Exploring for Geothermal Resources with Electromagnetic Methods


Electrical conductivity of the subsurface is known to be a crucial parameter for the characterization of geothermal settings. Geothermal systems, composed by a system of faults and/or fractures filled with conducting geothermal fluids and altered rocks, are ideal targets for electromagnetic (EM) methods, which have become the industry standard for exploration of geothermal systems. This review paper presents an update of the state-of-the-art geothermal exploration using EM methods. Several examples of high-enthalpy geothermal systems as well as non-volcanic systems are presented showing the successful application of EM for geothermal exploration but at the same time highlighting the importance of the development of conceptual models in order to avoid falling into interpretation pitfalls. The integration of independent data is key in order to obtain a better understanding of the geothermal system as a whole, which is the ultimate goal of exploration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Abdul Azeez KK, Harinarayana T (2007) Magnetotelluric evidence of potential geothermal resource in Puga, Ladakh, NW Himalaya. Curr Sci 93:323–329

    Google Scholar 

  2. Abiye TA, Haile T (2008) Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift. Geothermics 37:586–596

    Article  Google Scholar 

  3. Aizawa K, Kanda W, Ogawa Y, Iguchi M, Yokoo A, Yakiwara H, Sugano T (2011) Temporal changes in electrical resistivity at Sakurajima Volcano from continuous magnetotelluric observations. J Volcanol Geoth Res 199:165–175

    Article  Google Scholar 

  4. Allis RG (1987) Geophysics and geochemical investigations of the Horohoro geothermal prospect. Report. 213, Geophysics Division, DSIR, Wellington, pp 78

  5. Anderson E, Crosby D, Ussher G (2000) Bulls-eye! Simple resistivity imaging to reliably locate the geothermal reservoir. In: proceedings world geothermal congress, Kyushu-Tohoku, Japan, pp 909–914

  6. Arango C, Marcuello A, Ledo J, Queralt P (2009) 3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain). J Appl Geophys 68:479–488

    Article  Google Scholar 

  7. Árnason K, Flovenz ÓG (1998) Geothermal exploration by TEM-soundings in the Central Asal Rift in Djibouti, East Africa. In: proceedings world geothermal congress, Florence, Italy, pp 933–938

  8. Árnason K, Magnússon IÞ (2001) Geothermal Activity in Hengill and Hellisheiði. Results of Resistivity Surveys. Orkustofnun Report OS-2001/091, Reykjavik, Iceland, pp 250 (in Icelandic)

  9. Árnason K, Karlsdóttir R, Eysteinsson H, Flóvenz ÓG, Guðlaugsson STh (2000) The resistivity structure of high-temperature geothermal systems in Iceland. In: proceedings world geothermal congress, Tohoku-Kyushu, Japan, pp 923–928

  10. Árnason K, Eysteinsson H, Hersir GP (2010) Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland. Geothermics 39:13–34

    Article  Google Scholar 

  11. Asaue H, Koike K, Yoshinaga T, Takakura S (2005) Magnetotelluric resistivity modeling for 3D characterization of geothermal reservoirs in the Western side of Mt. Aso, SW Japan. J Appl Geophys 58:296–312

    Article  Google Scholar 

  12. Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev 6:3–65

    Article  Google Scholar 

  13. Bauer K, Moeck I, Norden B, Schulze A, Weber M, Wirth A (2010) Tomographic P-wave velocity and vertical velocity gradient structure across the geothermal site Groß Schönebeck (NE German Basin): relationship to lithology, salt tectonics, and thermal regime. Journal of geophysical Research 115, doi:10.1029/2009JB006895

  14. Bedrosian PA, Weckmann U, Ritter O, Hammer CU, Hübert J, Jung A (2004) Electromagnetic monitoring of the Groß Schönebeck stimulation experiment. In: proceedings Jahrestagung der Deutschen Geophysikalischen Gessellschaft, p 64, GFZ, Berlin

