On the Causes of Electrical Conductivity Anomalies in Tectonically Stable Lithosphere

Abstract

Magnetotelluric (MT) data can image the electrical resistivity of the entire lithospheric column and are therefore one of the most important data sources for understanding the structure, composition and evolution of the lithosphere. However, interpretations of MT data from stable lithosphere are often ambiguous. Recent results from mineral physics studies show that, from the mid-crust to the base of the lithosphere, temperature and the hydrogen content of nominally anhydrous minerals are the two most important controls on electrical conductivity. Graphite films on mineral grain boundaries also enhance conductivity but are stable only to the uppermost mantle. The thermal profile of most stable lithosphere can be well constrained, so the two important unknowns that can affect the conductivity of a lithospheric section are hydrogen content and graphite films. The presence of both of these factors is controlled by the geological history of the lithosphere. Hydrogen in nominally anhydrous minerals behaves as an incompatible element and is preferentially removed during melting or high-temperature tectonothermal events. Grain-boundary graphite films are only stable to ~900 °C so they are also destroyed by high-temperature events. Conversely, tectonic events that enrich the lithosphere in incompatible elements, such as interaction with fluids from a subducting slab or a plume, can introduce both hydrogen and carbon into the lithosphere and therefore increase its electrical conductivity. Case studies of MT results from central Australia and the Slave Craton in Canada suggest that electrical conductivity can act as a proxy for the level of enrichment in incompatible elements of the lithosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Allegre CJ, Poirier JP, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134(3–4):515–526. doi:10.1016/0012-821x(95)00123-t

    Google Scholar 

  2. Allen SR, McPhie J, Ferris G, Simpson C (2008) Evolution and architecture of a large felsic Igneous Province in western Laurentia: the 1.6 Ga Gawler Range Volcanics, South Australia. J Volcanol Geotherm Res 172(1–2):132–147. doi:10.1016/j.jvolgeores.2005.09.027

    Google Scholar 

  3. Artemieva IM (2006) Global 1 degrees × 1 degrees thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416(1–4):245–277. doi:10.1016/j.tecto.2005.11.022

    Google Scholar 

  4. Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res Solid Earth 106(B8):16387–16414. doi:10.1029/2000jb900439

    Google Scholar 

  5. Aubaud C, Hauri EH, Hirschmann MM (2004) Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett 31(20):L20611

    Google Scholar 

  6. Aulbach S, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the central slave craton, Canada. J Petrol 48(10):1843–1873. doi:10.1093/petrology/egm041

    Google Scholar 

  7. Banks R, Livelybrooks D, Jones P, Longstaff R (1996) Causes of high crustal conductivity beneath the Iapetus suture zone in Great Britain. Geophys J Int 124(2):433–455

    Google Scholar 

  8. Becken M, Ritter O (2012) Magnetotelluric studies at the San Andreas Fault Zone: implications for the role of fluids. Surv Geophys 33(1):65–105. doi:10.1007/s10712-011-9144-0

    Google Scholar 

  9. Bell DR, Rossman GR (1992) Water in Earth’s mantle—the role of nominally anhydrous minerals. Science 255(5050):1391–1397. doi:10.1126/science.255.5050.1391

    Google Scholar 

  10. Bell DR, Rossman GR, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res Solid Earth 108(2):2105. doi:10.1029/2001jb000679

    Google Scholar 

  11. Bertrand E, Unsworth M, Chiang C-W, Chen C-S, Chen C-C, Wu F, Türkoğlu E, Hsu H-L, Hill G (2009) Magnetotelluric evidence for thick-skinned tectonics in central Taiwan. Geology 37(8):711–714

    Google Scholar 

  12. Betts PG, Giles D, Foden J, Schaefer BF, Mark G, Pankhurst MJ, Forbes CJ, Williams HA, Chalmers NC, Hills Q (2009) Mesoproterozoic plume-modified orogenesis in eastern Precambrian Australia. Tectonics 28:Tc3006. doi:10.1029/2008tc002325

    Google Scholar 

  13. Betts PG, Giles D, Lister GS, Frick LR (2002) Evolution of the Australian lithosphere. Aust J Earth Sci 49(4):661–695

    Google Scholar 

  14. Boerner D, Kurtz R, Craven J, Ross G, Jones F, Davis W (1999) Electrical conductivity in the Precambrian lithosphere of Western Canada. Science 283(5402):668–670

    Google Scholar 

  15. Boerner DE, Kurtz RD, Craven JA (1996) Electrical conductivity and Paleo-Proterozoic foredeeps. J Geophys Res Solid Earth 101(B6):13775–13791. doi:10.1029/96jb00171

    Google Scholar 

  16. Bologna MS, Padilha AL, Vitorello Í, Pádua MB (2011) Signatures of continental collisions and magmatic activity in central Brazil as indicated by a magnetotelluric profile across distinct tectonic provinces. Precambrian Res 185(1):55–64

    Google Scholar 

  17. Booker JR, Favetto A, Pomposiello MC (2004) Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429(6990):399–403

    Google Scholar 

  18. Branch T, Ritter O, Weckmann U, Sachsenhofer RF, Schilling F (2007) The Whitehill Formation—a high conductivity marker horizon in the Karoo Basin. S Afr J Geol 110(2–3):465–476. doi:10.2113/gssajg.110.2-3.465

    Google Scholar 

  19. Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res Solid Earth 107(5):2096. doi:10.1029/2001jb000391

    Google Scholar 

  20. Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci 36:531–567

    Google Scholar 

  21. Chakraborty S (2008) Diffusion in solid silicates: a tool to track timescales of processes comes of age. In: Annual review of Earth and planetary sciences, vol 36. pp 153–190. doi:10.1146/annurev.earth.36.031207.124125

