Electromagnetic Induction Methods in Mining Geophysics from 2008 to 2012

Abstract

In the period from 2008 to 2012, the topic of electromagnetic (EM) induction methods applied to mineral exploration has been the subject of more than 50 papers in journals and more than 300 extended abstracts presented at conferences (about 100 of which contain developments worthy of mentioning). Most of the work at the universities has been on modelling, inversion and data processing, and most of this material is published in the refereed literature. However, academia has also undertaken work on system geometry changes, system calibration and sensor design. There have been papers describing new systems developed for mineral exploration and case histories describing the use of EM methods to directly discover mineral deposits or to map the geology. Most of this work is by the service companies and mining companies and reported in the unrefereed literature. Since 2008, the pace of development of helicopter time-domain systems has slowed and more effort has been directed to developing natural source magnetic systems and to modelling and inverting this data. A number of studies comparing the results from natural source methods with the results from artificial source methods conclude that the natural source methods can see large-scale geological structures usually when there is a weak conductivity contrast with the surrounding material, but the natural source methods are unable to see small features that have a very large conductivity contrast with the country rock. Hence, they are not a good detector of mineral deposits unless one is looking for a large porphyry system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Airo M-L, Hyvönen E (2008) Petrophysical data coupled with airborne magnetic, conductive and radiometric signatures identifying bedrock conductors. AEM2008: 5th international conference on airborne electromagnetics, Haikko Manor, Finland, 28–30 May 2008, paper 04–01

  2. Airo M-L, Mertanen S (2008) Magnetic signatures related to orogenic gold mineralization, Central Lapland Greenstone Belt, Finland. J Appl Geophys 64:14–24. doi:10.1016/j.jappgeo.2007.10.003

    Google Scholar 

  3. Ansari S, Farquharson CG (2011) 3D finite-element simulation of electromagnetic data for inductive and galvanic components. Soc Explor Geophys Expand Abstr 30:766–770

    Google Scholar 

  4. Arnetts D (2012) Inversion of surface and downhole electromagnetic data for a 3D earth. Aust Soc Explor Geophys Ext Abstr

  5. Auken E, Christiansen AV, Westergaard JH, Kirkegaard C, Foged N, Viezzoli A (2009) An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system. Explor Geophys 40:184–192. doi:10.1071/EG08128

    Google Scholar 

  6. Bastani M, Malehmir A, Ismail N, Pedersen LB, Hedjazi F (2009) Delineating hydrothermal stockwork copper deposits using controlled-source and radio-magnetotelluric methods: a case study from northeast Iran. Geophysics 74:B167–B181. doi:10.1190/1.3174394

    Google Scholar 

  7. Beamish D (2011) Geological geophysics: an example using AEM data. Near Surf. 2011–17th European meeting of environmental and engineering geophysics, Leicester, UK, 12–14 September 2011

  8. Beamish D (2012) The application of spatial derivatives to non-potential field data interpretation. Geophys Prospect 60:337–360. doi:10.1111/j.1365-2478.2011.00976.x

    Google Scholar 

  9. Beamish D, Young M (2009) Geophysics of Northern Ireland: the Tellus effect. First Break 27(8):43–49

    Google Scholar 

  10. Beiki M, Bastani M, Pedersen LB (2010) Leveling HEM and aeromagnetic data using differential polynomial fitting. Geophysics 75:L13–L23. doi:10.1190/1.3279792

    Google Scholar 

  11. Beran L, Oldenburg D (2008) Estimation of Cole-Cole parameters from time-domain electromagnetic data. Soc Explor Geophys Expand Abstr 27:569–573

    Google Scholar 

  12. Börner R-U, Ernst OG, Spitzer K (2008) Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection. Geophys J Int 173:766–780. doi:10.1111/j.1365-246X.2008.03750.x

    Google Scholar 

  13. Botha W, Yeslem MEOM (2009) The application of airborne geophysics in the exploration for iron ore in the Zouerate area of Mauritania. Aust Soc Explor Geophys Ext Abstr

  14. Bouchedda A, Chouteau M, Keating P, Smith R (2010) Sferics noise reduction in time-domain electromagnetic systems: application to MegaTEMII signal enhancement. Explor Geophys 41:225–239. doi:10.1071/EG09007

    Google Scholar 

  15. Bournas N, Hearst R, and Clements E (2012) Silver Queen, a new stockwork porphyry discovery using the Titan 24 DCIP and MT. Soc Explor Geophys Exp Abstr

  16. Brodie R, Sambridge M (2009) Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information. Explor Geophys 40:8–16; Butsuri-Tansa 62:8–16; Mulli-Tamsa 12:8–16. doi: 10.1071/EG08110

  17. Buselli G (1982) The effect of near surface superparamagnetism material on electromagnetic transients. Geophysics 47:1315–1324

    Google Scholar 

  18. Cantwell N, Cooper M, Meyers J, Martin N, Sainty R (2009) A review of the Jaguar Cu-Zn-Ag volcanogenic massive sulphide discovery and subsequent geophysical trials. Aust Soc Explor Geophys Ext Abstr

  19. Chaturvedi AK, Lötter C, Jagannadha Rao K, Maurya AK, Patra I, Chaki A (2010) Quantitative appraisal of heliborne and ground-based time domain electromagnetic surveys for uranium exploration: a case study from Rajasthan, India. Aust Soc Explor Geophys Ext Abstr

  20. Chaturvedi AK, Kovac P, Chawla AS, Wiseman R, Markandeyulu A, Hope J, Sridhar M, Carey H, Sharp B, Rai AK (2012a) Geological interpretation of heliborne geophysical data from the Kaladgi Basin; southern India. Aust Soc Explor Geophys Ext Abstr

  21. Chaturvedi AK, Kovac P, Pathak AK, Cevallos C, Rawat TPS, Miller R, Wiseman R, Parihar PS (2012b) Geological Milieu of the Bijawar Basin based on interpretation of geophysical data; Central India. Aust Soc Explor Geophys Ext Abstr

  22. Chen W, Liu H, Liu J, Sun X, Zeng Q (2010) Integrated geophysical exploration for the Longtoushan Ag-Pb-Zn deposit in the southeast of the Da Xing’an Ling mountains, Inner Mongolia, northern China. Explor Geophys 41:279–288. doi:10.1071/EG09041

    Google Scholar 

  23. Cheng LZ, Smith RS, Allard M, Keating P, Chouteau M, Lemieux J, Vallée MA, Bois D, Fountain DK (2009) Evaluation of the efficiency of several airborne electromagnetic systems: exploration implications. Explor Min Geol 18:1–12

