variability of the Amazon River plume based on satellite ocean color. Cont Shelf Res 30(3–4):342–352

    Google Scholar 

  • Moran MA, Sheldon WM, Sheldon JE (1999) Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States. Estuaries 22:55–64

    Article  Google Scholar 

  • Morrow R, Valladeau G, Sallee J-B (2008) Observed subsurface signature of Southern Ocean sea level rise. Prog Oceanogr 77(4):351–366

    Article  Google Scholar 

  • Muller-Karger FE, McClain CR, Richardson PL (1988) The dispersal of the Amazon’s water. Nature 333:56–59

    Article  Google Scholar 

  • Muller-Karger FE, McClain CR, Fisher TR, Esaias WE, Varela R (1989) Pigment distribution in the Caribbean Sea: observations from space. Prog Oceanogr 23:23–64

    Article  Google Scholar 

  • Muller-Karger FE, Richardson PL, McGillicuddy D (1995) On the offshore dispersal of the Amazon’s plume in the North Atlantic. Deep Sea Res Part I 42:2127–2137

    Article  Google Scholar 

  • Neetu S, Lengaigne M, Vincent EM, Vialard J, Madec G, Samson G, Ramesh Kumar MR, Durand F (2012) Influence of upper-ocean stratification on tropical cyclones- induced surface cooling in the Bay of Bengal. J Geophys Res 117:C12020

    Article  Google Scholar 

  • Neumann G (1969) Seasonal salinity variations in the upper strata of the western tropical Atlantic ocean-I. Sea surface salinities. Deep Sea Res 16:165–177

    Google Scholar 

  • Nittrouer CA, Demaster DJ (1986) Sedimentary processes on the Amazon continental shelf: past, present and future research. Cont Shelf Res 6:5–30

    Article  Google Scholar 

  • Obernosterer I, Herndl GJ (2000) Differences in the optical and biological reactivity of the humic and non-humic DOC component in two contrasting coastal marine environments. Limnol Oceanogr 45:1120–1129

    Article  Google Scholar 

  • Ostapoff F, Tarbeyev Y, Worthem S (1973) Heat flux and precipitation estimates from oceanographic observations. Science 180:960–962

    Article  Google Scholar 

  • Palacios SL, Peterson TD, Kudela RM (2009) Development of synthetic salinity from remote sensing for the Columbia River Plume. J Geophys Res 114:C00B05

    Google Scholar 

  • Perry GD, Duffy PB, Miller NL (1996) An extended data set of river discharges for validation of general circulation models. J Geophys Res 101:21339–21349

    Article  Google Scholar 

  • Piterbarg LI, Ostrovskii AG (1997) Advection and diffusion in random media: implications for sea surface temperature anomalies. Kluwer Academic, New York

  • Piton B, Wacongne S (1985) Unusual amounts of very saline subsurface water in the eastern Gulf of Guinea in May 1984. Tropical Ocean-Atmosphere Newsletter, pp 325–328

  • Price JF (2009) Metrics of hurricane-ocean interaction: vertically-integrated or vertically- averaged ocean temperature? Ocean Sci 5:351–368

    Article  Google Scholar 

  • Reul N, Tenerelli J (2011) SMOS level 3 SSS research products—product validation document—reprocessed year 2010. CECOS/CNES/IFREMER/CATDS Techn Doc. Available from www.catds.fr

  • Reul N, Saux-Picart S, Chapron B, Vandemark D, Tournadre J, Salisbury J (2009) Demonstration of ocean surface salinity microwave measurements from space using AMSR-E over the Amazon plume. Geophys Res Lett 36:L13607

    Article  Google Scholar 

  • Reul N, Tenerelli J, Boutin J, Chapron B, Paul F, Brion E, Gaillard F, Archer O (2012) Overview of the first SMOS sea surface salinity products. Part I: quality assessment for the second half of 2010. IEEE Trans Geosci Remote Sens 50(5):1636–1647

    Article  Google Scholar 

  • Reverdin G, Kestenare E, Frankignoul C, Delcroix T (2007) Sea surface salinity in the Atlantic Ocean (30°S–50°N). Prog Oceanogr 73:311–340

    Article  Google Scholar 

  • Reverdin G, Morisset S, Boutin J, Martin N (2012) Rain-induced variability of near sea- surface T and S from drifter data. J Geophys Res 117:C02032