  22. Chalmers N (2007) Mt Woods domain: Proterozoic metasediments and intrusives. Department of Primary Industries and Resources South Australia, Report Book 2007/20. Adelaide

  23. Chen CW, Rondenay S, Evans RL, Snyder DB (2009) Geophysical detection of relict metasomatism from an Archean (similar to 3.5 Ga) subduction zone. Science 326(5956):1089–1091. doi:10.1126/science.1178477

    Google Scholar 

  24. Chouteau M, Zhang P, Dion DJ, Giroux B, Morin R, Krivochieva S (1997) Delineating mineralization and imaging the regional structure with magnetotellurics in the region of Chibougamau (Canada). Geophysics 62(3):730–748

    Google Scholar 

  25. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental-crust—a global view. J Geophys Res Solid Earth 100(B6):9761–9788. doi:10.1029/95jb00259

    Google Scholar 

  26. Connolly JAD, Podladchikov YY (2004) Fluid flow in compressional tectonic settings: implications for midcrustal seismic reflectors and downward fluid migration. J Geophys Res 109:BO4201

    Google Scholar 

  27. Cull JP (1982) An appraisal of Australian heat-flow data. BMR J Aust Geol Geophys 7(1):11–21

    Google Scholar 

  28. Dai L, Karato S-i (2009a) Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. Proc Jpn Acad Ser B Phys Biol Sci 85(10):466–475. doi:10.2183/pjab.85.466

    Google Scholar 

  29. Dai L, Karato S-i (2009b) Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Phys Earth Planet Inter 176(1–2):83–88. doi:10.1016/j.pepi.2009.04.002

    Google Scholar 

  30. Dai L, Karato S-i (2009c) Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett 287(1–2):277–283. doi:10.1016/j.epsl.2009.08.012

    Google Scholar 

  31. Dai L, Li H, Hu H, Shan S, Jiang J, Hui K (2012) The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contrib Miner Petrol 163(4):689–700. doi:10.1007/s00410-011-0693-5

    Google Scholar 

  32. Daly SJ, Fanning CM, Fairclough MC (1998) Tectonic evolution and exploration potential of the Gawler Craton, South Australia. J Aust Geol Geophys 17(3):145–168

    Google Scholar 

  33. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298(1):1–13

    Google Scholar 

  34. Davis WJ, Jones AG, Bleeker W, Grutter H (2003) Lithosphere development in the Slave craton: a linked crustal and mantle perspective. Lithos 71(2–4):575–589. doi:10.1016/s0024-4937(03)00131-2

    Google Scholar 

  35. Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth-Sci Rev 58(3):247–278

    Google Scholar 

  36. Demouchy S (2010a) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295(1–2):305–313. doi:10.1016/j.epsl.2010.04.019

    Google Scholar 

  37. Demouchy S (2010b) Hydrogen diffusion in spinel grain boundaries and consequences for chemical homogenization in hydrous peridotite. Contrib Miner Petrol 160(6):887–898. doi:10.1007/s00410-010-0512-4

    Google Scholar 

  38. Dixon JE, Leist L, Langmuir C, Schilling J-G (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420(6914):385–389

    Google Scholar 

  39. Djomani YHP, O’Reilly SY, Griffin WL, Morgan P (2001) The density structure of subcontinental lithosphere through time. Earth Planet Sci Lett 184(3–4):605–621

    Google Scholar 

  40. Dmitriev VI, Berdichevsky MN (1979) The fundamental model of magnetotelluric sounding. Proc IEEE 67(7):1034–1044

    Google Scholar 

  41. Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in dry olivine. Geophys Res Lett 32(24):L24315

    Google Scholar 

  42. Du Frane WL, Tyburczy JA (2012) Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity. Geochem Geophys Geosyst 13(null):Q03004

    Google Scholar 

  43. Duba A, Heikamp S, Meurer W, Nover G, Will G (1994) Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature 367(6458):59–61

    Google Scholar 

  44. Duba A, Huenges E, Nover G, Will G, Jodicke H (1988) Impedance of black shale from Munsterland-1 borehole—an anomalously good conductor. Geophys J Oxf 94(3):413–419

    Google Scholar 

  45. Duba AG, Shankland TJ (1982) Free carbon and electrical-conductivity in the Earth’s mantle. Geophys Res Lett 9(11):1271–1274

    Google Scholar 

  46. Egbert GD, Booker JR (1992) Very long period magnetotellurics at Tuscon-observatory—implications for mantle conductivity. J Geophys Res Solid Earth 97(B11):15099–15112. doi:10.1029/92jb01251

    Google Scholar 

  47. Evans RL, Jones AG, Garcia X, Muller M, Hamilton M, Evans S, Fourie C, Spratt J, Webb S, Jelsma H (2011) Electrical lithosphere beneath the Kaapvaal craton, southern Africa. J Geophys Res 116(B4):B04105

    Google Scholar 

  48. Fanning CM, Reid A, Teale GS (2007) A geochronological framework for the Gawler Craton, South Australia. Geological Survey, Primary Industries and Resources South Australia. Bulletin 55

  49. Ferguson IJ, Craven JA, Kurtz RD, Boerner DE, Bailey RC, Wu X, Orellana MR, Spratt J, Wennberg G, Norton A (2005) Geoelectric response of Archean lithosphere in the western Superior Province, central Canada. Phys Earth Planet Inter 150(1–3):123–143. doi:10.1016/j.pepi.2004.08.025