    Google Scholar 

  24. Christensen NB, Tølbøll RJ (2009) A lateral model parameter correlation procedure for one-dimensional inverse modelling. Geophys Prospect 57:919–929. doi:10.1111/j.1365-2478.2008.00756.x

    Google Scholar 

  25. Christensen N, Halkjaer M, Sorensen K (2009) Mineral and groundwater exploration with the SkyTEM system. Aust Soc Explor Geophys Ext Abstr

  26. Christiansen AV, Auken EA (2009) Presenting a free, highly flexible inversion code. Near Surf. 2009–15th European meeting on environmental and engineering geophysics. Dublin, Ireland, 7–9 September 2009

  27. Claprood M, Chouteau M, Cheng LZ (2008) Rapid detection and classification of airborne time-domain electromagnetic anomalies using weighted multi-linear regression. Explor Geophys 39:164–180. doi:10.1071/EG08018

    Google Scholar 

  28. Combrinck M (2008) Calculation of conductivity and depth correction factors for the S-layer differential transform. Explor Geophys 39:133–138. doi:10.1071/EG08014

    Google Scholar 

  29. Combrinck M (2010) The impact of AEM receiver noise levels on detection, discrimination and resolvability of conductive targets. Aust Soc Explor Geophys Ext Abstr

  30. Combrinck M (2011) A time and place for everything: an overview of AEM interpretation methods. Workshop on “Recent Advances in ground and airborne electromagnetic methods”, 27–28 Sept, 2011, pp 18–22

  31. Combrinck M, Mutton P, Lo B (2008) Detecting basement conductors in a conductive environment: an example from the Nepean Mine VTEM survey. AEM2008–5th international conference on airborne electromagnetics, Haikko Manor, Finland, 28–30 May 2008, paper 07–02

  32. Combrinck M, Mortimer R, Peters B (2009a) Base metal discoveries in Africa and Australia from VTEM data. Aust Soc Explor Geophys Ext Abstr

  33. Combrinck M, Botha WJ, Hutchins D (2009b) The use of VTEM data in geological mapping and mineral exploration in north-eastern Namibia. 11th South African Geophysical Association biennial technology meeting and exhibition, Swaziland, 16–18 September 2009, pp 352–355

  34. Combrinck M, Cox LH, Wilson GA, Zhdanov MS (2012) 3D VTEM inversion for delineating sub-vertical shear zones in the West African gold belt. Aust Soc Explor Geophys Ext Abstr

  35. Costelloe MT, Brodie RC (2011) Kombolgie AEM survey images to 2 km. Preview 150:29–32

    Google Scholar 

  36. Costelloe MT, Roach IC, Hutchinson DK (2010) Paterson AEM survey directly detects major unconformity near Kintyre, WA. Preview 145:40–41

    Google Scholar 

  37. Cox LH, Wilson GA, Zhdanov MS (2010) 3D inversion of airborne electromagnetic data using a moving footprint. Explor Geophys 41:250–259. doi:10.1071/EG10003

    Google Scholar 

  38. Cunion E (2009) Comparison of ground TEM and VTEM responses over kimberlites in the Kalahari of Botswana. Explor Geophys 40:308–319. doi:10.1071/EG09019

    Google Scholar 

  39. Davis, AC, Ley-Cooper Y, Kirkegaard C (2010a) SkyTEM system calibration: two systems, one dataset. Aust Soc Explor Geophys Ext Abstr

  40. Davis A, Macnae J (2008a) Measuring AEM waveforms with a ground loop. Geophysics 73:F213–F222. doi:10.1190/1.2976791

    Google Scholar 

  41. Davis AC, Macnae J (2008b) Quantifying AEM system characteristics using a ground loop. Geophysics 73:F179–F188. doi:10.1190/1.2976791

    Google Scholar 

  42. Davis LJ, Groom RW (2009) A comparison of airborne and ground electromagnetic data near the Grand Canyon. Soc Explor Geophys Expand Abstr 28:764–768

    Google Scholar 

  43. Davis A, Macnae J, Hodges G (2009) Predictions of bird swing from GPS coordinates. Geophysics 74:F119–F126. doi:10.1190/1.3237143

    Google Scholar 

  44. Davis AC, Macnae J, Frankcombe K (2010b) Fast direct conductivity transforms for TEM systems. Aust Soc Explor Geophys Ext Abstr

  45. de Almeida MP, Von Huelsen MG, Takenaka G, Coelho-Silva ATM, Rocha AA, Filho UJT, Freitas C, Aires B (2011) Modeling of airborne data (magnetic and electromagnetic) of Cristalino Cu-Au Deposit, Carajás, Pará, Brazil. 12th international congress of the Brazilian Geophysical Society Rio de Janeiro, Brazil, August 15–18, 2011

  46. de Beer J (2011) Early mining and mineral exploration geophysics in southern Africa. Lead Edge 30:1254–1261

    Google Scholar 

  47. de los Ángeles García Juanatey M, Hübert J, Juhlin C, Malehmir A, Tryggvason A (2011) Integrated magnetotelluric and seismic reflection study: Skellefte ore district, northern Sweden. Soc Explor Geophys Expand Abstr 30:1247–1251

    Google Scholar 

  48. Dennis ZR, Cull JP (2012) Transient electromagnetic surveys for the measurement of near-surface electrical anisotropy. J Appl Geophys 76:64–73. doi:10.1016/j.jappgeo.2011.10.014

    Google Scholar 

  49. Doll WE, Gamey TJ, Beard LP, Bell DT, Sheehan JR, Norton J, Holladay JS (2010) Performance assessment and applications of boom-mounted airborne magnetic and electromagnetic systems. First Break 28:97–101

    Google Scholar 

  50. du Plooy B, Bell J (2009) The physics of the ground loop. 11th South African Geophysical Association biennial technology meeting and exhibition, Swaziland, 16–18 Sept 2009, 108–113

  51. Espinosa-Corriols S, Kowalczyk P (2008) Geophysical signature of the Mt. Milligan Cu/Au deposit in the Quesnel Porphyry Belt. Soc Explor Geophys Expand Abstr 27:1142–1146

    Google Scholar 

  52. Evans S, Amann B, Dentith M (2012) Electrical images of the Forrestania Greenstone Belt. In Lane RJL (ed) Natural fields EM forum 2012: abstract from the Australian Society of Exploration Geophysicists Natural fields EM Forum 2012: Published by Geosci Aust Geosci Aust Rec 2012/04. 52–59

