The Role of Electrical Anisotropy in Magnetotelluric Responses: From Modelling and Dimensionality Analysis to Inversion and Interpretation

Abstract

The study of electrical anisotropy in the Earth, defined as the electrical conductivity varying with orientation, has experienced important advances in the last years regarding the investigation of its origins, how to identify and model it, and how it can be related to other parameters, such as seismic and mechanical anisotropy. This paper provides a theoretical background and a review of the current state of the art of electrical anisotropy using electromagnetic methods in the frequency domain, focusing mainly on magnetotellurics. The aspects that will be considered are the modelling of the electromagnetic fields with anisotropic structures, the analysis of their responses to identify these structures, and how to properly use these responses in inversion and interpretation. Also, an update on the most recent case studies involving anisotropy is provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Abramovici F (1974) The forward magnetotelluric problem for an inhomogeneous and anisotropic structure. Geophysics 39:56–68. doi:10.1190/1.1440412

    Google Scholar 

  2. Abramovici F, Shoham Y (1977) Inversion of anisotropic magnetotelluric data. Geophys J R Astr Soc 50:55–74. doi:10.1111/j.1365-246X.1977.tb01324.x

    Google Scholar 

  3. Baba K (2005) Electrical structure in marine tectonic settings. Surv Geophys 26:701–731. doi:10.1007/s10712-005-1831-2

    Google Scholar 

  4. Baba K, Chave AD, Evans RL, Hirth G, Mackie RL (2006) Mantle dynamics beneath the East Pacific Rise at 17ºS: insights from the mantle electromagnetic and tomography (MELT) experiment. J Geophys Res 111:B02101. doi:10.1029/2004JB003598

    Google Scholar 

  5. Berdichevsky MN, Pushkarev PY (2006) Are the crustal and mantle conductive zones isotropic or anisotropic? Acta Geophys 54:333–342. doi:10.2478/s11600-006-0031-x

    Google Scholar 

  6. Boerner DE, Kurtz RD, Craven JA, Ross GM, Jones FW (2000) A synthesis of electromagnetic studies in the Lithoprobe Alberta Basement transect: constraints on Paleoproterozoic indentation tectonics. Can J Earth Sci 37:1509–1534. doi:10.1139/e00-063

    Google Scholar 

  7. Brasse H, Kapinos G, Li Y, Mütschard L, Soyer W, Eydam D (2009) Structural electrical anisotropy in the crust at the South-Central Chilean continental margin as inferred from geomagnetic transfer functions. Phys Earth Planet Int 173:7–16. doi:10.1016/j.pepi.2008.10.017

    Google Scholar 

  8. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469. doi:10.1111/j.1365-246X.2004.02281.x

    Google Scholar 

  9. Carcione JM, Ursin B, Nordskag JI (2007) Cross-property relations between electrical conductivity and the seismic velocity of rocks. Geophysics 72:E193–E204. doi:10.1190/1.2762224

    Google Scholar 

  10. Caricchi L, Gaillard F, Mecklenburgh J, Le Trong E (2011) Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: implications for electrical anisotropy in the oceanic low velocity zone. Earth Planet Sci Lett 302:81–94. doi:10.1016/j.epsl.2010.11.041

    Google Scholar 

  11. Chen X, Weckmann U (2012) Inversion of 2D magnetotelluric data with anisotropic conductivities. 21 Electromagnetic Induction Workshop, Darwin, Australia

  12. Chen X, Weckmann U, Tietze K (2009) From forward modelling of MT phases over 90° towards 2D anisotropic inversion. Schmucker-Weidelt-Colloquium für Elektromagnetische Tiefenforschung, Heimvolkshochschule am Seddiner See. Germany

  13. Chouteau M, Tournerie B (2000) Analysis of magnetotelluric data showing phase rolling out of quadrant (PROQ). In: 70th annual international meeting, SEG Expanded Abstracts 19:344–46. 10.1190/1.1816062

  14. Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300. doi:10.1190/1.1442303

    Google Scholar 

  15. Davydycheva S, Wang T (2011) A fast modelling method to solve Maxwell’s equations in 1D layered biaxial anisotropic medium. Geophysics 76:F293–F302. doi:10.1190/GEO2010-0280.1