    Google Scholar 

  50. Figueiredo I, Meju M, Fontes S (2008) Heterogeneous crust and upper mantle across the SE Brazilian Highlands and the relationship to surface deformation as inferred from magnetotelluric imaging. J Geophys Res 113(B3):B03404

    Google Scholar 

  51. Forbes CJ, Giles D, Jourdan F, Sato K, Omori S, Bunch M (2012) Cooling and exhumation history of the northeastern Gawler Craton, South Australia. Precambr Res 200:209–238. doi:10.1016/j.precamres.2011.11.003

    Google Scholar 

  52. Fraser G, McAvaney S, Neumann N, Szpunar M, Reid A (2010) Discovery of early Mesoarchean crust in the eastern Gawler Craton, South Australia. Precambrian Res 179(1):1–21

    Google Scholar 

  53. Frost BR, Fyfe WS, Tazaki K, Chan T (1989) Grain-boundary graphite in rocks and implications for high electrical-conductivity in the lower crust. Nature 340(6229):134–136

    Google Scholar 

  54. Frost DJ, Mann U, Asahara Y, Rubie DC (2008) The redox state of the mantle during and just after core formation. Philos Trans R Soc A Math Phys Eng Sci 366(1883):4315–4337. doi:10.1098/rsta.2008.0147

    Google Scholar 

  55. Fullea J, Muller MR, Jones AG (2011) Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa. J Geophys Res Solid Earth 116:B10202. doi:10.1029/2011jb008544

    Google Scholar 

  56. Glover PW, Vine F (1994) Electrical conductivity of the continental crust. Geophys Res Lett 21(22):2357–2360

    Google Scholar 

  57. Glover PWJ (1996) Graphite and electrical conductivity in the lower continental crust: a review. Phys Chem Earth 21(4):279–287

    Google Scholar 

  58. Gokarn S, Gupta G, Rao C (2004) Geoelectric structure of the Dharwar Craton from magnetotelluric studies: Archean suture identified along the Chitradurga–Gadag schist belt. Geophys J Int 158(2):712–728

    Google Scholar 

  59. Griffin WL, Doyle BJ, Ryan CG, Pearson NJ, O’Reilly SY, Davies R, Kivi K, Van Achterbergh E, Natapov LM (1999) Layered mantle lithosphere in the Lac de Gras area, Slave Craton: composition, structure and origin. J Petrol 40(5):705–727. doi:10.1093/petrology/40.5.705

    Google Scholar 

  60. Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50(7):1185–1204. doi:10.1093/petrology/egn033

    Google Scholar 

  61. Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the North American plate. Lithos 77(1–4):873–922. doi:10.1016/j.lithos.2004.03.034

    Google Scholar 

  62. Grütter H, Apter DB, Kong J (1999) Crust-mantle coupling: Evidence from mantle-derived xenocrystic garnets. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference, Cape Town, South Africa, pp 307–313

  63. Guo X, Yoshino T, Katayama I (2011) Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3 GPa. Phys Earth Planet Inter 188(1–2):69–81. doi:10.1016/j.pepi.2011.06.012

    Google Scholar 

  64. Haak V, Hutton R (1986) Electrical resistivity in continental lower crust. Geol Soc Lond Special Publ 24(1):35–49

    Google Scholar 

  65. Haggerty SE (1994) Superkimberlites—a geodynamic diamond window to the Earth’s core. Earth Planet Sci Lett 122(1–2):57–69. doi:10.1016/0012-821x(94)90051-5

    Google Scholar 

  66. Hand M, Reid A, Jagodzinski L (2007) Tectonic framework and evolution of the Gawler craton, southern Australia. Econ Geol 102(8):1377–1395

    Google Scholar 

  67. Hand M, Sandiford M (1999) Intraplate deformation in central Australia, the link between subsidence and fault reactivation. Tectonophysics 305(1–3):121–140

    Google Scholar 

  68. Hautot S, Tarits P, Whaler K, Le Gall B, Tiercelin JJ, Le Turdu C (2000) Deep structure of the Baringo Rift Basin (central Kenya) from three-dimensional magnetotelluric imaging: implications for rift evolution. J Geophys Res Solid Earth 105(B10):23493–23518

    Google Scholar 

  69. Heaman LM, Pearson DG (2010) Nature and evolution of the Slave Province subcontinental lithospheric mantle. Can J Earth Sci 47(4):369–388. doi:10.1139/e09-046

    Google Scholar 

  70. Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370(6490):519–527. doi:10.1038/370519a0

    Google Scholar 

  71. Heinson G, Constable S (1992) The electrical- conductivity of the oceanic upper mantle. Geophys J Int 110(1):159–179. doi:10.1111/j.1365-246X.1992.tb00719.x

    Google Scholar 

  72. Heinson G, Direen NG, Gill R (2006) Magnetotelluric evidence for a deep-crustal mineralising system beneath the giant Olympic Dam iron-oxide copper gold deposit, southern Australia. Geology 34(7):573–576

    Google Scholar 

  73. Hill GJ, Caldwell TG, Heise W, Chertkoff DG, Bibby HM, Burgess MK, Cull JP, Cas RAF (2009) Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat Geosci 2(11):785–789. doi:10.1038/ngeo661

    Google Scholar 

  74. Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144(1–2):93–108. doi:10.1016/0012-821x(96)00154-9

    Google Scholar 

  75. Hjelt SE, Korja T (1993) Lithospheric and upper-mantle structures, results of electromagnetic soundings in Europe. Phys Earth Planet Inter 79(1–2):137–177