  53. Farquharson CG (2008) Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 73:K1–K9. doi:10.1190/1.2816650

    Google Scholar 

  54. Farquharson CG, Craven JA (2009) Three-dimensional inversion of magnetotelluric data for mineral exploration: an example from the McArthur River uranium deposit, Saskatchewan, Canada. J Appl Geophys 68:450–458. doi:10.1016/j.jappgeo.2008.02.002

    Google Scholar 

  55. Ferraccioli F, Gambetta M, Bozzo F (1998) Microlevelling procedures applied to regional magnetic data: an example from the Transantartic Mountains. Geophys Prospect 46:177–196

    Google Scholar 

  56. Finn M, Cameron B, Hutchins DG (2010) Namibia AEM mapping: a case study of airborne EM data used as a geological mapping and interpretation tool. Aust Soc Explor Geophys Ext Abstr

  57. Flores C, Peralta-Ortega SA (2009) Induced polarization with in-loop transient electromagnetic soundings: a case study of mineral discrimination at El Arco porphyry copper, Mexico. J Appl Geophys 68:423–436. doi:10.1016/j.jappgeo.2009.03.009

    Google Scholar 

  58. Foged N, Auken E, Nehlig P, Deparis J, Perrin J (2011) Geological mapping using airborne TEM at Mayotte. Near Surf. 2011–17th European meeting of environ and engineering geophysics, Leicester, UK, 12–14 Sept 2011

  59. Fraser SJ, Wilson GA, Cox LH, Čuma M, Zhdanov MS, Vallée MA (2012) Self-organizing maps for pseudo-lithological classification of 3D airborne electromagnetic, gravity gradiometry and magnetic inversions. Aust Soc Explor Geophys Ext Abstr

  60. Fullagar P, Pears G (2010) High resolution conductivity-depth transformation of TEM data. Aust Soc Explor Geophys Ext Abstr

  61. Gharibi M, Killin K, McGill D, Henderson WB, Retallick T (2012) Full 3D acquisition and modelling with the Quantec 3D system: the Hidden Hill deposit case study. Aust Soc Explor Geophys Ext Abstr

  62. Goldak D, Kosteniuk P (2012) A comparison of transient and conventional approaches to AMT. In Lane RJL (ed) Natural fields EM forum 2012: Abstract from the Australian Society Explor. Geophysicists Nat. Fields EM Forum 2012: Published by Geoscience Aust, Geosci. Aust. Rec. 2012/04, pp 60–72

  63. Goldak D, Witherly K, Kosteniuk P (2010) Three-dimensional inversion of transient magnetotelluric data at Pasfield Lake, Saskatchewan. Soc Explor Geophys Expand Abstr 29:859–863

    Google Scholar 

  64. Guillemoteau J, Sailhac P, Behaegel M (2011) Regularization strategy for the layered inversion of airborne transient electromagnetic data: application to in-loop data acquired over the basin of Franceville (Gabon). Geophys Prospect 59:1132–1143. doi:10.1111/j.1365-2478.2011.00990.x

    Google Scholar 

  65. Gupta D, Singh SL, Bhattacharya BB, Baneerjee B (2011) Discovery of lead-zinc deposit by aero electromagnetic surveys in Kayar area, Ajmer district, Rajasthan. Workshop on “Recent advances in ground and airborne electromagnetic methods” 27–28 Sept, 2011, pp 42–45

  66. Hautot S, Goldak D, Tarits P, Kosteniuk P (2011) Three-dimensional magnetotelluric inversion of large data sets: case study of Pasfield Lake (Saskatchewan) for mineral exploration. Glob Meet Abstr 15:50

    Google Scholar 

  67. Hennessy L, Macnae J (2010) Inversion of concentric loop electromagnetic data by transformation to an equivalent potential field response. Explor Geophys 41:240–249. doi:10.1071/EG10022

    Google Scholar 

  68. Holtham E, Oldenburg DW (2010a) Three-dimensional inversion of ZTEM data. Geophys J Int 182:168–182. doi:10.1111/j.1365-246X.2010.04634.x

    Google Scholar 

  69. Holtham E, Oldenburg DW (2010b) Three-dimensional inversion of MT and ZTEM data. Soc Explor Geophys Expand Abstr 29:655–659

    Google Scholar 

  70. Holtham E, Oldenburg D (2010c) 3D Inversion of ZTEM data. EGM 2010 Intional workshop adding new value to electromagnetic gravity and magnetic methods for explor. Capri, Italy, April 11–14, 2010

  71. Holtham E, Oldenburg D (2012a) Practical issues of inverting 3D natural source electromagnetic data. In Lane RJL (ed) Nat. Fields EM Forum 2012: Abstr. from the Aust. Soc. Explor. Geophys. Nat. Fields EM Forum 2012: Published by Geosci. Aust., Geosci. Aust. Rec. 2012/04, pp 73–76

  72. Holtham E, Oldenburg DW (2012b) Inversion of large-scale ZTEM data. Aust Soc Explor Geophys Ext Abstr

  73. Howe B, Kroll A (2010) The geophysical response of the Tupinda Cu-Au-Mo porphyry prospect, Tabar Islands, Papua New Guinea. Aust Soc Explor Geophys Ext Abstr

  74. Huang H (2008) Airborne geophysical data leveling based on line-to-line correlations. Geophysics 73:F83–F89. doi:10.1190/1.2836674

    Google Scholar 

  75. Huang H, Rudd J (2008) Conductivity-depth imaging of helicopter-borne TEM data based on a pseudolayer half-space model. Geophysics 73:F115–F120. doi:10.1190/1.2904984

    Google Scholar 

  76. Hutchins D, Negonga M (2010) Government airborne geophysical data stimulating mineral exploration in Namibia. Soc Explor Geophys Expand Abstr 29:1193–1197

    Google Scholar 

  77. Hutchinson DK, Roach IC, Costelloe MT (2010) Depth of investigation grid for regional airborne electromagnetic surveys. Preview 145(38):39

    Google Scholar 

  78. Ingerov OI, Fox L, Golyashov A, Ingerov I, Colin A (2009) Non-grounded surface electroprospecting technique. 71st European Association of Geoscientists and Engineers conference & exhibition, Amsterdam, The Netherlands, 8–11 June 2009

  79. Izarra C, Legault J, Latrous A (2011) ZTEM airborne tipper AFMAG results over the Copaquire porphyry, northern Chile. Soc Explor Geophys Expand Abstr 30:1257–1261

    Google Scholar 

  80. Johnson DM, Sheppard S, Paggi J, Coggon J (2010) Discovery of the Moran massive nickel sulphide deposit using down-hole transient electromagnetic surveying. Aust Soc Explor Geophys Ext Abstr

