Interpretation of Magnetotelluric Results Using Laboratory Measurements

Abstract

Magnetotelluric (MT) surveying is a remote sensing technique of the crust and mantle based on electrical conductivity that provides constraints to our knowledge of the structure and composition of the Earth’s interior. This paper presents a review of electrical measurements in the laboratory applied to the understanding of MT profiles. In particular, the purpose of such a review is to make the laboratory technique accessible to geophysicists by pointing out the main caveats regarding a careful use of laboratory data to interpret electromagnetic profiles. First, this paper addresses the main issues of cross-spatial-scale comparisons. For brevity, these issues are restricted to reproducing in the laboratory the texture, structure of the sample as well as conditions prevailing in the Earth’s interior (pressure, temperature, redox conditions, time). Second, some critical scientific questions that have motivated laboratory-based interpretation of electromagnetic profiles are presented. This section will focus on the characterization of the presence and distribution of hydrogen in the Earth’s crust and mantle, the investigation of electrical anisotropy in the asthenosphere and the interpretation of highly conductive field anomalies. In a last section, the current and future challenges to improve quantitative interpretation of MT profiles are discussed. These challenges correspond to technical improvements in the laboratory and the field as well as the integration of other disciplines, such as petrology, rheology and seismology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. 1.

    It is worth noticing that methods other than impedance spectroscopy have been proposed (e.g., Volarovich and Tolstoi 1936; Bockris et al. 1952; Volarovich et al. 1962), but they do not account for the frequency dependence of electrical conductivity and will not be considered in this paper.

  2. 2.

    The geometric factor accounts for the sample dimensions. For instance, for a cylindrical geometry with current circulating radially inside the cylinder, G = (2πL)/[ln(d e/d i)] with L the cylinder length and d e and d i the outer and inner diameters, respectively (e.g., Gaillard 2004).

  3. 3.

    The transition between olivine and wadsleyite is known as “the 410 km discontinuity,” and the transition between wadsleyite and ringwoodite occurs at ~525 km depth (see Fig. 1).

  4. 4.

    Historically, hydrous olivine has not been the first hydrous phase to be investigated experimentally using conductivity measurements. First attempts to measure the electrical properties of hydrous geomaterials had been previously made on a hydrous granitic melt, Lebedev and Khitarov (1964); on granite with a free water phase, Olhoeft (1981); on a hydrous basaltic melt, Satherley and Smedley (1985). However, because of several experimental issues, particularly water loss during the experiment, they can hardly be applied to interpret field data.

  5. 5.

    Electrical and diffusion studies show that crystallographic defects are critical to create anisotropy. These defects can be point defects (e.g., vacancies), line defects (e.g., dislocations) and planar defects (e.g., stacking faults) (e.g., Skrotzy 1994; Dupas-Bruzek et al. 1998).

  6. 6.

    Dislocation creep is mainly due to the [100](010) slip system (Zhang and Karato 1995).

References

  1. Atekwana EA, Sauck WA, Werkema DD Jr (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J Appl Geophys 44:167–180

    Google Scholar 

  2. Aubaud C, Hirschmann MM, Withers AC, Hervig RL (2008) Hydrogen partitioning between melt, clinopyroxene, and garnet at 3 GPa in a hydrous MORB with 6 wt.% H2O. Contrib Mineral Petrol 156:607–662

    Google Scholar 

  3. Baba K, Chave AD, Evans RL, Hirth G, Mackie RL (2006) Mantle dynamics beneath the East Pacific Rise at 17 degrees S: insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J Geophys Res 111. doi:10.1029/2004jb003598

  4. Baba K, Utada H, Gotob T-n, Kasayac T, Shimizua H, Tada N (2010) Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys Earth Planet Int. doi:10.1016/j.pepi.2010.09.010

    Google Scholar 

  5. Bagdassarov N, Batalev V, Egorova V (2011) State of lithosphere beneath Tien Shan from petrology and electrical conductivity of xenoliths. J Geophys Res 116:B01202. doi:10.1029/2009JB007125

    Google Scholar 

  6. Bahr K (1997) Electrical anisotropy and conductivity distribution functions of fractal random networks and of the crust: the scale effect of connectivity. Geophys J Int 130:649–660

    Google Scholar 

  7. Bahr K, Olsen N, Shankland TJ (1993) On the combination of the magnetotelluric and the geomagnetic depth sounding method for resolving an electrical conductivity increase at 400 km depth. Geophys Res Lett 20:2937–2940