  15. Benderitter Y, Cormy G (1990) Possible approach to geothermal research and relative costs. In: Dickson MH, Fanelli M (eds) Small geothermal resources: a guide to development and utilization. UNITAR, New York, pp 59–69

    Google Scholar 

  16. Bertani R (2010) Geothermal power generation in the world. 2005–2010 Update Report. In: proceedings world geothermal congress, Bali, Indonesia

  17. Bertrand EA, Caldwell TG, Hill GJ, Wallin EL, Bennie SL, Cozens N, Onacha SA, Ryan GA, Walter C, Zaino A, Wameyo P (2012) Magnetotelluric imaging of upper-crustal convection plumes beneath the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 39:L02304. doi:10.1029/2011GL050177

    Google Scholar 

  18. Bibby HM (1988) Electrical resistivity mapping in the Central Volcanic Region of New Zealand. NZ J Geol Geophys 31:259–274

    Article  Google Scholar 

  19. Bibby HM, Caldwell TG, Davey FJ, Webb TH (1995) Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J Volcanol Geoth Res 68:29–58

    Article  Google Scholar 

  20. Bibby HM, Caldwell TG, Risk GF (2002) Long offset tensor resistivity surveys of the Taupo Volcanic Zone, New Zealand. J Appl Geophys 49:17–32

    Article  Google Scholar 

  21. Bibby HM, Risk GF, Caldwell TG, Bennie SL (2005) Misinterpretation of electrical resistivity data in geothermal prospecting: a case study from the Taupo Volcanic Zone. In: proceedings world geothermal congress, Antalya, Turkey

  22. Bibby HM, Risk GF, Caldwell TG, Heise W (2009) Investigations of deep resistivity structures at theWairakei geothermal field. Geothermics 38:98–107

    Article  Google Scholar 

  23. Björnsson A, Hersir GP, Björnsson G (1986) The Hengill high-temperature area, S.W. Iceland: regional Geophysical Survey. Trans Geotherm Res Counc 10:205–210

    Google Scholar 

  24. Brogi A, Lazzarotto A, Liotta D, Ranalli G (2003) Extensional shear zones as imaged by reflection seismic lines: the Larderello geothermal field (central Italy). Tectonophysics 363:127–139

    Article  Google Scholar 

  25. Bojadgieva K, Hristov V, Srebrov B, Harinarayana T, Veeraswamy K (2006) Temperature investigation in Polyanovo hydrothermal reservoir (SE Bulgaria). Bulg Geophys J 32:3–11

    Google Scholar 

  26. Burçak M, Kaya C, Riza Kılıç A, Akdogan N (2005) Exploration of the heat source and geothermal possibilities of the Aksaray Region, Central Anatolia, Turkey. In: proceedings world geothemal congress, Antalya, Turkey

  27. Caldwell G, Pearson C, Zayadi H (1986) Resistivity of rocks in geothermal systems: a laboratory study. In: proceedings 8th NZ geothermal workshop, pp 227–231

  28. Casini M, Ciuffi M, Fiordelisi A, Mazzotti A, Stucchi E (2010) Results of a 3D seismic survey at the Travale (Italy) test site. Geothermics 39:4–12

    Article  Google Scholar 

  29. Cumming W (2009) Geothermal resource conceptual models using surface exploration data. In: proceedings, 34th workshop on geothermal reservoir engineering, Stanford University

  30. Cumming W, Mackie R (2007) 3D MT resistivity imaging for geothermal resource assessment and environmental mitigation at the glass mountain KGRA, California. GRC Transactions 31:331–334

    Google Scholar 

  31. Cumming W, Mackie R (2010) Resistivity imaging of geothermal resources using 1D, 2D and 3D MT inversion and TDEM static shift correction illustrated by a glass mountain case history. In: proceedings world geothemal congress, Bali, Indonesia