  81. Jones AG, Evans RL, Muller MR, Hamilton MP, Miensopust MP, Garcia X, Cole P, Ngwisanyi T, Hutchins D, Stoffel Fourie CJ, Evans S, Jelsma H, Aravanis T, Pettit W, Webb S, Wasborg J, The SAMTEX Team (2009) The SAMTEX experiment: overview and preliminary results. 11th South African geophysical association biennial technology meeting and exhibition, Swaziland, 16–18 Sept 2009, pp 403–407

  82. Kamenetsky F (2011) Frequency dispersion of rock properties in equations of electromagnetic. J Appl Geophys 74:185–193. doi:10.1016/j.jappgeo.2011.04.004

    Google Scholar 

  83. Kaminski V, Oldenburg D (2012) The geophysical study of drybones kimberlite using 3D time domain EM inversion and 3D ZTEM inversion algorithms. Aust Soc Explor Geophys Ext Abstr

  84. Kaminski V, Legault JM, Kumar H (2010) The Drybones Kimberlite: a case study of VTEM and ZTEM airborne EM results. Aust Soc Explor Geophys Ext Abstr

  85. Kita J, Noetzli A, Kusumaputri N, Lowe M (2012) Airborne electromagnetics in Pilbara manganese exploration: a case study. Aust Soc Explor Geophys Ext Abstr

  86. Konate O, Reid A (2010) SYSMIN airborne geophysical surveys in Mali. Soc Explor Geophys Expand Abstr 29(1117):1121

    Google Scholar 

  87. Kowalczyk P (2008) Geophysical prelude to first exploitation of submarine massive sulphides. First Break 26(11):99–106

    Google Scholar 

  88. Kowalczyk PL, Van Kooten PBM (2012) Inverting ZTEM data in 3D: Process and Practice. In Lane RJL (ed) Natural Fields EM Forum 2012: Abstr. from the Aust. Soc. Explor. Geophys. Nat. Fields EM Forum 2012: Published by Geosci. Aust., Geosci. Aust. Rec. 2012/04. pp 93–100

  89. La Terra EF, Menezes PTL (2012) Audiomagnetotelluric 3D imaging of the Regis kimberlite pipe, Minas Gerais, Brazil. J Appl Geophys 77:30–38. doi:10.1016/j.jappgeo.2011.11.010

    Google Scholar 

  90. Lane RJL (2012) Natural Fields EM Forum 2012: Abstr. from the Aust. Soc. Explor. Geophys. Nat. Fields EM Forum 2012: Published by Geosci. Aust., Geosci. Aust. Rec. 2012/04

  91. Lee JB (2010) Feasibility of in-phase airborne TEM utilising gradient measurements. Aust Soc Explor Geophys Ext Abstr

  92. Legault JM, Kumar H, Milicevic B, Hulbert L (2009a) ZTEM airborne tipper AFMAG test survey over a magmatic copper-nickel target at Axis Lake in northern Saskatchewan. Soc Explor Geophys Expand Abstr 28:1272–1276

    Google Scholar 

  93. Legault JM, Kumar H, Milicevic B, Wannamaker P (2009b) ZTEM tipper AFMAG and 2D inversion results over an unconformity uranium target in northern Saskatchewan. Soc Explor Geophys Expand Abstr 28:1277–1281

    Google Scholar 

  94. Legault JM, Fisk K, Fontura C (2010) Case study of ZTEM airborne tipper AFMAG results over a magmatic nickel deposit at Forrestania, West Aust. IV Simpósio Brasileiro da Braz. Geophys. Soc. Brasília 2010

  95. Legault JM, Orta M, Kumar H, Zhao S (2011) ZTEM and VTEM airborne EM survey results over PGM-Cu-Ni targets at East Bull Lake anorthositic complex, Massey, Ontario. Soc Explor Geophys Expand Abstr 30:629–634

    Google Scholar 

  96. Legault J, Wilson GA, Gribenko AV, Zhdanov MS, Zhao S, Fisk K (2012a) An overview of the ZTEM and AirMt systems: a case study from the Nebo-Babel Ni-Cu-PGE deposit, West Musgrave, Western Australia. In Lane RJL (ed) Nat. Fields EM Forum 2012: Abstr. from the Aust. Soc. Explor. Geophys. Nat. Fields EM Forum 2012: Published by Geosci. Aust., Geosci. Aust. Rec. 2012/04, pp 101–121

  97. Legault JM, Zhao S, Fitch R (2012b) ZTEM airborne AFMAG survey results over low sulphidation epithermal gold-silver vein systems at Gold Springs, south eastern Nevada. Aust Soc Explor Geophys Ext Abst

  98. Leite EP, de Souza Filho CR (2009) Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajas Mineral Province, Brazil. Geophys Prospect 57:1049–1065. doi:10.1111/j.1365-2478.2008.00779.x

    Google Scholar 

  99. Lelièvre PG, Oldenburg DW, Williams NC (2009) Integrating geological and geophysical data through advanced constrained inversions. Explor Geophys 40:334–341. doi:10.1071/EG09012

    Google Scholar 

  100. Lelièvre P, Carter-McAuslan A, Farquharson C, Hurich C (2012) Unified geophysical and geological 3D Earth models. Lead Edge 31:322–328

    Google Scholar 

  101. LeRoux CL, Stolz R, Du Plooy B, Smit J (2009) The elusive flying squids: interim results from recent tests with a heli-borne EM low temperature SQUID system. 11th South African Geophysical Association biennial technology meeting and exhibition, Swaziland, 16–18 Sept. 2009, pp 50–54

  102. Leslie KE, Binks RA, Lam SKH, Sullivan PA, Tilbrook DL, Thorn RG, Foley CP (2008) Application of high-temperature superconductor SQUIDs for ground-based TEM. Lead Edge 27(1):70–74

    Google Scholar 

  103. Leväniemi H, Beamish D, Hautaniemi H, Kurimo M, Suppala I, Vironmäki J, Cuss RJ, Lahti M, Tartaras E (2009) The JAC airborne EM system: AEM-05. J Appl Geophys 67:219–233. doi:10.1016/j.jappgeo.2007.10.001

    Google Scholar 

  104. Lo B, Zang M (2008) Numerical modeling of Z-TEM (airborne AFMAG) responses to guide exploration strategies. Soc Explor Geophys Expand Abstr 27:1098–1102

    Google Scholar 

  105. Lo B, Legault J, Kuzmin P, Combrinck M (2009) Z-TEM (airborne AFMAG) tests over unconformity uranium deposits. Aust Soc Explor Geophys Ext Abstr