    Google Scholar 

  • Richardson PL, McKee T (1984) Average seasonal variation of the Atlantic equatorial currents from historical ship drifts. J Phys Oceanogr 14(7):1226–1238

    Article  Google Scholar 

  • Ruf CS, Swift CT, Tanner AB, Le Vine DM (1988) Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans Geosci Remote Sens 26:597–611

    Article  Google Scholar 

  • Salisbury J, Vandemark D, Campbell J, Hunt C, Wisser D, Reul N, Chapron B (2011) Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters. J Geophys Res 116:C00H02

    Google Scholar 

  • Schlössel P, Soloviev A, Emery WJ (1997) Cool and freshwater skin of the ocean during rainfall. Bound Layer Meteorol 82(3):439–474

    Article  Google Scholar 

  • Schmitt RW(2008) Salinity and the global water cycle. Oceanography 21(1):12–19

    Google Scholar 

  • Singh A, Delcroix T, Cravatte S (2011) Contrasting the flavors of El Niño-Southern Oscillation using sea surface salinity observations. J Geophys Res 116:C06016

    Google Scholar 

  • Smith WO, Demaster DJ (1996) Phytoplankton biomass and productivity in the Amazon River plume: correlation with seasonal river discharge. Cont Shelf Res 16(3):291–319

    Article  Google Scholar 

  • Soloviev A, Lukas R (1996) Observation of spatial variability of diurnal thermocline and rainformed halocline in the Western Pacific warm pool. J Phys Oceanogr 26:2529–2538

    Article  Google Scholar 

  • Steven DM, Brooks AL (1972) Identification of Amazon River water at Barbados, W. Indies, by salinity and silicate measurements. Mar Biol 14(4):345–348

    Article  Google Scholar 

  • Ternon JF, Oudot C, Dessier A, Diverres D (2000) A seasonal tropical sink for atmospheric C02 in the Atlantic Ocean: the role of the Amazon River discharge. Mar Chem 68(3):183–201

    Article  Google Scholar 

  • Terray L, Corre L, Cravatte S, Delcroix T, Reverdin G, Ribes A (2011) Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J Clim 25:958–977

    Article  Google Scholar 

  • Twardowski MS, Donaghay PL (2001) Separating in situ and terrigenous sources of absorption by dissolved material in coastal waters. J Geophys Res 106(C2):2545–2560

    Google Scholar 

  • UNESCO (1985) The international system of units (SI) in oceanography, UNESCO technical papers no. 45, IAPSO Pub. Sci. No. 32, Paris, France

  • Van Bennekom AJ, Berger GW (1984) Hydrography and silica Budget of the Angola Basin. Neth J Sea Res 17(2–4):149–200

    Article  Google Scholar 

  • Van Bennekom AJ, Jager JE (1978) Dissolved aluminium in the Zaire River plume. Neth J Sea Res 12(3/4):358–367

    Article  Google Scholar 

  • Vangriesheim A, Pierre C, Aminot A, Metzl N, Baurand F, Caprais JC (2009) The influence of Congo river discharges in the surface and deep layers of the gulf of guinea. Deep Sea Res Part II Top Stud Oceanogr 56(23):2183–2196

    Google Scholar 

  • Vialard J, Delecluse P (1998a) An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the Western Pacific Fresh Pool. J Phys Oceanogr 28:1071–1088

    Article  Google Scholar 

  • Vialard J, Delecluse P (1998b) An OGCM study for the TOGA decade. Part II: barrier layer formation and variability. J Phys Oceanogr 28:1089–1106

    Article  Google Scholar 

  • Vizy EK, Cook KH (2010) Influence of the Amazon/Orinoco Plume on the summertime Atlantic climate. J Geophys Res 115:D21112

    Article  Google Scholar 

  • Vörösmarty CJ, Fekete B, Tucker BA (1998) River discharge database, version 1.1 (RivDIS v1.0 supplement). Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH

  • Wang X, Han G, Qi Y, Li W (2011) Impact of barrier layer on typhoon-induced sea surface cooling. Dyn Atmos Oceans 52(3):367–385

    Article  Google Scholar 

  • Wauthy B (1977) Révision de la classification des eaux de surface du golfe de Guinée. Cah Orstom Sér Océanogr 15(3):279–295