  32. Daud Y, Sudarman S, Ushijima K (2001) Imaging reservoir permeability of the Sibayak geothermal field, Indonesia using geophysical measurements. In: proceedings, 26th workshop on geothermal reservoir Engineering, Stanford University

  33. Deer WA, Howie RA, Zussman J (1962) Rock-forming minerals, Vol 3 sheet silicates. Longmans, Green and Co Ltd, London, p 270

    Google Scholar 

  34. Del Rosario R, Oanes AF (2010) Controlled source magnetotelluric survey of Mabini geothermal prospect, Mabini, Batangas, Philippines. In: proceedings world geothemal congress, Bali, Indonesia

  35. Einarsson P (1978) S-wave shadows in the Krafla caldera in NE-Iceland, evidence for a magma chamber in the crust. Bull Volcanol 41:187–195

    Article  Google Scholar 

  36. Essene EJ, Peacor DR (1995) Clay mineral thermometry; a critical perspective. Clays Clay Miner 43:540–553

    Article  Google Scholar 

  37. Fiordelisi A, Mackie RL, Madden T, Manzella A, Rieven SA (1995) Application of the magnetotelluric method using a remote—remote reference system for characterizing deep geothermal system. In: proceedings world geothemal congress, Florence, Italy, pp 893–897

  38. Fiordelisi A, Manzella A, Buonasorte G, Larsen JC, Mackie RL (2000) MT methodology in the detection of deep, water-dominated geothermal systems. In: proceedings world geothemal congress, Tohoku-Kyushu, Japan, pp 1121–1126

  39. Garg SK, Pritchett JW, Combs J (2006) Characterization of geothermal reservoir conditions using electrical surveys: some preliminary results. GRC Transactions 30:419–424

    Google Scholar 

  40. Garg SK, Pritchett JW, Wannamaker PE, Combs J (2007) Characterization of geothermal reservoirs with electrical surveys: beowawe geothermal field. Geothermics 36:487–517

    Article  Google Scholar 

  41. Gasperikova E, Newman G, Feucht D, Arnason K (2011) 3D MT characterization of two geothermal fields in Iceland. GRC Transactions 35:1667–1671

    Google Scholar 

  42. Geiermann J, Schill E (2010) 2-D magnetotellurics at the geothermal site at Soultz-Sous-Forets- resistivity distribution to about 3000 M Depth. Comptes Rendus Geoscience. doi:10.1016/j.crte.2010.04.001

  43. Harinarayana T, Abdul Azeez KK, Naganjaneyulu K, Manoj C, Veeraswamy K, Murthy DN, Prabhakar Eknath Rao S (2004) Magnetotelluric studies in Puga valley geothermal field, NW Himalaya, Jammu and Kashmir, India. J Volcanol Geoth Res 138:405–424

    Article  Google Scholar 

  44. Harinarayana T, Abdul Azeez KK, Murthy DN, Veeraswamy K, Eknath Rao SP, Manoj C, Naganjaneyulu K (2006) Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. J Appl Geophys 58:280–295

    Article  Google Scholar 

  45. Heise W, Bibby HM, Caldwell TG, Bannister SC, Ogawa Y, Takakura S, Uchida T (2007) Melt distribution beneath a young continental rift: the Taupo volcanic zone, New Zealand. Geophys Res Lett 34:L14313. doi:10.1029/2007GL029629

    Article  Google Scholar 

  46. Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophys J Int 173:740–750. doi:10.1111/j.1365-246X.2008.03737.x

    Article  Google Scholar 

  47. Hersir GP (1980) Electric and electromagnetic measurements across the Mid-Atlantic Ridge in Southwest Iceland, with special reference to the high temperature area of Hengill. M. Sc. Thesis. University of Aarhus, Denmark, pp 165

  48. Huenges E, Moeck I, the geothermal group of the GFZ (2007) Directional drilling and stimulation of a deep sedimentary geothermal reservoir. Sci Drill 5:47–49