  106. MacLennan K, Li Y (2011) Signal extraction from 4D transient electromagnetic surveys using the equivalent source method. Geophysics 76:F147–F155. doi:10.1190/1.3560041

    Google Scholar 

  107. Macnae J (2008) Comparing airborne electromagnetic systems. Preview 133:24–29

    Google Scholar 

  108. Macnae J (2010) Electric field measurements in Air. Soc Explor Geophys Ext Abstr 29:1773–1777

    Google Scholar 

  109. Macnae J (2012a) Design and testing of ARMIT magnetic field sensors for EM systems. Aust Soc Explor Geophys Ext Abstr

  110. Macnae J (2012b) Natural EM fields from a controlled source perspective. In Lane RJL (ed) Nat. Fields EM Forum 2012: Abstr. from the Aust. Soc. Explor. Geophys. Nat. Fields EM Forum 2012: Published by Geosci. Aust., Geosci. Aust. Rec. 2012/04, pp 122–140

  111. Macnae J, Baron-Hay S (2010) Reprocessing strategy to obtain quantitative early time data from historic VTEM surveys. Aust Soc Explor Geophys Ext Abstr

  112. Macnae J, Springall R, (2011) Dispersion constraints and the Hilbert transform for electromagnetic system response validation. Explor Geophys 42:1–6; Butsuri-Tansa 64:1–6; Jigu-Mulli-wa-Mulli-Tamsa 14:1–6. doi: 10.1071/EG10017

    Google Scholar 

  113. Macnae J, Mortimer R, Gilgallon K (2010) Deep conductor delineation through improved EMFlow data processing. Aust Soc Explor Geophys Ext Abstr

  114. Marchant D, Haber E, Oldenburg DW (2012) Inductive Source Induced Polarization. Aust Soc Explor Geophys Ext Abstr

  115. McIntosh S (2009) The role of geophysics in mineral deposit discovery: a Rio Tinto perspective. Preview 139:39–46

    Google Scholar 

  116. Meyer C, De Waele B, Monoury S (2010) Mapping and target generation in poorly exposed sub-tropical terrains: the application of heliborne VTEM and magnetic survey data in base metal exploration in the Central African Copperbelt. Aust Soc Explor Geophys Ext Abstr

  117. Minsley BJ, Smith BD, Hammack R, Sams JI, Veloski G (2012) Calibration and filtering strategies for frequency domain electromagnetic data. J Appl Geophys 80:56–66. doi:10.1016/j.jappgeo.2012.01.008

    Google Scholar 

  118. Minty BRS (1991) Simple micro-levelling for aeromagnetic data. Explor Geophys 22:591–592

    Google Scholar 

  119. Mogi T, Kusunoki K, Kaieda H, Ito H, Jomori A, Jomori N, Yuuki Y (2009) Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan. Explor Geophys 40:1–7. doi:10.1071/EG08115

    Google Scholar 

  120. Mohanty WK, Mandal A, Sharma SP, Gupta S, Misra S (2011) Integrated geological and geophysical studies for delineation of chromite deposits: a case study from Tangarparha, Orissa, India. Geophysics 76:B173–B185. doi:10.1190/GEO2010-0255.1

    Google Scholar 

  121. Mukherjee S, Everett ME (2011) 3D controlled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities. Geophysics 76:F215–F226. doi:10.1190/1.3571045

    Google Scholar 

  122. Mulè S, Carter S, Wolfgram P (2012a) Advances in helicopter airborne electromagnetics. Aust Soc Explor Geophys Ext Abstr

  123. Mulè S, Miller R, Carey H, Lockwood R (2012b) Review of three airborne EM systems. Aust Soc Explor Geophys Ext Abstr

  124. Mutton P (2012) Superparamagnetic effects in EM surveys for mineral exploration. Aust Soc Explor Geophys Ext Abstr

  125. Mutton P, Mortimer R (2009) Superparamagnetic effects in airborne EM survey data. Aust Soc Explor Geophys Ext Abstr

  126. Nimeck G, Koch R (2008) A progressive geophysical exploration strategy at the Shea Creek uranium deposit. Lead Edge 27(1):52–63

    Google Scholar 

  127. Oldenborger GA, Oldenburg DW (2008) Inversion of 3D time-domain EM data for high conductivity contrasts. Soc Explor Geophys Expand Abstr 27:619–623

    Google Scholar 

  128. Oldenburg DW, Haber E, Shekhtman R (2008) Forward modelling and inversion of multi-source TEM data. Soc Explor Geophys Expand Abstr 27:559–563

    Google Scholar 

  129. Oldenburg D, Haber E, Yang D (2010) Multi-source inversion of TEM data: with field applications to Mt. Milligan. EGM 2010 international workshop adding new value to electromagnetics, Gravity and Magn. Methods for Explor. Capri, Italy, April 11–14, 2010

  130. Paasche H, Eberle DG (2009) Rapid integration of large airborne geophysical data suites using a fuzzy partitioning cluster algorithm: a tool for geological mapping and mineral exploration targeting. Explor Geophys 40:277–287. doi:10.1071/EG08028

    Google Scholar 

  131. Paré P, Legault JM (2010) Ground IP-Resistivity, and airborne Spectrem and helicopter ZTEM survey results over Pebble copper-moly-gold porphyry deposit, Alaska. Soc Explor Geophys Expand Abstr 29:1734–1738

    Google Scholar 

  132. Pare P, Gribenko AV, Cox LH, Čuma M, Wilson GA, Zhdanov MS, Legault J, Smit J, Polomé L (2012) 3D inversion of SPECTREM and ZTEM data from the Pebble Cu-Au-Mo porphyry deposit, Alaska. Aust Soc Explor Geophys Ext Abstr

  133. Pedersen LB, Persson L, Bastani M, Byström S (2009) Airborne VLF measurements and mapping of ground conductivity in Sweden. J Appl Geophys 67:250–258. doi:10.1016/j.jappgeo.2007.11.002

    Google Scholar 

  134. Persson L, Lundin IA, Pedersen LB, Claeson D (2011) Combined magnetic, electromagnetic and resistivity study over a highly conductive formation in Orrivaara, Northern Sweden. Geophys Prospect 59:1155–1163. doi:10.1111/j.1365-2478.2011.00998.x

    Google Scholar 

  135. Phillips N, Nguyen TNH, Thomson V, Oldenburg D, Kowalczyk P (2010) 3D inversion modelling, integration, and visualization of airborne gravity, magnetic, and electromagnetic data: the Quest project. EGM 2010 International workshop adding new value to electromagnetics, gravity and magnetic methods for exploration Capri, Italy, April 11–14, 2010