    Google Scholar 

  16. Davydycheva S, Druskin V, Habashy T (2003) An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media. Geophysics 68:1525–1536. doi:10.1190/1.1620626

    Google Scholar 

  17. Dekker DL, Hastie LM (1980) Magneto-telluric impedances of an anisotropic layered Earth model. Geophys J R Astr Soc 61:11–20. doi:10.1111/j.1365-246X.1980.tb04300.x

    Google Scholar 

  18. Eaton DW, Jones AG (2006) Tectonic fabric of the subcontinental lithosphere: evidence from seismic, magnetotelluric and mechanical anisotropy. Phys Earth Planet Int 158:85–91. doi:10.1016/j.pepi.2006.05.005

    Google Scholar 

  19. Edwards N (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26:675–700. doi:10.1007/s10712-005-1830-3

    Google Scholar 

  20. Evans RL, Tarits P, Chave AD, White A, Heinson G, Filloux JH, Toh H, Seama N, Utada H, Booker JR, Unsworth MJ (1999) Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science 286:752–756. doi:10.1126/science.286.5440.752

    Google Scholar 

  21. Evans RL, Jones AG, Garcia X, Muller M, Hamilton M, Evans S, Fourie CJS, Spratt J, Webb S, Jelsma H, Hutchins D (2011) Electrical lithosphere beneath the Kaapvaal craton, southern Africa. J Geophys Res 116:B04105. doi:10.1029/2010JB007883

    Google Scholar 

  22. Everett ME (2012) Theoretical developments in electromagnetic induction geophysics with selected applications in the near surface. Surv Geophys 33:29–63. doi:10.1007/s10712-011-9138-y

    Google Scholar 

  23. Frederiksen AW, Ferguson IJ, Eaton D, Miong SK, Gowan E (2006) Mantle fabric at multiple scales across an Archean-Proterozoic boundary, Grenville Front, Canada. Phys Earth Planet Int 158:240–263. doi:10.1016/j.pepi.2006.03.025

    Google Scholar 

  24. Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365. doi:10.1126/science.1164446

    Google Scholar 

  25. Gatzemeier A, Moorkamp M (2005) 3D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms. Phys Earth Planet Int 149:225–242. doi:10.1016/j.pepi.2004.10.004

    Google Scholar 

  26. Gatzemeier A, Tommasi A (2006) Flow and electrical anisotropy in the upper mantle: finite-element models constraints on the effects of olivine crystal preferred orientation and microstructure. Phys Earth Planet Int 158:92–106. doi:10.1016/j.pepi/2006.01.009

    Google Scholar 

  27. Hamilton MP, Jones AG, Evans RL, Evans S, Fourie CJS, Garcia X, Mountford A, Spratt JE, SAMTEX team (2006) Electrical anisotropy of South African lithosphere compared with seismic anisotropy from shear-wave splitting analyses. Phys Earth Planet Int 158:226–239. doi:10.1016/j.pepi.2006.03.027

    Google Scholar 

  28. Häuserer M, Junge A (2011) Electrical mantle anisotropy and crustal conductor: a 3-D conductivity model of the Rwenzori Region in western Uganda. Geophys J Int 185:1235–1242. doi:10.1111/j.1365-246X.2011.05006.x

    Google Scholar 

  29. Heinson G, White A (2005) Electrical resistivity of the Northern Australian lithosphere: crustal anisotropy or mantle heterogeneity? Earth Planet Sci Lett 232:157–170. doi:10.1016/j.epsl.2004.12.029

    Google Scholar 

  30. Heise W, Pous J (2001) Effects of anisotropy on the two-dimensional inversion procedure. Geophys J Int 147:610–621. doi:10.1046/j.0956-540x.2001.01560.x

    Google Scholar 

  31. Heise W, Pous J (2003) Anomalous phases exceeding 90° in magnetotellurics: anisotropic model studies and a field example. Geophys J Int 155:308–318. doi:10.1046/j.1365-246X.2003.02050.x

    Google Scholar 

  32. Heise W, Caldwell TG, Bibby HM, Brown C (2006) Anisotropy and phase splits in magnetotellurics. Phys Earth Planet Int 158:107–121. doi:10.1016/j.pepi.2006.03.021