    Google Scholar 

  49. Kurilovitch L, Norman D, Heizler M, Moore J, McCulloch J (2003) 40Ar/39Ar Thermal History of the Coso Geothermal Field. In: proceedings, 28th workshop on geothermal reservoir engineering, Stanford University

  50. Kuyumcu ÖC, Destegül Solaroglu UZ, Hallinan S, Çolpan B, Turkoglu E, Soyer W (2011) Interpretation of 3D Magnetotelluric (MT) Surveys: basement conductors of the Menderes Massif, Western Turkey. GRC Transactions 35:861–866

    Google Scholar 

  51. Lagios E, Galanopoulos D, Hobbs BA, Dawes GJK (1998) Two-dimensional magnetotelluric modelling of the Kos Island geothermal region (Greece). Tectonophysics 287:157–172

    Article  Google Scholar 

  52. Larsen J, Mackie R, Fiordelisi A, Manzella A, Rieven S (1995) Robust processing for removing train signals from Magnetotelluric Data in Central Italy. In: proceedings world geothemal congress, Florence, Italy, pp 903–908

  53. Lee TJ, Song Y, Uchida T (2007) Three-dimensional magnetotelluric surveys for geothermal development in Pohang, Korea. Explor Geophys 38:44–49

    Article  Google Scholar 

  54. Manzella A, Spichak V, Pushkarev P, Sileva D, Oskooi B, Ruggieri G, Sizov Y (2006) Deep fluid circulation in the travale geothermal area and its Relation with Tectonic Structure Investigated by a Magnetotelluric Survey. In: proceedings, 31st workshop on geothermal reservoir engineering, Stanford University

  55. Manzella A, Ungarelli C, Ruggieri G, Giolito C, Fiordelisi A (2010) Electrical resistivity at the Travale geothermal field (Italy). In: proceedings world geothemal congress, Bali, Indonesia

  56. Marini L, Manzella A (2005) Possible seismic signature of the α–β quartz transition in the lithosphere of Southern Tuscany (Italy). J Volcanol Geoth Res 148:81–97

    Article  Google Scholar 

  57. Meju MA (2002) Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv Geophys 23:133–205

    Article  Google Scholar 

  58. Monteiro Santos FA, Dupis A, Andrade Afonso AR, Mendes-Victor LA (1996) An audiomagnetotelluric survey over the Chaves geoth geothermal field (NE Portugal). Geothermics 25:389–406

    Article  Google Scholar 

  59. Monteiro Santos FA, Andrade Afonso AR, Dupis A (2007) 2D joint inversion of DC and scalar audio-magnetotelluric data in the evaluation of low enthalpy geothermal fields. J Geophys Eng 4:53–62

    Article  Google Scholar 

  60. Mortensen AK (ed), Guðmundsson Á, Sigmundsson F, Axelsson G, Ármannsson H, Björnsson H, Ágústsson K, Sæmundsson K, Ólafsson M, Karlsdóttir R, Halldórsdóttir S, Hauksson T (2009) Krafla Geothermal System. A compilation of explorations and developments of the geothermal system and a reevaluation of the conceptual model. Landsvirkjun Report LV-2009/111 and ÍSOR, ÍSOR-2009/057, Reykjavik, Iceland, pp 180 (in Icelandic)

  61. Mortensen AK, Grönvold K, Guðmundsson A, Steingrímsson B, Egilson T (2010) Quenched silicic glass from well K-39 in Krafla, North-Eastern Iceland. In: proceedings world geothermal congress, Bali, Indonesia

  62. Muffler P, Cataldi R (1978) Methods for regional assessment of geothermal resources. Geothermics 7:53–89

    Article  Google Scholar 

  63. Mulyadi (2000) Magnetotelluric method applied for geothermal exploration in Sibayak, North Sumatra. In: proceedings world geothemal congress, Tohoku-Kyushu, Japan, pp 1469–1472

  64. Muñoz G, Ritter O, Moeck I (2010a) A target-oriented magnetotelluric inversion approach for characterizing the low enthalpy Groß Schönebeck geothermal reservoir. Geophys J Int 183:1199–1215