  136. Pittard K, Bourne B (2009) the geophysical response of the Tusker gold deposit, Lake Victoria goldfields, Tanzania. Aust Soc Explor Geophys Ext Abstr

  137. Poisson J, Chouteau M, Aubertin M, Campos D (2009) Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. J Appl Geophys 67:179–192. doi:10.1016/j.jappgeo.2008.10.011

    Google Scholar 

  138. Pretorius CC (2009) Exploration and mining geophysics and remote sensing in 2009–Where have we come from and where are we going to? 11th South African Geophysical Association biennial technology meeting and exhibition, Swaziland, 16–18 Sept. 2009, 330–340

  139. Prikhodko A, Morrison E, Bagrianski A, Kuzmin P, Tishin P, Legault J (2010) Evolution of VTEM: technical solutions for effective exploration. Aust Soc Explor Geophys Ext Abstr

  140. Raiche A (2008) the P223 software suite for planning and interpreting EM surveys. Preview 132:25–30

    Google Scholar 

  141. Rajagopalan S, Carlson J, Wituik D (2008) Kimberlite exploration using integrated airborne geophysics. Preview 132:35–38

    Google Scholar 

  142. Ramalho E, Carvalho J, Barbosa S, Monteiro Santos FA (2009) Using geophysical methods to characterize an abandoned uranium mining site, Portugal. J Appl Geophys 67:14–33

    Google Scholar 

  143. Ramesh Babu V, Tripathi S, Patra I, Raju VBSN, Chaturvedi AK (2011) Constrained Inversion of VTEM data for targeting unconformity related uranium deposits, Cuddapah Basin, India. Workshop on “Recent advances in Ground and Airborne electromagnetic methods” 27–28 Sept, 2011. Hyderabad, pp 31–34

  144. Reford S, Kwan K, Nyakaana J, Katumwehe A, Wane O (2009) Airborne geophysics as a tool to promote mineral investment in Africa. Aust Soc Explor Geophys Ext Abstr

  145. Reford SW, Misener DJ, Ugalde HA, Gana JS, Olaniyan O (2010) Nigeria’s nationwide high-resolution airborne geophysical surveys. Soc Explor Geophys Expand Abstr 29:1835–1839

    Google Scholar 

  146. Reid J (2010) An overview of the SkyTEM airborne EM system with Australian examples. Preview 145:26–37

    Google Scholar 

  147. Reninger P-A, Martelet G, Deparis J, Perrin J, Chen Y (2011) Singular value decomposition as a denoising tool for airborne time domain electromagnetic data. J Appl Geophys 75:264–276. doi:10.1016/j.jappgeo.2011.06.034

    Google Scholar 

  148. Retallick T, Hearst R (2012) Magnetotellurics in mining applications. In Lane RJL (ed) Nat. Fields EM Forum 2012: Abstr. from the Aust. Soc. Explor. Geophys. Nat. Fields EM Forum 2012: Published by Geosci. Aust., Geosci. Aust. Rec. 2012/04, pp 146–155

  149. Roach IC (2012) The Frome airborne electromagnetic survey, South Australia. Aust Soc Explor Geophys Ext Abstr

  150. Robertson K, Megaw P (2009) Cinco de Mayo: a new silver, lead, and zinc discovery in northern Mexico. Lead Edge 28:730–735

    Google Scholar 

  151. Rudd J (2011) The AEROTEMHD advantage. 12th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, Aug 15–18, 2011

  152. Rudd J, Walker S (2009) The AeroTEM system in Africa. Aust Soc Explor Geophys Ext Abstr

  153. Sampaio EES (2011) The scattering of electromagnetic waves by vertical faults problem revisited and the difficulties therein for its extension to the three dimensional case. 12th international congress of the Brazilian geophysical society, Rio de Janeiro, Brazil, Aug 15–18, 2011

  154. Sattel D (2009) An overview of helicopter time-domain EM systems. Aust Soc Explor Geophys Ext Abstr

  155. Sattel D, Witherly K (2012) An overview of ZTEM data interpretation tools. In Lane RJL(ed) Nat. Fields EM Forum 2012: Abstr. from the Aust. Soc. Explor. Geophys. Nat. Fields EM Forum 2012: Published by Geosci. Aust., Geosci. Aust. Rec. 2012/04, pp 156–175

  156. Sattel D, Thomas S, Becken M (2010a) An analysis of ZTEM data over the Mt Milligan Porphyry Copper Deposit, British Columbia. Soc Explor Geophys Expand Abstr 29:1729–1733

    Google Scholar 

  157. Sattel D, Witherly K, Becken M (2010a) A brief analysis of ZTEM data from the Forrestania test site, WA. Aust Soc Explor Geophys Ext Abstr

  158. Schaa R, Fullagar P (2010) Rapid, approximate 3D inversion of transient electromagnetic (TEM) data. Soc Explor Geophys Expand Abstr 29:650–654

    Google Scholar 

  159. Schaa R, Fullagar PK (2012) Vertical and horizontal resistive limit formulas for a rectangular-loop source on a conductive half-space. Geophysics 77:E91–E99. doi:10.1190/GEO2011-0141.1

    Google Scholar 

  160. Selfe GR (2009a) New discovery of Ni-mineralisation in Northern Namibia geophysical case study. 11th South African Geophysical Association biennial technology meeting and exhibition, Swaziland, 16–18 Sept. 2009, 33–38

  161. Selfe GR (2009b) Interpretation and modelling of VTEM data in difficult circumstances, Bon Accord nickel-sulphide deposit. 11th South African Geophysical Association biennial technology meeting and exhibition, Swaziland, 16–18 Sept. 2009, 7–10

  162. Sharma SP, Baranwal VC (2011) Focusing frequency and significance of multi-frequency very low-frequency electromagnetic measurement in delineating near-surface conducting structures. Near Surf Geophys 9:435–447. doi:10.3997/1873-0604.2011023

    Google Scholar 

  163. Sharma SP, Verma SK (2011) Solutions of the inherent problem of the equivalence in direct current resistivity and electromagnetic methods through global optimization and joint inversion by successive refinement of model space. Geophys Prospect 59:760–776. doi:10.1111/j.1365-2478.2011.00952.x

    Google Scholar 

  164. Sheard SN, Ritchie TJ, Christopherson KR, Brand E (2005) Mining, environmental, petroleum, and engineering industry applications of electromagnetic techniques in geophysics. Surv Geophys 26:653–669. doi:10.1007/s10712-005-1760-0