    Google Scholar 

  33. Hou J, Mallan RK, Torres-Verdín C (2006) Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials. Geophysics 71:G223–G225. doi:10.1190/1.2245467

    Google Scholar 

  34. Ichihara H, Mogi T (2009) A realistic 3-D resistivity model explaining anomalous large magnetotelluric phases: the L-shaped conductor model. Geophys J Int 179:14–17. doi:10.1111/j.1365-246X.2009.04310.x

    Google Scholar 

  35. Jelínek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:T63–T67. doi:10.1016/0040-1951(81)90110-4

    Google Scholar 

  36. Jones AG (2006) Electromagnetic interrogation of the anisotropic Earth: looking into the Earth with polarized spectacles. Phys Earth Planet Int 158:281–291. doi:10.1016/j.pepi.2006.03.026

    Google Scholar 

  37. Jones AG (2012a) Distortion decomposition of the magnetotelluric impedance tensors from a one-dimensional anisotropic Earth. Geophys J Int 189:268–284. doi:10.1111/j.1365-246X.2012.05362.x

    Google Scholar 

  38. Jones AG (2012b) Distortion of magnetotelluric data: its identification and removal. In: Jones AG, Chave AD (eds) Theory and practice. The magnetotelluric method. Cambridge University Press, Cambridge, pp 219–302

    Google Scholar 

  39. Jones AG, Evans RL, Eaton DW (2009a) Velocity-conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin-Shtrikman extremal bounds. Lithos 109:131–143. doi:10.1016/j.lithos.2008.10.014

    Google Scholar 

  40. Jones AG, Evans RL, Muller MR, Hamilton MP, Miensopust MP, Garcia X, Cole P, Ngwisanyi T, Hutchins D, Fourie CJS, Jelsma H, Aravanis T, Pettit W, Webb S, Wasborg J, SAMTEX Team (2009b) Area selection for diamonds using magnetotellurics: examples from southern Africa. Lithos 112S:83–92. doi:10.1016/j.lithos.2009.06.011

    Google Scholar 

  41. Key K (2012) Marine electromagnetic studies of seafloor resources and tectonics. Surv Geophys 33:135–167. doi:10.1007/s10712-011-9139-x

    Google Scholar 

  42. Key K, Ovall J (2011) A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophys J Int 186:137–154. doi:10.1111/j.1365-246X.2011.05025.x

    Google Scholar 

  43. Kong FN, Johnstad SE, Røsten T, Westerdahl H (2008) A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media. Geophysics 73:F9–F19. doi:10.1190/1.2819691

    Google Scholar 

  44. Kováčiková S, Pek J (2002) Generalized Riccati equations for 1-D magnetotelluric impedances over anisotropic conductors Part I: plane wave field model. Earth Planets Space 54:473–482

    Google Scholar 

  45. Le Pape F, Jones AG, Vozar J, Wei W (2012) Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nat Geosci 5:330–335. doi:10.1038/NGEO1449

    Google Scholar 

  46. Ledo J (2006) 2-D versus 3-D magnetotelluric data interpretation. Surv Geophys 27:111–148. doi:10.1007/s10712-005-1757-8

    Google Scholar 

  47. Leibecker J, Gatzemeier A, Hönig M, Kuras O, Soyer W (2002) Evidence of electrical anisotropic structures in the lower crust and the upper mantle beneath the Rhenish Shield. Earth Planet Sci Lett 202:289–302. doi:10.1016/S0012-821X(02)00783-5

    Google Scholar 

  48. Lezaeta P, Haak V (2003) Beyond magnetotelluric decomposition: induction, current channeling, and magnetotelluric phases over 90°. J Geophys Res 108:B6, 2305. doi:10.1029/2001JB000990

  49. Li Y (2002) A finite-element algorithm for electromagnetic induction in two-dimensional anisotropic conductivity structures. Geophys J Int 148:389–401. doi:10.1046/j.1365-246x.2002.01570.x