    Article  Google Scholar 

  65. Muñoz G, Bauer K, Moeck I, Schulze A, Ritter O (2010b) Exploring the Groß Schönebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models. Geothermics 39:35–45

    Article  Google Scholar 

  66. Muraoka H, Uchida T, Sasada M, Yagi M, Akaku K, Sasaki M, Yasukawa K, Miyazaki S, Doi M, Saito S, Sato S, Tanakam S (1998) Deep geothermal resources survey program: igneous, metamorphic and hydrothermal processes in a well encountering 500 °C at 3729 m Depth, Kakkonda, Japan. Geothermics 27:507–534

    Article  Google Scholar 

  67. Mwangi AW (2012) Eburru Geothermal Prospect, Kenya —Joint 1D Inversion of MT and TEM Data. In: proceedings, 37th workshop on geothermal reservoir Engineering, Stanford University

  68. Newman GA, Hoversten M, Gasperikova E, Wannamaker PE (2005) 3D magnetotelluric characterization of the Coso geothermal field. In: proceedings, 30th workshop on geothermal reservoir Engineering, Stanford University

  69. Newman GA, Gasperikova E, Hoversten GM, Wannamaker PE (2008) Three-dimensional magnetotelluric characterization of the Coso geothermal field. Geothermics 37:369–399

    Article  Google Scholar 

  70. Nurmukhamedov AG, Chernev II, Alekseev DA, Yakovlev AG (2010) 3D geoelectric model of the Mutnov steam hydrothermal deposit. Phys Solid Earth 46:739–750

    Article  Google Scholar 

  71. Ogawa Y, Bibby HM, Caldwell TG, Takakura S, Uchida T, Matsushima N, Bennie SL, Tosha T, Nishi Y (1999) Magnetotelluric image of the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 26:3673–3676

    Article  Google Scholar 

  72. Ooskoi B, Manzella A (2011) 2D inversion of the Magnetotelluric data from Travale geothermal field in Italy. J Earth Space Phys 36:1–18

    Google Scholar 

  73. Oskooi B, Pedersen LB, Smirnov M, Árnason K, Eysteinsson H, Manzella A, the DGP Working Group (2005) The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland. Phys Earth Planet Inter 150:183–195

    Article  Google Scholar 

  74. Pastana de Lugao P, LaTerra EF, Kriegshäuser B, Fontes SL (2002) Magnetotelluric studies of the Caldas Novas geothermal reservoir, Brazil. J Appl Geophys 49:33–46

    Article  Google Scholar 

  75. Peacock JR, Thiel S, Reid P, Heinson G (2012a) Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system. Geophysical Research Letters 39, doi:10.1029/2012GL053080

  76. Peacock JR, Thiel S, Reid P, Messellier M, Heinson G (2012b) Monitoring enhanced geothermal fluids with magnetotellurics, test case: Paralana, South Australia. In: proceedings, 37th workshop on geothermal reservoir Engineering, Stanford University

  77. Pellerin L, Johnston JM, Hohmann GW (1996) A numerical evaluation of electromagnetic methods in geothermal exploration. Geophysics 61:121–130

    Article  Google Scholar 

  78. Raharjo IB, Maris V, Wannamaker PE, Chapman DS (2010) Resistivity Structures of Lahendong and Kamojang geothermal systems revealed from 3-D Magnetotelluric Inversions, a Comparative Study. In: proceedings world geothemal congress, Bali, Indonesia

  79. Risk GF, Caldwell TG, Bibby HM (2003) Tensor time-domain electromagnetic resistivity measurements at Ngatamariki geothermal field, New Zealand. J Volcanol Geoth Res 127:33–54