    Google Scholar 

  76. Hoffmann-Rothe A, Ritter O, Haak V (2001) Magnetotelluric and geomagnetic modelling reveals zones of very high electrical conductivity in the upper crust of Central Java. Phys Earth Planet Inter 124(3–4):131–151

    Google Scholar 

  77. Hofmann AW (1988) Chemical differentiation of the Earth—the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90(3):297–314. doi:10.1016/0012-821x(88)90132-x

    Google Scholar 

  78. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385(6613):219–229. doi:10.1038/385219a0

    Google Scholar 

  79. Hopper DJ (2001) Crustal evolution of Paleo- to Mesoproterozoic rocks in the Peake and Denison Ranges. University of Queensland, Brisbane, South Australia

    Google Scholar 

  80. Howard KE, Hand M, Barovich KM, Payne JL, Belousova EA (2011) U-Pb, Lu-Hf and Sm-Nd isotopic constraints on provenance and depositional timing of metasedimentary rocks in the western Gawler Craton: implications for Proterozoic reconstruction models. Precambrian Res 184(1–4):43–62. doi:10.1016/j.precamres.2010.10.002

    Google Scholar 

  81. Howard KE, Hand M, Barovich KM, Reid A, Wade BP, Belousova EA (2009) Detrital zircon ages: improving interpretation via Nd and Hf isotopic data. Chem Geol 262(3–4):277–292. doi:10.1016/j.chemgeo.2009.01.029

    Google Scholar 

  82. Hunter RH, McKenzie D (1989) The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth Planet Sci Lett 92(3–4):347–356. doi:10.1016/0012-821x(89)90059-9

    Google Scholar 

  83. Hyndman R, Hyndman D (1968) Water saturation and high electrical conductivity in the lower continental crust. Earth Planet Sci Lett 4(6):427–432

    Google Scholar 

  84. Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Mineral 12:543–570

    Google Scholar 

  85. Jaupart C, Mareschal J (2007) Heat flow and thermal structure of the lithosphere. Treatise Geophys 6:217–251

    Google Scholar 

  86. Jödicke H, Kruhl JH, Ballhaus C, Giese P, Untiedt J (2004) Syngenetic, thin graphite-rich horizons in lower crustal rocks from the Serre San Bruno, Calabria (Italy), and implications for the nature of high-conducting deep crustal layers. Phys Chem Earth 141:37–58

    Google Scholar 

  87. Jones AG (1992) Electrical conductivity of the continental lower crust. Continental lower crust, pp 81–143

  88. Jones AG (1999) Imaging the continental upper mantle using electromagnetic methods. Lithos 48(1–4):57–80. doi:10.1016/s0024-4937(99)00022-5

    Google Scholar 

  89. Jones AG, Ferguson IJ (2001) The electric Moho. Nature 409(6818):331–333. doi:10.1038/35053053

    Google Scholar 

  90. Jones AG, Ferguson IJ, Chave AD, Evans RL, McNeice GW (2001) Electric lithosphere of the Slave craton. Geology 29(5):423–426. doi:10.1130/0091-7613(2001)029<0423:elotsc>2.0.co;2

    Google Scholar 

  91. Jones AG, Fishwick S, Evans RL, Muller MR, Fullea J (2013) Velocity-conductivity relations for cratonic lithosphere and their application: example of Southern Africa. Lithos 109(1):131–143

    Google Scholar 

  92. Jones AG, Ledo J, Ferguson IJ (2005a) Electromagnetic images of the Trans-Hudson Orogen: the North American Central Plains anomaly revealed. Can J Earth Sci 42(4):457–478

    Google Scholar 

  93. Jones AG, Ledo J, Ferguson IJ, Farquharson C, Garcia X, Grant N, McNeice G, Roberts B, Spratt J, Wennberg G (2005b) The electrical resistivity structure of Archean to Tertiary lithosphere along 3200 km of SNORCLE profiles, northwestern Canada. Can J Earth Sci 42(6):1257–1275

    Google Scholar 

  94. Jones AG, Lezaeta P, Ferguson IJ, Chave AD, Evans RL, Garcia X, Spratt J (2003) The electrical structure of the Slave craton. Lithos 71(2–4):505–527. doi:10.1016/j.lithos.2003.08.001

    Google Scholar 

  95. Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671. doi:10.1093/petrology/42.4.655

    Google Scholar 

  96. Karato S-I (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301(3–4):413–423. doi:10.1016/j.epsl.2010.11.038

    Google Scholar 

  97. Karato S-I, Dai L (2009) Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Phys Earth Planet Inter 174(1–4):19–21. doi:10.1016/j.pepi.2009.01.011

    Google Scholar 

  98. Karato S (1990) The role of hydrogen in the electrical-conductivity of the upper mantle. Nature 347(6290):272–273. doi:10.1038/347272a0

    Google Scholar 

  99. Karato S (2006) Remote sensing of hydrogen in Earth’s mantle. In: Keppler HSJR (ed) Water in nominally anhydrous minerals, vol 62. Reviews in mineralogy & geochemistry, pp 343–375 . doi:10.2138/rmg.2006.62.15

  100. Karato S, Wu P (1993) Rheology of the upper mantle—a synthesis. Science 260(5109):771–778. doi:10.1126/science.260.5109.771

    Google Scholar 

  101. Katsube TJ, Mareschal M (1993) Petrophysical model of deep electrical conductors: graphite lining as a source and its disconnection due to uplift. J Geophys Res Solid Earth 98(B5):8019–8030