    Google Scholar 

  165. Shirzaditabar F, Bastani M, Oskooi B (2011) Imaging a 3D geological structure from HEM, airborne magnetic and ground ERT data in Kalat-e-Reshm area, Iran. J Appl Geophys 75:513–522. doi:10.1016/j.jappgeo.2011.08.004

    Google Scholar 

  166. Siemon B (2009) Levelling of helicopter-borne frequency-domain electromagnetic data. J Appl Geophys 67:206–218. doi:10.1016/j.jappgeo.2007.11.001

    Google Scholar 

  167. Siemon B, Auken E, Christiansen AV (2009) Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data. J Appl Geophys 67:259–268. doi:10.1016/j.jappgeo.2007.11.003

    Google Scholar 

  168. Smiarowski A, Davis A, Macnae J (2010a) The effect of pendulum on tethered TEM systems and quantitative modeling. Soc Explor Geophys Expand Abstr 29(784):788

    Google Scholar 

  169. Smiarowski A, Macnae J, Bailey RC (2010b) Predictive filter calculation of primary fields in a fixed-wing time-domain AEM system. Geophysics 75:F97–F106. doi:10.1190/1.3431738

    Google Scholar 

  170. Smiarowski A, Macnae J, Bailey R (2010c) Enhanced airborne detection of perfect conductors through estimation of primary field components. 72nd European association geoscience engineering conference and exhibition incorporating SPE EUROPEC 2010, Barc., Spain, 14–17 June 2010

  171. Smit JP, LeRoux T (2009) TDEM survey at Shea Creek uranium deposit utilising a low-temperature superconductor SQUID. 11th South African Geophysical Association biennial technology meeting and exhibition, Swaziland, 16–18 Sept. 2009, pp 46–49

  172. Smith RS (2001) On removing the primary field from fixed-wing time-domain airborne electromagnetic data: some consequences for quantitative modelling, estimating bird position and detecting perfect conductors. Geophys Prospect 49:405–416

    Google Scholar 

  173. Smith R, Lemieux J (2009) Examples showing characteristics of the MEGATEM airborne electromagnetic system. Aust Soc Explor Geophys Ext Abstr

  174. Smith RS, Cheng LZ, Chouteau M (2008) Using reversed polarity airborne transient electromagnetic data to map tailings around mine sites. Lead Edge 27:1470–1478

    Google Scholar 

  175. Smith RS, Hodges G, Lemieux J (2009) Case histories illustrating the characteristics of the HeliGEOTEM system. Explor Geophys 40:246–256. doi:10.1071/EG09006

    Google Scholar 

  176. Smith RS, Wood G, Powell B (2010) A comparison of TEMPEST and MEGATEM airborne electromagnetic data with ground resistivity data over the Millennium Uranium deposit in the Athabasca Basin. Geophys Prospect 58:1147–1158. doi:10.1111/j.1365-2478.2010.00880.x

    Google Scholar 

  177. Smith RS, Koch R, Hodges G, Lemieux J (2011) A comparison of airborne electromagnetic data with ground resistivity data over the Midwest deposit in the Athabasca basin. Near Surf Geophys 9:319–330. doi:10.3997/1873-0604.2011002

    Google Scholar 

  178. Smith R, Shore M, Rainsford D (2012) How to make better use of physical properties in mineral exploration: the exploration site measurement. Lead Edge 31:330–337

    Google Scholar 

  179. Sorensen KI, Halkjaer M, Auken E (2011) SKYTEM: new high resolution helicopter TEM system. Proceedings of Symposium on the Application of Geophysics to Eng. and Environ. Problems, pp 668–672

  180. Sternberg BK (2010) The variability of naturally occurring magnetic field levels: 10 Hz to 8 kHz. Geophysics 75:F187–F197. doi:10.1190/1.3493634

    Google Scholar 

  181. Sternberg BK, Krichenko O, Dvorak SL (2008) A new high-sensitivity subsurface electromagnetic sensing system: part I: system design. J Environ Eng Geophys 13:247–261

    Google Scholar 

  182. Stettler EH (2009) Airborne TDEM by He-filled balloon. 11th South African Geophysical Association biennial technology meeting and exhibition, Swaziland, 16–18 Sept. 2009, 118–121

  183. Stolz N (2012) New government geophysics from the Onshore Energy Security Program. Aust Soc Explor Geophys Ext Abstr

  184. Tehrani AM, Slob EC (2010) Fast Analytical Method for Frequency to Time Domain Conversion in CSEM Application. 72nd European Association of Geoscientists and Engineers conference and exhibition incorporating SPE EUROPEC 2010, Barc., Spain, 14–17 June 2010

  185. Thompson A, McKinnon-Matthews J (2009) Greenfield nickel sulphide exploration using airborne and ground techniques in the eastern Arunta region, NT. Aust Soc Explor Geophys Ext Abstr

  186. Tsiboah T, Grant T (2009) Application of geophysics to gold exploration in Ghana: examples from Newmont projects. Aust Soc Explor Geophys Ext Abstr

  187. Urquhart S, Schultz A (2011) Broadband, high resolution receiver for electromagnetic investigations. Glob Meet Abstr

  188. Vallée MA, Smith RS (2009a) Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints. Near Surf Geophys 7:63–71

    Google Scholar 

  189. Vallée MA, Smith RS (2009b) Application of Occam’s inversion to airborne time-domain electromagnetic. Lead Edge 28:284–287

    Google Scholar 

  190. Vallée MA, Smith RS, Keating P (2010) Case history of combined airborne time-domain electromagnetics and power-line field survey in Chibougamau, Canada. Geophysics 75:B67–B72. doi:10.1190/1.3343573

    Google Scholar 

  191. Vallée MA, Smith RS, Keating P (2011) Metalliferous mining geophysics: state of the art after a decade in the new millennium. Geophysics 76:W31–W50

    Google Scholar 

  192. Verma SK, Manglik A, Krishnamurthy NS, Anand RaoV, Bhat KM, Chandra S, Tezkan B, Harinarayana T, Scholl C, Patro PK, Dutta S (2011) Relative performance of various electrical and electromagnetic methods in mapping shallow 3-D conductors. Workshop on “Recent advances in Ground and Airborne electromagnetic methods” 27–28 Sept, 2011. pp 42–45

  193. Viezzoli A, Christiansen AV, Auken E, Sørensen K (2008) Quasi-3D modeling of airborne TEM data by spatially constrained inversion. Geophysics 73:F105–F113. doi:10.1190/1.2895521