    Article  Google Scholar 

  80. Ritter O, Hoffmann-Rothe A, Bedrosian PA, Weckmann U, Haak V (2005) Electrical conductivity images of active and fossil fault zones. In: Bruhn D and Burlini L (eds), High Strain Zones: Structure and Physical Properties, The Geological Society, pp 165–186

  81. Romo JM, Flores C, Vega R, Vázquez R, Pérez Flores MA, Gómez Treviño E, Esparza FJ, Quijano JE, García VH (1997) A closely-spaced magnetotelluric study of the Ahuachapán-Chipilapa geothermal field, El Salvador. Geothermics 26:627–656

    Article  Google Scholar 

  82. Rybach L (2010) Status and prospects of geothermal energy. In: proceedings world geothermal congress, Bali, Indonesia

  83. Shankar R, Padhi RN, Prakash G, Thussu JL, Wangdus C (1976) Recent geological studies in upper Indus valley and the plate tectonics. Geol Surv India, Misc Publ 34:41–56

    Google Scholar 

  84. Spichak V (2005) Three-dimensional resistivity structure of the Minamikayabe geothermal zone revealed by Bayesian inversion of MT Data. In: proceedings world geothemal congress, Antalya, Turkey

  85. Spichak V, Manzella A (2009) Electromagnetic sounding of geothermal zones. J Appl Geophys 68:459–478

    Article  Google Scholar 

  86. Spichak V, Schwartz Y, Nurmukhamedov AG (2007) Conceptual Model of the Mutnovsky Geothermal Deposit (Kamchatka) Based on electromagnetic, gravity and magnetic data. In: Proceedings, EGM international workshop

  87. Spichak V, Geiermann J, Zakharova O, Calcagno P, Genter A, Schill E (2010) Deep temperature extrapolation in the Soultz-sous-Forêts geothermal area using magnetotelluric data

  88. Stagpoole VM, Bibby HM (1998) The shallow resistivity structure of the Taupo Volcanic Zone, New Zealand. In: Proceedings of the 20th N.Z. geothermal workshop, University of Auckland Geothermal Institute, pp 303–310

  89. Tester JW and the MIT geothermal panel (2006) The future of geothermal energy—impact of enhanced geothermal systems (EGS) on the United States in the 21st Century, MIT—Massachusetts Institute of Technology, Cambridge, MA. p 358

  90. Tulinius H, Þorbergsdóttir IM, Ádám L, Hu ZZ, Yu G (2010) Geothermal evaluation in Hungary using integrated interpretation of well, seismic, and MT data. In: proceedings world geothemal congress, Bali, Indonesia

  91. Uchida T (1995) Resistivity structure of Sumikawa geothermal field, northeastern Japan, obtained from magnetotelluric data. In: proceedings world geothemal congress, Florence, Italy, pp 921–925

  92. Uchida T (2005) Three-dimensional magnetotelluric investigation in geothermal fields in Japan and Indonesia. In: proceedings world geothemal congress, Antalya, Turkey

  93. Uchida T, Ogawa Y, Takakura S, Mitsuhata Y (2000) Geoelectrical investigation of the kakkonda geothermal field, Northern Japan. In: proceedings world geothemal congress, Tohoku-Kyushu, Japan, pp 1893–1898

  94. Uchida T, Lee TJ, Honda M, Andan A (2002) 2-D and 3-D interpretation of magnetotelluric data in the Bajawa geothermal field, central Flores, Indonesia. Bull Geol Surv Japan 53:265–283

    Google Scholar 

  95. Uchida T, Song T, Lee TJ, Mitsuhata Y, Lee SK, Lim SK (2004) 3D magnetotelluric interpretation in Pohang low-enthalpy geothermal area, Korea. In: proceedings 17th electromagnetic induction workshop, Hyderabad, India

  96. Uchida T, Song Y, Lee TJ, Mitsuhata Y, Lee SK, Lim SK (2005) Magnetotelluric survey in an extremely noisy environment at the pohang low-enthalpy geothermal area, Korea. In: proceedings world geothermal congress, Antalya, Turkey