    Google Scholar 

  102. Kelsey DE (2008) On ultrahigh-temperature crustal metamorphism. Gondwana Res 13(1):1–29

    Google Scholar 

  103. Kerrick DM, Connolly JAD (1998) Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26(4):375–378. doi:10.1130/0091-7613(1998)026<0375:sooaro>2.3.co;2

    Google Scholar 

  104. Kerrick DM, Connolly JAD (2001a) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411(6835):293–296. doi:10.1038/35077056

    Google Scholar 

  105. Kerrick DM, Connolly JAD (2001b) Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett 189(1–2):19–29. doi:10.1016/s0012-821x(01)00347-8

    Google Scholar 

  106. Kohlstedt DL, Evans B, Mackwell SJ (1995) Strength of the lithosphere: constraints imposed by laboratory experiments. J Geophys Res Solid Earth 100(9):17587–17602. doi:10.1029/95jb01460

    Google Scholar 

  107. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the alpha, beta and gamma phases of (Mg, Fe)(2)SiO4. Contrib Miner Petrol 123(4):345–357. doi:10.1007/s004100050161

    Google Scholar 

  108. Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem Int J Res Phys Chem Chem Phys 207:147–162

    Google Scholar 

  109. Korja T, Hjelt S-E (1993) Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust. Phys Earth Planet Inter 81(1):107–138

    Google Scholar 

  110. Kovács I, Green DH, Rosenthal A, Hermann J, O’neill HSC, Hibberson WO, Udvardi B (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. J Petrol 53(10):2067–2093

    Google Scholar 

  111. Lee C, Rudnick R (1999) Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths from the Labait tuff cone, Tanzania. In: Proceedings of the 7th international Kimberlite conference, pp 503–521

  112. Livelybrooks D, Mareschal M, Blais E, Smith JT (1996) Magnetotelluric delineation of the Trillabelle massive sulfide body in Sudbury, Ontario. Geophysics 61(4):971–986

    Google Scholar 

  113. Lu R, Keppler H (1997) Water solubility in pyrope to 100 kbar. Contrib Miner Petrol 129(1):35–42. doi:10.1007/s004100050321

    Google Scholar 

  114. Maier R, Heinson G, Thiel S, Selway K, Gill R, Scroggs M (2007) A 3D lithospheric electrical resistivity model of the Gawler Craton, Southern Australia. Appl Earth Sci 116:13–21

    Google Scholar 

  115. Mareschal M, Fyfe WS, Percival J, Chan T (1992) Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity. Nature 357(6380):674–676

    Google Scholar 

  116. Mareschal M, Kellett RL, Kurtz RD, Ludden JN, Ji S, Bailey RC (1995) Archean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature 375(6527):134–137. doi:10.1038/375134a0

    Google Scholar 

  117. Marty B, Tolstikhin IN (1998) CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol 145(3–4):233–248. doi:10.1016/s0009-2541(97)00145-9

    Google Scholar 

  118. Mathez EA (1987) Carbonaceous matter in mantle xenoliths—composition and relevance to the isotopes. Geochim Cosmochim Acta 51(9):2339–2347. doi:10.1016/0016-7037(87)90288-2

    Google Scholar 

  119. Mathez EA, Dietrich VJ, Irving AJ (1984) The geochemistry of carbon in mantle peridotites. Geochim Cosmochim Acta 48(9):1849–1859. doi:10.1016/0016-7037(84)90038-3

    Google Scholar 

  120. Mathez EA, Duba AG, Peach CL, Leger A, Shankland TJ, Plafker G (1995) Electrical-conductivity and carbon in metamorphic rocks of the Yukon-Tanana Terrane, Alaska. J Geophys Res Solid Earth 100(B6):10187–10196

    Google Scholar 

  121. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. doi:10.1016/0009-2541(94)00140-4

    Google Scholar 

  122. McFarlane CRM (2006) Palaeoproterozoic evolution of the Challenger Au deposit, South Australia, from monazite geochronology. J Metamorph Geol 24(1):75–87. doi:10.1111/j.1525-1314.2005.00622.x

    Google Scholar 

  123. McKenzie D, Jackson J, Priestley K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 233(3–4):337–349. doi:10.1016/j.epsl.2005.02.005

    Google Scholar 

  124. McLaren S, Sandiford M, Powell R (2005) Contrasting styles of proterozoic crustal evolution: a hot-plate tectonic model for Australian terranes. Geology 33(8):673–676. doi:10.1130/g21544

    Google Scholar 

  125. Meqbel NM, Ritter O (2013) A magnetotelluric transect across the Dead Sea Basin: electrical properties of geological and hydrological units of the upper crust. Geophys J Int. doi: 10.1093/gji/ggt051

  126. Michael PJ (1988) The concentration, behaviour and storage of H2O in the suboceanic upper mantle—implications for mantle metasomatism. Geochim Cosmochim Acta 52(2):555–566. doi:10.1016/0016-7037(88)90110-x

    Google Scholar 

  127. Michaut C, Jaupart C, Mareschal JC (2009) Thermal evolution of cratonic roots. Lithos 109(1):47–60

    Google Scholar 

  128. Mierdel K, Keppler H, Smyth JR, Langenhorst F (2007) Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 315(5810):364–368. doi:10.1126/science.1135422

    Google Scholar 

  129. Mookherjee M, Karato S-i (2010) Solubility of water in pyrope-rich garnet at high pressures and temperature. Geophys Res Lett 37:L03310. doi:10.1029/2009gl041289

    Google Scholar 

  130. Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30(2):113–135. doi:10.1029/92rg00201