    Google Scholar 

  50. Li Y, Dai S (2011) Finite element modelling of marine controlled-source electromagnetic responses in two-dimensional dipping anisotropic conductivity structures. Geophys J Int 185:622–636. doi:10.1111/j.1365-246X.2011.04974.x

    Google Scholar 

  51. Li X, Pedersen LB (1991) The electromagnetic response of an azimuthally anisotropic half-space. Geophysics 56:1462–1473. doi:10.1190/1.1443166

    Google Scholar 

  52. Li X, Pedersen LB (1992) Controlled-source tensor magnetotelluric responses of a layered earth with azimuthal anisotropy. Geophys J Int 111:91–103. doi:10.1111/j.1365-246X.1992.tb00557.x

    Google Scholar 

  53. Li Y, Pek J (2008) Adaptive finite element modelling of two-dimensional magnetotelluric fields in general anisotropic media. Geophys J Int 175:942–954. doi:10.1111/j.1365-246X.2008.03955.x

    Google Scholar 

  54. Li Y, Spitzer K (2005) Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy. Phys Earth Planet Int 150:15–27. doi:10.1016/j.pepi.2004.08.014

    Google Scholar 

  55. Li X, Oskooi B, Pedersen LB (2000) Inversion of controlled-source tensor magnetotelluric data for a layered earth with azimuthal anisotropy. Geophysics 65:452–464. doi:10.1190/1.1444739

    Google Scholar 

  56. Li Y, Pek J, Brasse H (2003) Magnetotelluric inversion for 2D anisotropic conductivity structures. In: Jordt A, Stoll J (eds) Protokoll uber das 20 Kolloquium Elektromagnetische Tiefenforschung. Königstein, Germany, pp 250–259

    Google Scholar 

  57. Li Y, Luo M, Pei J (2012) A 2.5D finite element modelling of marine CSEM fields in arbitrarily anisotropic media. 21 Electromagnetic Induction Workshop, Darwin, Australia

  58. Lilley FEM, Weaver JT (2010) Phases greater than 90º in MT data: analysis using dimensionality tools. J App Geophys 70:9–16. doi:10.1016/j.appgeo.2009.08.007

    Google Scholar 

  59. Linde N, Pedersen LB (2004) Evidence of electrical anisotropy in limestone formations using the RMT technique. Geophysics 69:909–916. doi:10.1190/1.1778234

    Google Scholar 

  60. Loewenthal D, Landisman M (1973) Theory for magnetotelluric observations on the surface of a layered anisotropic half space. Geophys J R Astr Soc 35:195–214. doi:10.1111/j.1365-246X.1973.tb02422.x

    Google Scholar 

  61. Løseth LO, Ursin B (2007) Electromagnetic fields in planarly layered anisotropic media. Geophys J Int 170:40–80. doi:10.1111/j.1365-246X.2007.03390.x

    Google Scholar 

  62. Mackie RL (2002) User manual and software documentation for two-dimensional inversion of magnetotelluric data. Anisotropy Version 6.7. GSY-USA Inc. San Francisco, CA

  63. Mandolesi E (2013) Inversion of magnetotelluric data in an anisotropic domain. Ph.D Dissertation, National Univ Ireland, Galway, Ireland

  64. Mandolesi E, Jones AG (2012) Magnetotelluric inversion in a 2D anisotropic environment. Geophys Res Abstr 14:EGU2012-13561, EGU Gen Assembl, Vienna, Austria

    Google Scholar 

  65. Mann JE (1965) The importance of anisotropic conductivity in magnetotelluric interpretation. J Geophys Res 70:2940–2942. doi:10.1029/JZ070i012p02940

    Google Scholar 

  66. Martí A (2006) A magnetotelluric investigation of geoelectrical dimensionality and study of the Central Betic crustal structure. Ph.D Dissertation, Univ Barcelona

  67. Martí A, Queralt P, Ledo J (2009) WALDIM: a code for the dimensionality analysis of magnetotelluric data using the rotational invariants of the magnetotelluric tensor. Comput Geosci 35:2295–2303. doi:10.1016/j.cageo.2009.03.004

    Google Scholar 

  68. Martí A, Queralt P, Ledo J, Farquharson C (2010) Dimensionality imprint of electrical anisotropy in magnetotelluric responses. Phys Earth Planet Int 182:139–151. doi:10.1016/j.pepi.2010.07.007