  97. Uchida T, Takakura S, Ueda T, Adachi M, Ozeki M, Kamada K, Sato T (2010) 3D magnetotelluric survey at the Yanaizu-Nishiyama geothermal field, Northern Japan. In: Proceedings of the 9th Asian Geothermal Symposium, pp 26–31

  98. Ucok H, Ershaghi I, Olhoeft G (1980) Electrical resistivity of geothermal brines. J Petrol Technol 32:717–727

    Google Scholar 

  99. Ussher G, Harvey C, Johnstone R, Anderson E (2000) Understanding the resistivities observed in geothermal systems. In: proceedings world geothermal congress, Kyushu-Tohoku, Japan, pp 1915–1920

  100. Volpi G, Manzella A, Fiordelisi A (2003) Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area, Italy. Geothermics 32:131–145

    Article  Google Scholar 

  101. Wannamaker PE (1997a) CSAMT survey over the sulphur springs thermal area, Valles Caldera, New Mexico, USA, Part I: implications for structure of the western caldera. Geophysics 62:451–465

    Article  Google Scholar 

  102. Wannamaker PE (1997b) Tensor CSAMT survey over the sulphur springs thermal area, Valles Caldera, New Mexico, USA, Part II: implications for CSAMT methodology. Geophysics 62:466–476

    Article  Google Scholar 

  103. Wannamaker PE, Rose PE, Doerner WM, Berard BC, McCulloch J, Nurse K (2004) Magnetotelluric surveying and monitoring at the Coso geothermal area, California, in support of the enhanced geothermal systems concept: survey parameters and initial results. In: proceedings, 29th workshop on geothermal reservoir Engineering, Stanford University

  104. Wannamaker PE, Doerner WM, Hasterok DP (2007) Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada; structural controls, hydrothermal alteration and deep fluid sources. In: proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University

  105. Wright PM, Ward SH, Ross HP, West RC (1985) State of the art geophysical exploration for geothermal resources. Geophysics 50:2666–2696

    Article  Google Scholar 

  106. Yamane K, Ohsato K, Ohminato T, Kim HJ (2000) Three-dimensional magnetotelluric investigation in Kakkonda geothermal area, Japan. In: proceedings world geothemal congress, Tohoku-Kyushu, Japan, pp 1965–1968

  107. Yu G, Strack K, Tulinius H, Þorbergsóttir IM Ádám L, Hu ZZ, He ZX (2010) Integrated MT/Gravity geothermal exploration in Hungary: A success story. 21 ASEG Conference and Exhibition, Sydney

Download references


I would like to thank the Program Committee of the 21st Electromagnetic Induction Workshop for giving me the opportunity to write this review paper. My attendance to the workshop was financed by the project Brine (Grant Nr. 03G0758A/B) funded by the German Federal Ministry of Education and Research. I also thank all authors who sent me their papers, manuscripts and conference contributions, which helped me a lot in writing this review paper, and I apologise for any omissions. This paper has been improved by the comments of my colleague Ute Weckmann, Knútur Árnason and an anonymous reviewer.

Author information



Corresponding author

Correspondence to Gerard Muñoz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1.

Location map of exemplary surveys: 1) Taupo Volcanic Zone, New Zealand. 2) Hengill, Iceland. 3) Glass Mtn. geothermal area, USA. 4) Coso geothermal field, USA. 5) Larderello – Travale, Italy. 6) Menderes Massif, Turkey. 7) Pohang, South Korea. 8) Llucmajor aquifer, Spain. 9) Groß Schönebeck geothermal test site, Germany. 10) Puga, India. 11) Paralana EGS, Australia. (JPEG 665 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muñoz, G. Exploring for Geothermal Resources with Electromagnetic Methods. Surv Geophys 35, 101–122 (2014). https://doi.org/10.1007/s10712-013-9236-0

Download citation


  • Geothermics
  • Electromagnetics
  • Electrical resistivity
  • Exploration