    Google Scholar 

  131. Morrissey L, Payne JL, Kelsey DE, Hand M (2011) Grenvilli an-aged reworking in the North Australian Craton, central Australia: constraints from geochronology and modelled phase equilibria. Precambrian Res 191(3–4):141–165. doi:10.1016/j.precamres.2011.09.010

    Google Scholar 

  132. Muller M, Jones A, Evans R, Grütter H, Hatton C, Garcia X, Hamilton M, Miensopust M, Cole P, Ngwisanyi T (2009) Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, southern Africa: constraints from broadband magnetotellurics. Lithos 112:93–105

    Google Scholar 

  133. Naganjaneyulu K, Santosh M (2012) The nature and thickness of lithosphere beneath the Archean Dharwar Craton, southern India: a magnetotelluric model. J Asian Earth Sci 49:349–361

    Google Scholar 

  134. Neumann N, Sandiford M, Foden J (2000) Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly. Earth Planet Sci Lett 183(1–2):107–120. doi:10.1016/s0012-821x(00)00268-5

    Google Scholar 

  135. Nyblade AA, Pollack HN (1993) A global analysis of heat-flow from Precambrian terrains—implications for the thermal structure of Archean and Proterozoic lithosphere. J Geophys Res Solid Earth 98(B7):12207–12218. doi:10.1029/93jb00521

    Google Scholar 

  136. Nyblade AA, Pollack HN, Jones DL, Podmore F, Mushayandebvu M (1990) Terrestrial heat-flow in east and southern Africa. J Geophys Res Solid Earth Planets 95(B11):17371–17384. doi:10.1029/JB095iB11p1737

    Google Scholar 

  137. Ogawa Y, Jones AG, Unsworth MJ, Booker JR, Lu X, Craven J, Roberts B, Parmelee J, Farquharson C (1996) Deep electrical conductivity structures of the Appalachian Orogen in the southeastern US. Geophys Res Lett 23(13):1597–1600

    Google Scholar 

  138. Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Miner 16:491–559

    Google Scholar 

  139. Patro PK, Sarma S (2009) Lithospheric electrical imaging of the Deccan trap covered region of western India. J Geophys Res 114(B1):B01102

    Google Scholar 

  140. Payne JL, Barovich K, Hand M (2006) Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: implications for Palaeoproterozoic reconstructions. Precambr Res 148(3–4):275–291

    Google Scholar 

  141. Payne JL, Hand M, Barovich KM, Reid A, Evans DAD (2009) Correlations and reconstruction models for the 2500–1500 Ma evolution of the Mawson Continent. In: Reddy SM, Mazumder R, Evans DAD, Collins AS (eds) Palaeoproterozoic supercontinents and global evolution, vol 323. Geological Society, London, Special Publications, pp 319–356

  142. Payne JL, Hand M, Barovich KM, Wade BP (2008) Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic. Aust J Earth Sci 55(5):623–640. doi:10.1080/08120090801982595

    Google Scholar 

  143. Pearson D, Boyd F, Haggerty S, Pasteris J, Field S, Nixon P, Pokhilenko N (1994) The characterisation and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contrib Miner Petrol 115(4):449–466

    Google Scholar 

  144. Pearson NJ, Griffin WL, Doyle BJ, O’Reilly SY, Van Achterbergh E, Kivi K (1999) Xenoliths from kimberlite pipes of the Lac de Gras area, Slave Craton, Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international Kimberlite conference, vol 2. Red Roof Design, Cape Town, South Africa, pp 644–658

  145. Pineau F, Mathez EA (1990) Carbon isotopes in xenoliths from the Hualalai volcano, Hawaii, and the generation of isotopic variability. Geochimica Et Cosmochimica Acta 54(1):217–227. doi:10.1016/0016-7037(90)90209-4

    Google Scholar 

  146. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3–4):325–394. doi:10.1016/s0009-2541(97)00150-2

    Google Scholar 

  147. Poe BT, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181(3–4):103–111. doi:10.1016/j.pepi.2010.05.003

    Google Scholar 

  148. Pommier A (2013) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys. doi:10.1007/s10712-013-9226-2

  149. Pous J, Munoz G, Heise W, Melgarejo JC, Quesada C (2004) Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite. Earth Planet Sci Lett 217:435–450

    Google Scholar 

  150. Reynard B, Mibe K, van de Moortele B (2011) Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth Planet Sci Lett 307(3–4):387–394. doi:10.1016/j.epsl.2011.05.013

    Google Scholar 

  151. Ritter O, Hoffmann-Rothe A, Bedrosian PA, Weckmann U, Haak V (2005) Electrical conductivity images of active and fossil fault zones. High Strain Zones Struct Phys Prop 245:165–186. doi:10.1144/gsl.sp.2005.245.01.08

    Google Scholar 

  152. Rudnick RL, Fountain DM (1995) Nature and composition of the continental-crust—a lower crustal perspective. Rev Geophys 33(3):267–309. doi:10.1029/95rg01302

    Google Scholar 

  153. Rudnick RL, McDonough WF, O’Connell RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145(3–4):395–411. doi:10.1016/s0009-2541(97)00151-4

    Google Scholar 

  154. Sack RO, Ebel DS (2006) Thermochemistry of sulfide mineral solutions. In: Vaughan DJ (ed) Sulfide mineralogy and geochemistry, vol 61. Reviews in mineralogy & geochemistry, pp 265–364. doi:10.2138/rmg.2006.61.6

  155. Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119(1):265–274

    Google Scholar 

  156. Santos FAM, Mateus A, Almeida EP, Pous J, Mendes-Victor LA (2002) Are some of the deep crustal conductive features found in SW Iberia caused by graphite? Earth Planet Sci Lett 201(2):353–367