    Google Scholar 

  69. Martí A, Rosell O, Queralt P, Ledo J, Marcuello A, Roca E (2012) Are the geoelectric structures of the Betics lithosphere anisotropic? Insights from a complete dimensionality analysis of magnetotelluric data. Geophys Res Abstr 14:EGU2012-7719, EGU Gen Assembl, Vienna, Austria

    Google Scholar 

  70. Martinelli P, Osella A (1997) MT forward modeling of 3-D anisotropic electrical conductivity structures using the Rayleigh-Fourier method. J Geomag Geoelectr 49:1499–1518. 10.5636/jgg.49.1499

    Google Scholar 

  71. Matsuno T, Seama N, Evans RL, Chave AD, Baba K, White A, Goto T, Heinson G, Boren G, Yoneda A, Utada H (2010) Upper mantle electrical resistivity structure beneath the central Mariana subduction system. Geochem Geophys Geosyst 11:Q09003. doi:10.1029/2010GC003101

    Google Scholar 

  72. McNeice GW, Jones AG (2001) Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics 66:158–173. doi:10.1190/1.1444891

    Google Scholar 

  73. Miensopust MP, Jones AG (2011) Artefacts of isotropic inversion applied to magnetotelluric data from an anisotropic Earth. Geophys J Int 187:677–689. doi:10.1111/j.1365-246X.2011.05157.x

    Google Scholar 

  74. Montahaie M, Oskooi B (2013) Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks. Acta Geophys (in press)

  75. Moorkamp M, Jones AG, Fishwick S (2010) Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. J Geophys Res 115:B04318. doi:10.1029/2009JB006369

    Google Scholar 

  76. Naif S, Key K, Constable S, Evans R (2013) Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature 495:356–359. doi:10.1038/nature11939

    Google Scholar 

  77. Negi JG, Saraf PD (1972) Effect of anisotropy of the earth on the impedance measurements. Pure Appl Geophys 96:37–44. doi:10.1007/BF00875626

    Google Scholar 

  78. Negi JG, Saraf PD (1973) Inductive sounding of a stratified earth with transition layer resting on dipping anisotropic beds. Geophys Prospect 21:635–647. doi:10.1111/j.1365-2478.1973.tb00049.x

    Google Scholar 

  79. Neves AS (1957) The generalized magneto-telluric method. Ph.D Dissertation, Mass Inst Technol

  80. Newman GA, Commer M, Carazzone JJ (2010) Imaging CSEM data in the presence of electrical anisotropy. Geophysics 75:F51–F61. doi:10.1190/1.3295883

    Google Scholar 

  81. Nover G (2005) Electrical properties of crustal and mantle rocks—a review of laboratory measurements and their explanation. Surv Geophys 26:593–651. doi:10.1007/s10712-005-1759-6

    Google Scholar 

  82. O’Brien DP, Morrison HF (1967) Electromagnetic fields in an n-layer anisotropic half-space. Geophysics 32:668–677. doi:10.1190/1.1439882

    Google Scholar 

  83. Osella AM, Martinelli P (1993) Magnetotelluric response of anisotropic 2-D structures. Geophys J Int 115:819–828. doi:10.1111/j.1365-246X.1993.tb01494.x

    Google Scholar 

  84. Padilha AL, Vitorello I, Pádua MB, Bologna MS (2006) Lithospheric and sublithospheric anisotropy beneath central-southeastern Brazil constrained by long period magnetotelluric data. Phys Earth Planet Int 158:190–209. doi:10.1016/j.pepi.2006.05.006

    Google Scholar 

  85. Pankratov OV, Kuvshinov AV, Avdeev DB (1997) High-performance three-dimensional electromagnetic modelling using modified Neumann series. Anisotropic earth. J Geomag Geoelectr 49:1541–1547. 10.5636/jgg.49.1541

    Google Scholar 

  86. Parkinson WD (1962) The influence of continents and oceans on geomagnetic variations. Geophys J R Astron Soc 6:441–449. doi:10.1111/j.1365-246X.1962.tb02992.x