    Google Scholar 

  194. Viezzoli A, Munday T, Auken E, Christiansen AV (2010) Accurate quasi 3D versus proactical full 3D inversion of AEM data: the Bookpurnong case study. Preview 149:23–31

    Google Scholar 

  195. Visser SJ, Lajoie JJ (2012) The discovery of the Maria deposit, Mexico. Lead Edge 31:296–301

    Google Scholar 

  196. Volkovitskiy A, Karshakov E, Trusov A (2008) Four frequency AEM system EM-4H. AEM2008–5th International conference on airborne electromagnetics, Haikko Manor, Finland, 28–30 May 2008, paper 02–04

  197. Walker SE (2008) Should we care about negative transients in helicopter TEM data? Soc Explor Geophys Expand Abstr 27:1103–1107

    Google Scholar 

  198. Walker SE, Kroll A (2010) Airborne electromagnetic signature of a paleochannel uranium deposit. Aust Soc Explor Geophys Ext Abstr

  199. Walker P, Lamontagne Y (2008) The effect of discrete conductivity isotropy on electromagnetic surveys. Soc Explor Geophys Expand Abstr 27:1113–1117

    Google Scholar 

  200. Walker P, Terblanche O (2010) Characterization of the Gamsberg deposit from electromagnetic modelling. Soc Explor Geophys Expand Abstr 29:1748–1752

    Google Scholar 

  201. Wallace Y, Bourne B (2010) A systematic approach to the evaluation of the quality of time domain AEM data. Aust Soc Explor Geophys Ext Abstr

  202. Webb M, Corscadden B (2009) A case study of deep electromagnetic exploration in conductive cover. Aust Soc Explor Geophys Ext Abstr

  203. Wijns C (2009) Structural mapping under cover with airborne EM. Aust Soc Explor Geophys Ext Abstr

  204. Wilson GA, Cox LH, Zhdanov MS (2010) Practical 3D inversion of entire airborne electromagnetic surveys. Preview 146:29–33

    Google Scholar 

  205. Wilson GA, Cox LH, Čuma M, Zhdanov MS (2012) Inverting airborne geophysical data for mega-cell and giga-cell 3D Earth models. Lead Edge 31:316–321

    Google Scholar 

  206. Witherly K (2009a) Geophysical response of the Munali Ni-Cu deposit, Zambia. Aust Soc Explor Geophys Ext Abstr

  207. Witherly K (2009b) The use of airborne EM to search for nickel deposits; three examples from Canada and Africa. Glob Meet Abstr

  208. Witherly K (2009c) The search for uranium deposits using airborne EM in the Athabasca Basin, Saskatchewan Canada; experience of the last five years. Glob Meet Abstr

  209. Witherly K (2009d) Results of various airborne EM systems over a target of high conductance. Aust Soc Explor Geophys Ext Abstr

  210. Witherly K, Allard M (2010) The evolution of the use of geophysics in the search for blind VHMS deposits in the Abitibi greenstone belt, Québec Canada. Soc Explor Geophys Expand Abstr 29:1743–1747

    Google Scholar 

  211. Witherly K, Sattel D (2012) The application of ZTEM to porphyry copper-gold exploration. Aust Soc Explor Geophys Ext Abstr

  212. Witherly K, Goldak D, Kosteniuk P (2010) An assessment of EM and potential field data at Pasfield Lake, Saskatchewan-a suspect astrobleme. Soc Explor Geophys Expand Abstr 29:1122–1126

    Google Scholar 

  213. Woods D (2010) Transient electromagnetic survey optimization using SQUID sensors. Soc Explor Geophys Expand Abstr 29:820–823

    Google Scholar 

  214. Xue G-Q, Qin K-Z, Li X, Li G-M, Qi Z-P, Zhou N-N (2012) Discovery of a large-scale porphyry molybdenum deposit in Tibet through a modified TEM exploration method. J Environ Eng Geophys 17:19–25

    Google Scholar 

  215. Yang D, Oldenburg DW (2010) 3D forward modelling and inversion of inductive source resistivity data. Soc Explor Geophys Expand Abstr 29:588–592

    Google Scholar 

  216. Yang D, Oldenburg DW (2012) Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit. Geophysics 77:B23–B34. doi:10.1190/GEO2011-0194.1

    Google Scholar 

  217. Yin C, Hodges G (2009) Wire-loop surface conductor for airborne EM system testing. Geophysics 74:F1–F8. doi:10.1190/1.3008055

    Google Scholar 

  218. Zhang Y, Steiger M, Hibbs AD, Grimm RE, Sprott TA (2010) Dual-mode, Fluxgate-Induction Sensor for UXO Detection and Discrimination. J Environ Eng Geophys 15:51–54

    Google Scholar 

  219. Zhdanov MS (2009) New advances in regularized inversion of gravity and electromagnetic data. Geophys Prospect 57:463–478. doi:10.1111/j.1365-2478.2008.00763.x

    Google Scholar 

  220. Zhdanov MS (2010) Electromagnetic geophysics: Notes from the past and the road ahead. Geophysics 75:75A49–75A66. doi: 10.1190/1.3483901

    Google Scholar 

  221. Zhdanov MS, Gribenko AV, Čuma M, Wilson GA (2012) 3D mega-cell inversion of land, marine, and airborne natural field EM data. In Lane RJL (ed) Nat. Fields EM Forum 2012: Abstr. from the Aust. Soc. Explor. Geophys. Nat. Fields EM Forum 2012: Published by Geosci. Aust., Geosci. Aust. Rec. 2012/04, pp 199–205

Download references

Acknowledgments

Figure 1 is shown courtesy of Edgar Stettler and Thani Dubai Mining LLC; Mike Webb and Anglo American are thanked for permission to show Fig. 2. I am grateful to New Nadina Explorations Ltd for releasing the data from Silver Queen. Peter Kowalczyk of Mira Geoscience supplied the ZTEM inversion and Nasreddine Bournas of Quantec Geoscience supplied the Titan MT inversion and generated the images used to create Fig. 3. Finally, I am grateful to Glenn Wilson of TechnoImaging for supplying Fig. 4, which was derived from data obtained from the Ontario Geological Survey. Thanks to two anonymous reviewers for carefully reading the manuscript and suggesting improvements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Smith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, R. Electromagnetic Induction Methods in Mining Geophysics from 2008 to 2012. Surv Geophys 35, 123–156 (2014). https://doi.org/10.1007/s10712-013-9227-1

Download citation

Keywords

  • Mining
  • Mineral exploration
  • Electromagnetic induction
  • Controlled source
  • Natural field