    Google Scholar 

  157. Schilling FR, Partzsch GM, Brasse H, Schwarz G (1997) Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys Earth Planet Inter 103(1–2):17–31. doi:10.1016/s0031-9201(97)00011-3

    Google Scholar 

  158. Schock RN, Duba AG, Shankland TJ (1989) Electrical conduction in olivine. J Geophys Res Solid Earth Planets 94(B5):5829–5839. doi:10.1029/JB094iB05p05829

    Google Scholar 

  159. Scrimgeour I, Close D (1999) Regional high-pressure metamorphism during intracratonic deformation: the Petermann Orogeny, central Australia. J Metamorph Geol 17(5):557–572

    Google Scholar 

  160. Selway K, Hand M, Heinson GS, Payne JL (2009a) Magnetotelluric constraints on subduction polarity: reversing reconstruction models for Proterozoic Australia. Geology 37(9):799–802. doi:10.1130/g30175a.1

    Google Scholar 

  161. Selway K, Sheppard S, Thorne AM, Johnson SP, Groenewald PB (2009b) Identifying the lithospheric structure of a Precambrian orogen using magnetotellurics: the Capricorn Orogen, Western Australia. Precambrian Res 168(3–4):185–196. doi:10.1016/j.precamres.2008.09.010

    Google Scholar 

  162. Selway K, Thiel S, Key K (2012) A simple 2-D explanation for negative phases in TE magnetotelluric data. Geophys J Int 188(3):945–958. doi:10.1111/j.1365-246X.2011.05312.x

    Google Scholar 

  163. Selway KM, Hand M, Payne JL, Heinson GS, Reid A (2011) Magnetotelluric constraints on the tectonic setting of Grenville-aged orogenesis in central Australia. J Geol Soc 168(1):251–264. doi:10.1144/0016-76492010-034

    Google Scholar 

  164. Sleep NH (2009) Stagnant lid convection and carbonate metasomatism of the deep continental lithosphere. Geochem Geophys Geosyst 10:Q11010

    Google Scholar 

  165. Stagno V, Frost DJ (2010) Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett 300(1):72–84

    Google Scholar 

  166. Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1012. doi:10.1029/2001rg000108

    Google Scholar 

  167. Stewart KP, Foden J (2003) Mesoproterozoic granites of South Australia. South Australia Department of Primary Industries and Resources, Report Book, vol 2003/15

  168. Swain G, Barovich K, Hand M, Ferris G, Schwarz M (2008) Petrogenesis of the St Peter Suite, southern Australia: arc magmatism and Proterozoic crustal growth of the South Australian Craton. Precambr Res 166(1–4):283–296. doi:10.1016/j.precamres.2007.07.028

    Google Scholar 

  169. Swain G, Woodhouse A, Hand M, Barovich K, Schwarz M, Fanning CM (2005) Provenance and tectonic development of the late Archaean Gawler Craton, Australia; U-Pb zircon, geochemical and Sm-Nd isotopic implications. Precambr Res 141(3–4):106–136

    Google Scholar 

  170. Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005) Subducting oceanic crust: the source of deep diamonds. Geology 33(7):565–568

    Google Scholar 

  171. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265. doi:10.1029/95rg00262

    Google Scholar 

  172. ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res Solid Earth 109(B6):B06203. doi:10.1029/2003jb002799

    Google Scholar 

  173. ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurements. J Geophys Res Solid Earth 110(B12):1978–2012

    Google Scholar 

  174. Thiel S, Heinson G (2010) Crustal imaging of a mobile belt using magnetotellurics: an example of the Fowler Domain in South Australia. J Geophys Res Solid Earth 115:B06102. doi:10.1029/2009jb006698

    Google Scholar 

  175. Tomkins AG, Mavrogenes JA (2002) Mobilization of gold as a polymetallic melt during pelite anatexis at the Challenger deposit, South Australia: a metamorphosed Archean gold deposit. Econ Geol Bull Soc Econ Geol 97(6):1249–1271

    Google Scholar 

  176. Tournerie B, Chouteau M (2005) Three-dimensional magnetotelluric survey to image structure and stratigraphy of a sedimentary basin in Hungary. Phys Earth Planet Inter 150(1–3):197–212

    Google Scholar 

  177. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5212):858–861. doi:10.1126/science.268.5212.858

    Google Scholar 

  178. van Achterbergh E, Griffin WL, Ryan CG, O’Reilly SY, Pearson NJ, Kivi K, Doyle BJ (2002) Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30(8):743–746. doi:10.1130/0091-7613(2002)030<0743:ssfqcf>2.0.co;2

    Google Scholar 

  179. van Achterbergh E, Griffin WL, Ryan CG, O’Reilly SY, Pearson NJ, Kivi K, Doyle BJ (2004) Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos 76(1–4):461–474. doi:10.1016/j.lithos.2004.04.007

    Google Scholar 

  180. Wade BP, Barovich KM, Hand M, Scrimgeour IR, Close DF (2006) Evidence for early Mesoproterozoic arc magmatism in the Musgrave Block, central Australia: implications for Proterozoic crustal growth and tectonic reconstructions of Australia. J Geol 114(1):43–63

    Google Scholar 

  181. Wade BP, Kelsey DE, Hand M, Barovich KM (2008) The Musgrave Province: stitching north, west and south Australia. Precambrian Res 166(1–4):370–386. doi:10.1016/j.precamres.2007.05.007

    Google Scholar 

  182. Wang D, Karato S-I, Liu Z (2012) Influence of hydrogen on the electronic states of olivine: implications for electrical conductivity. Geophys Res Lett 39:L06306. doi:10.1029/2012gl051046