    Google Scholar 

  87. Patro BPK, Brasse H, Sarma SVS, Harinarayana T (2005) Electrical structure of the crust below the Deccan Flood Basalts (India), inferred from magnetotelluric soundings. Geophys J Int 163:931–943. doi:10.1111/j.1365-246X.2005.02789.x

    Google Scholar 

  88. Pavan Kumar G, Manglik A (2012) Electrical anisotropy in the main central thrust zone of the Sikkim Himalaya: inference from anomalous MT phase. J Asian Earth Sci 57:120–127. 10.1016/j.jseaes.2012.06.017

    Google Scholar 

  89. Pek J (2009) Effects of electrical anisotropy upon magnetotelluric data: modelling and experiments. In: Spichak VV (ed) Modern methods of electromagnetic data measurement, processing and interpretation. Librokom Publ, Moscow, pp 110–135 (in Russian)

    Google Scholar 

  90. Pek J, Santos FAM (2002) Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media. Comput Geosci 28:939–950. doi:10.1016/S0098-3004(02)00014-6

    Google Scholar 

  91. Pek J, Santos FAM (2006) Magnetotelluric inversion for anisotropic conductivities in layered media. Phys Earth Planet Int 158:139–158. doi:10.1016/j.pepi.2006.03.023

    Google Scholar 

  92. Pek J, Verner T (1997) Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media. Geophys J Int 128:505–521. doi:10.1111/j.1365-246X.1997.tb05314.x

    Google Scholar 

  93. Pek J, Santos FAM, Li Y (2008) Anomalies of magnetotellurics field due to electrical anisotropy and their inverse conductivity images. 19 EM Induction Workshop, Beijing, China

  94. Pek J, Santos FAM, Li Y (2011) Non-linear conjugate gradient magnetotelluric inversion for 2-D anisotropic conductivities. Schmucker-Weidelt-Colloquium. Neustadt and der Weinstrasse, Germany

    Google Scholar 

  95. Plotkin VV (2012) Inversion of heterogeneous anisotropic magnetotelluric responses. Russ Geol Geophys 53:829–836. doi:10.1016/j.rgg.2012.06.010

    Google Scholar 

  96. Pommier A (2013) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys (this volume). doi:10.1007/s10712-013-9226-2

  97. Pous J, Muñoz G, Heise W, Melgarejo JC, Quesada C (2004) Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite. Earth Planet Sci Lett 217:435–450. doi:10.1016/S0012-821X(03)00612-5

    Google Scholar 

  98. Praus O, Petr V (1969) Magnetotelluric calculations for interaction of polarized fields with anisotropic layered media. Can J Earth Sci 6:759–769. doi:10.1139/e69-070

    Google Scholar 

  99. Qin L, Yang C, Chen K (2013) Quasi-analytic solution of 2-D magnetotelluric fields on an axially anisotropic infinite fault. Geophys J Int 192:67–74. doi:10.1093/gji/gss018

    Google Scholar 

  100. Ramananjaona C, MacGregor L (2010) 2.5D inversion of CSEM data in a vertically anisotropic earth. J Phys Conf Ser 255:012004. doi:10.1088/1742-6596/255/1/012004

    Google Scholar 

  101. Ramananjaona C, MacGregor L, Andréis D (2011) Sensitivity and inversion of marine electromagnetic data in a vertically anisotropic stratified earth. Geophys Pros 59:341–360. doi:10.1111/j.1365-2478.2010.00919.x

    Google Scholar 

  102. Reddy IK, Rankin D (1971) Magnetotelluric effect of dipping anisotropies. Geophys Prospect 19:84–97. doi:10.1111/j.1365-2478.1971.tb00586.x

    Google Scholar 

  103. Reddy IK, Rankin D (1975) Magnetotelluric response of laterally inhomogeneous and anisotropic media. Geophysics 40:1035–1045. doi:10.1190/1.1440579

    Google Scholar 

  104. Rödder A, Junge A (2012) Modelling of apparent resistivity tensors and magnetotellurics phase tensors on anisotropic structures. In: 21 electromagnetic induction workshop, Darwin, Australia

  105. Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187. doi:10.1190/1.444893