  • Wijesekera HW, Paulson CA, Huyer A (1999) The effect of rainfall on the surface layer during a westerly wind burst in the western equatorial Pacific. J Phys Oceanogr 29:612–632

    Article  Google Scholar 

  • Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century global hydrography: a contribution to the global terrestrial network-hydrology (GTN-H). Hydrol Earth Syst Sci 14:1–24

    Article  Google Scholar 

  • Yamashita Y, Tanoue E (2004) In situ production of chromophoric dissolved organic matter in coastal environments. Geophys Res Lett 31:L14302

    Article  Google Scholar 

  • Yin X, Boutin J, Martin N, Spurgeon P (2012) Optimization of L-Band Sea surface emissivity models deduced from SMOS data. IEEE Trans Geosci Remote Sens 50:1414–1426

    Article  Google Scholar 

  • Yoo JM, Carton JA (1988) Spatial dependence of the relationship between rainfall and outgoing longwave radiation in the tropical Atlantic. J Clim 1:1047–1056

    Article  Google Scholar 

  • Yu L (2010) On sea surface salinity skin effect induced by evaporation and implications for remote sensing of Ocean salinity. J Phys Oceanogr 40(1):85

    Article  Google Scholar 

  • Yu L (2011) A global relationship between the ocean water cycle and near-surface salinity. J Geophys Res 116:C10025

    Article  Google Scholar 

  • Yu L, McPhaden MJ (2011) Ocean pre-conditioning of Cyclone Nargis in the Bay of Bengal: interaction between Rossby waves, surface fresh waters, and sea surface temperatures. J Phys Oceanogr 41:1741–1755

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes (OAFlux) for the global ocean. Bull Am Meteorol Soc 88(4):527–539

    Article  Google Scholar 

  • Yueh SH, West R, Wilson WJ, Li FK, Njoku EG, Rahmatsamii Y (2001) Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans Geosci Remote Sens 39:1049–1060

    Article  Google Scholar 

  • Zhang Y, Zhang X (2012) Ocean haline skin layer and turbulent surface convections. J Geophys Res 117:C04017

    Google Scholar 

Download references

Acknowledgments

Work presented in this paper was partly done under ESA support in the context of the development of the SMOS level 2/Expert Support Laboratory, ESA Support to Science Element SMOS + SOS and SMOS + STORM projects. CNES also partly funded these activities in the frame of the Centre Aval de Traitement des Données SMOS (CATDS) and of the SMOS/ESA GLOSCAL Cal/Val projects. We are indebted to Micha Rijkenberg (Koninklijk Nederlands Instituut voor Onderzoek der Zee Department of Biological Oceanography (BIO)) for giving us access to the Geotraces Leg 2 CTD data, to F. Gaillard (LPO/IFREMER) for providing ISAS maps version 6 (see http://wwz.ifremer.fr/lpo/SO-Argo/Products/Global-Ocean-T-S). Gilles Reverdin (LOCEAN/CNRS) is responsible for French salinity drifter deployment program; he supervised the quality control of these drifter data set and is warmly acknowledged. These data are available on www.locean-ipsl.upmc.fr/smos/drifters. We thank Nicolas Martin for data processing. We are also indebted to JéromeVialard, Matthieu Lengaigne and Emmanuel Vincent for their very helpful comments about SSS variability in the tropical Indian Ocean and about tropical cyclones interactions with the Amazon plume, Thierry Delcroix about SSS variability in the tropical Pacific Ocean. SSM/I data have been processed by Remote Sensing System (www.ssmi.com). The global ocean heat flux and evaporation products were provided by the WHOI OAFlux project (http://oaflux.whoi.edu) funded by the NOAA Climate Observations and Monitoring (COM) program. We thank the two anonymous referees and Doug Vandemark for their very useful comments and detailed corrections, which were very constructive and which helped us to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Reul.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reul, N., Fournier, S., Boutin, J. et al. Sea Surface Salinity Observations from Space with the SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle. Surv Geophys 35, 681–722 (2014). https://doi.org/10.1007/s10712-013-9244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9244-0

Keywords

  • Sea surface salinity
  • SMOS satellite
  • Passive microwave remote sensing
  • Oceanic freshwater cycle