    Google Scholar 

  183. Wang D, Mookherjee M, Xu Y, Karato S-i (2006) The effect of water on the electrical conductivity of olivine. Nature 443(7114):977–980. doi:10.1038/nature05256

    Google Scholar 

  184. Wannamaker PE (2000) Comment on``The petrologic case for a dry lower crust’’by Bruce WD Yardley and John W. Valley. J Geophys Res 105:6057–6064

    Google Scholar 

  185. Wannamaker PE (2005) Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surv Geophys 26(6):733–765. doi:10.1007/s10712-005-1832-1

    Google Scholar 

  186. Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature 460(7256):733–736. doi:10.1038/nature08204

    Google Scholar 

  187. Wannamaker PE, Jiracek GR, Stodt JA, Caldwell TG, Gonzalez VM, McKnight JD, Porter AD (2002) Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J Geophys Res Solid Earth 107(B6):2117. doi:10.1029/2001bj000186

    Google Scholar 

  188. Watson HC, Roberts JJ, Tyburczy JA (2010) Effect of conductive impurities on electrical conductivity in polycrystalline olivine. Geophys Res Lett 37(2):L02302

    Google Scholar 

  189. Wingate MTD, Pirajno F, Morris PA (2004) Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32(2):105–108. doi:10.1130/g20171.1

    Google Scholar 

  190. Wood BJ, Bryndzia LT, Johnson KE (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248(4953):337–345. doi:10.1126/science.248.4953.337

    Google Scholar 

  191. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72. doi:10.1016/j.epsl.2004.12.005

    Google Scholar 

  192. Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J (2006) Volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle. Earth Planet Sci Lett 241(3):932–951

    Google Scholar 

  193. Wyllie PJ (1980) The origin of kimberlite. J Geophys Res 85(NB12):6902–6910. doi:10.1029/JB085iB12p06902

    Google Scholar 

  194. Xu YS, Shankland TJ (1999) Electrical conductivity of orthopyroxene and its high pressure phases. Geophys Res Lett 26(17):2645–2648. doi:10.1029/1999gl008378

    Google Scholar 

  195. Xu YS, Shankland TJ, Duba AG (2000) Pressure effect on electrical conductivity of mantle olivine. Phys Earth Planet Inter 118(1–2):149–161. doi:10.1016/s0031-9201(99)00135-1

    Google Scholar 

  196. Yang X (2011) Origin of high electrical conductivity in the lower continental crust: a review. Surv Geophys 32(6):875–903

    Google Scholar 

  197. Yang X, Heidelbach F (2012) Grain size effect on the electrical conductivity of clinopyroxene. Contrib Mineral Petrol 163(6):939–947

    Google Scholar 

  198. Yang X, Keppler H, McCammon C, Ni H (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Miner Petrol 163(1):33–48. doi:10.1007/s00410-011-0657-9

    Google Scholar 

  199. Yang X, Keppler H, McCammon C, Ni H, Xia Q, Fan Q (2011) Effect of water on the electrical conductivity of lower crustal clinopyroxene. J Geophys Res Solid Earth 116:B04208. doi:10.1029/2010jb008010

    Google Scholar 

  200. Yardley B, Valley J (1997) The petrologic case for a dry lower crust. J Geophys Res 102:173–185

    Google Scholar 

  201. Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31(2):163–206. doi:10.1007/s10712-009-9084-0

    Google Scholar 

  202. Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288(1–2):291–300. doi:10.1016/j.epsl.2009.09.032

    Google Scholar 

  203. Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443(7114):973–976. doi:10.1038/nature05223

    Google Scholar 

  204. Yoshino T, Nishi M, Matsuzaki T, Yamazaki D, Katsura T (2008) Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys Earth Planet Inter 170(3–4):193–200. doi:10.1016/j.pepi.2008.04.009

    Google Scholar 

  205. Yoshino T, Noritake F (2011) Unstable graphite films on grain boundaries in crustal rocks. Earth Planet Sci Lett 306(3–4):186–192. doi:10.1016/j.epsl.2011.04.003

    Google Scholar 

  206. Yoshino T, Shimojuku A, Shan S, Guo X, Yamazaki D, Ito E, Higo Y, Funakoshi K-i (2012) Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J Geophys Res 117(B8):B08205

    Google Scholar 

  207. Zhao D (2001) Seismic structure and origin of hotspots and mantle plumes. Earth Planet Sci Lett 192(3):251–265. doi:10.1016/s0012-821x(01)00465-4

    Google Scholar 

  208. Zhao JX, McCulloch MT, Korsch RJ (1994) Characterization of a plume-related similar to 800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth Planet Sci Lett 121(3–4):349–367

    Google Scholar 

Download references

Acknowledgments

The manuscript benefited greatly from many conversations with those in the EM community at the 21st EMIW and the members of the TRaX and CERG research groups at the University of Adelaide. Martin Hand is thanked for his comments on the manuscript and for the countless conversations over the years which led to the ideas presented within it. Shun-Ichiro Karato provided valuable comments on the mineral physics section. The author was supported by Australian Research Council Postdoctoral Fellowship DP0988263 and National Science Foundation Grant EAR-1069423.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kate Selway.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Selway, K. On the Causes of Electrical Conductivity Anomalies in Tectonically Stable Lithosphere. Surv Geophys 35, 219–257 (2014). https://doi.org/10.1007/s10712-013-9235-1

Download citation

Keywords

  • Magnetotellurics
  • Electrical resistivity
  • Cratons
  • Lithosphere
  • Hydrogen
  • Graphite