    Google Scholar 

  106. Rosell O (2012) Application of the magnetotelluric method in complex geological systems. Ph.D Dissertation. Univ Barcelona (In preparation)

  107. Roux E, Moorkamp M, Jones AG, Bischoff M, Endrun B, Ledebev S, Meier T (2011) Joint inversion of long-period magnetotelluric data and surface-wave dispersion curves for anisotropic structure: application to data from Central Germany. Geophys Res Lett 38:L05304. doi:10.1029/2010GL046358

    Google Scholar 

  108. Ruiz-Constán A, Galindo-Zaldivar J, Pedrera A, Arzate JA, Pous J, Anahnah F, Heise W, Santos FAM, Marín-Lechado C (2010) Deep deformation pattern from electrical anisotropy in an arched orogen (Betic Cordillera, western Mediterranean). Geology 38:731–734. doi:10.1130/G31144.1

    Google Scholar 

  109. Santos FAM, Mendes-Victor LA (2000) 1D anisotropic versus 2D isotropic media in magnetotellurics. Acta Geod Geoph Hung 35:49–61

    Google Scholar 

  110. Saraf PD, Negi JG, Červ V (1986) Magnetotelluric response of a laterally inhomogeneous anisotropic inclusion. Phys Earth Planet Int 43:196–198. doi:10.1016/0031-9201(86)90046-4

    Google Scholar 

  111. Sasaki Y (2011) Anisotropic, joint 3D inversion of marine CSEM and MT data. In: 81st annual international meeting, SEG expanded abstracts 30:547–550. doi:10.1190/1.3628141

  112. Schmoldt JP, Jones AG (2012) A novel anisotropic inversion approach for magnetotelluric data from subsurfaces with oblique geoelectric strike directions. Geophys J Int (in review)

  113. Selway K, Thiel S, Key K (2012) A simple 2-D explanation for negative phases in TE magnetotelluric data. Geophys J Int 188:945–958. doi:10.1111/j.1365-246X.2011.05312.x

    Google Scholar 

  114. Shalivahan, Bhattacharya BB (2005) Electrical anisotropy of asthenosphere in a region of window to mantle underneath Eastern Indian Craton. Phys Earth Planet Int 152:43–61. doi:10.1016/j.pepi.2005.06.001

    Google Scholar 

  115. Shoham Y, Loewenthal D (1975) Matrix polynomial representation of the anisotropic magnetotelluric impedance tensor. Phys Earth Planet Int 11:128–138. doi:10.1016/0031-9201(75)90006-0

    Google Scholar 

  116. Simpson F, Tommasi A (2005) Hydrogen diffusivity and electrical anisotropy of a peridotite mantle. Geophys J Int 160:1092–1102. doi:10.1111/j.1365-246X.2005.02563.x

    Google Scholar 

  117. Sinha AK (1969) The magnetotelluric effect in an inhomogeneous and anisotropic Earth. Geoexploration 7:9–28

    Google Scholar 

  118. Wang T, Fang S (2001) 3-D electromagnetic anisotropy modeling using finite differences. Geophysics 66:1386–1398. doi:10.1190/1.1486779

    Google Scholar 

  119. Wang D, Mookherjee M, Xu Y, Karato S (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980. doi:10.1038/nature05256

    Google Scholar 

  120. Wannamaker PE (2005) Anisotropy versus heterogeneity in continental solid Earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surv Geophys 26:733–765. doi:10.1007/s10712-005-1832-1

    Google Scholar 

  121. Wannamaker PE, Hasterok DP, Johnston JM, Stodt JA, Hall DB, Sodergren TL, Pellerin L, Maris V, Doerner WM, Groenewold KA, Unsworth MJ (2008) Lithospheric dismemberment and magmatic processes of the Great Basin–Colorado Plateau transition, Utah, implied from magnetotellurics. Geochem Geophys Geosyst 9:Q05019. doi:10.1029/2007GC001886

    Google Scholar 

  122. Weaver JT, Agarwal AK, Lilley FEM (2000) Characterization of the magnetotelluric tensor in terms of its invariants. Geophys J Int 141:321–336. doi:10.1046/j.1365-246x.2000.00089.x

    Google Scholar 

  123. Weckmann U (2012) Making and breaking of a continent: following the scent of geodynamic imprints of the African continent using electromagnetics. Surv Geophys 33:107–134. doi:10.1007/s10712-011-9147-x

    Google Scholar 

  124. Weckmann U, Ritter O, Haak V (2003) A magnetotelluric study of the Damara Belt in Namibia 2. MT phases over 90° reveal the internal structure of the Waterberg Fault/Omaruru Lineament. Phys Earth Planet Int 138:91–112. doi:10.1016/S0031-9201(03)00079-7

    Google Scholar 

  125. Weckmann U, Ritter O, Chen X, Tietze C, de Wit M (2012) Magnetotelluric image linked to surface geology across the Cape Fold Belt, South Africa. Terranova 24:207–212. doi:10.1111/j.1365-3121.2011.01054.x

    Google Scholar 

  126. Weidelt P (1999) 3D conductivity models: implications of electrical anisotropy. In: Oristaglio M, Spies B (eds) Three-dimensional electromagnetics. SEG, pp 119–137

  127. Weidelt P (2007) Guided waves in marine CSEM. Geophys J Int 171:153–176. doi:10.1111/j.1365-246X.2007.03527.x

    Google Scholar 

  128. Weiss CJ, Newman GA (2002) Electromagnetic induction in a fully 3-D anisotropic earth. Geophysics 67:1104–1114. doi:10.1190/1.1500371

    Google Scholar 

  129. Weiss CJ, Newman GA (2003) Electromagnetic induction in a generalized 3D anisotropic earth, Part 2: the LIN preconditioner. Geophysics 68:922–930. doi:10.1190/1.1581044

    Google Scholar 

  130. Yin C (2000) Geoelectrical inversion for a one-dimensional anisotropic model and inherent non-uniqueness. Geophys J Int 140:11–23. doi:10.1046/j.1365-246x.2000.00974.x

    Google Scholar 

  131. Yin C (2003) Inherent nonuniqueness in magnetotellurics inversion for 1D anisotropic models. Geophysics 68:138–146. doi:10.1190/1.1543201

    Google Scholar 

  132. Yin C (2006) MMT forward modeling for a layered earth with arbitrary anisotropy. Geophysics 71:G115–G128. doi:10.1190/1.2197492

    Google Scholar 

  133. Yin C, Maurer HM (2001) Electromagnetic induction in a layered earth with arbitrary anisotropy. Geophysics 66:1405–1416. doi:10.1190/1.1487086

    Google Scholar 

  134. Yin C, Weidelt P (1999) Geoelectrical fields in a layered earth with arbitrary anisotropy. Geophysics 64:426–434. doi:10.1190/1.1444547

    Google Scholar 

  135. Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163–206. doi:10.1007/s10712-009-9084-0

    Google Scholar 

  136. Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976. doi:10.1038/nature05223

    Google Scholar 

Download references

Acknowledgments

I would like to thank the Program Committee of the 21 EMIW for the opportunity to present this review. It would not have been possible without the collaboration, encouragement, and discussions with other colleagues, and those who kindly let me use their materials for the review. I would like to thank mainly Josef Pek and my colleagues at the EXES group in the Universitat de Barcelona, particularly Pilar Queralt and Juanjo Ledo. I wrote most of this review during my stay at Geomar, Helmholtz Centre for Ocean Research Kiel, Germany. For that I thank Marion Jegen and the people in the Marine EM group for the facilities offered and the useful discussions and to Grant George Buffett for copy editing. I thank the Workshop Financial Committee, the project PIERCO2 (CGL2009-07604) and the Facultat de Geologia of the University of Barcelona for the financial support to attend the workshop. Finally, I would like to thank the editor Graham Heinson, an anonymous referee, and especially Alan G Jones who greatly helped to improve the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Martí.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martí, A. The Role of Electrical Anisotropy in Magnetotelluric Responses: From Modelling and Dimensionality Analysis to Inversion and Interpretation. Surv Geophys 35, 179–218 (2014). https://doi.org/10.1007/s10712-013-9233-3

Download citation

Keywords

  • Electrical anisotropy
  • Magnetotelluric responses
  • Dimensionality analysis
  • Inversion