    Google Scholar 

  8. Baker DR, Freda C, Brooker RA, Scarlato P (2005) Volatile diffusion in silicate melts and its effects on melt inclusions. Ann Geophys 48(4–5):699–717

    Google Scholar 

  9. Banks RJ (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys J R Astron Soc 17:457–487

    Google Scholar 

  10. Bauer K, Munoz G, Moeck I (2012) Pattern recognition and lithological interpretation of collocated seismic and magnetotelluric models using self-organizing maps. Geophys J Int 189:984–998

    Google Scholar 

  11. Bauerle JE (1969) Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solids 30:2657–2670

    Google Scholar 

  12. Bell DR, Rossman GR (1992a) Water in earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Google Scholar 

  13. Bell DR, Rossman GR (1992b) The distribution of hydroxyl in garnets from the subcontinental mantle in southern Africa. Contrib Mineral Petrol 111:161–178

    Google Scholar 

  14. Bell DR, Rossman GR, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res 108:B2105. doi:10.1029/2001JB000679

    Google Scholar 

  15. Berryman JG (1995) Mixture theories for rock properties. In: Ahrens TJ (ed) Handbook of physical constants. American Geophysical Union, New York

    Google Scholar 

  16. Bockris JOM, Kitchener JA, Ignatowicz S, Tomlinson JW (1952) Electric conductance in liquid silicates. Trans Faraday Soc 48:75–91

    Google Scholar 

  17. Bohlen SR, Boettcher AL (1982) The quartz-reversible-coesite transformation—a precise determination and the effects of other components. J Geophys Res 87(NB8):7073–7078

    Google Scholar 

  18. Brasse H, Eydam D (2008) Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. J Geophys Res 113:B07109. doi:10.1029/2007JB005142

    Google Scholar 

  19. Caricchi L, Gaillard F, Mecklenburgh J, Le Trong E (2011) Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: implications for electrical anisotropy in the oceanic low velocity zone. Earth Planet Sci Lett. doi:10.1016/j.epsl.2010.11.041

    Google Scholar 

  20. Chave A, Jones AG (2012) The magnetotelluric method: theory and practice. Cambridge University Press, Cambridge

    Google Scholar 

  21. Chen C-W, Rondenay S, Evans RL, Snyder D (2009) Geophysical detection of relict metasomatism from an Archaean subduction zone. Science 326:1089–1091. doi:10.1126/science.1178477

    Google Scholar 

  22. Constable S (1993) Constraints on mantle electrical conductivity from field and laboratory measurements. J Geomagn Geoelectr 45:707–728

    Google Scholar 

  23. Constable S (2006) SEO3: a new model of olivine electrical conductivity. Geophys J Int 166:435–437

    Google Scholar 

  24. Constable S, Duba A (2002) Diffusion and mobility of electrically conducting defects in olivine. Phys Chem Miner 29:446–454

    Google Scholar 

  25. Constable S, Srnka LJ (2007) An introduction to marine controlled-source electromagnetic methods fro hydrocarbon exploration. Geophysics 72(2):WA3–WA12

    Google Scholar 

  26. Dai L, Karato S-I (2009a) Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. Proc Jpn Acad Ser B 85:466–475

    Google Scholar 

  27. Dai L, Karato S-I (2009b) Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Phys Earth Planet Int 176:83–88

    Google Scholar 

  28. Dai L, Karato S-I (2009c) Electrical conductivity of wadsleyite under high pressures and temperatures. Earth Planet Sci Lett 287:277–283

    Google Scholar 

  29. Dai L, Li H, Hu H, Shan S (2008) Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J Geophys Res 113:B12211. doi:10.1029/2008JB005820

    Google Scholar 

  30. Dai L, Li H, Hu H, Shan S, Jiang J, Hui K (2012) The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contrib Mineral Petrol 163:689–700

    Google Scholar 

  31. Daines MJ, Kohlstedt DL (1997) Influence of deformation on melt topology in peridotites. J Geophys Res 102(B5):10257–10271

    Google Scholar 

  32. Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3-SiO2-CO2 from 3 to 9 GPa. Contrib Mineral Petrol 131:123–135

    Google Scholar 

  33. Danyushevsky LV, Eggins SM, Falloon TJ, Christie DM (2000) H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; part I: incompatible behaviour, implications for mantle storage, and origin of regional variations. J Petrol 41:1329–1364

    Google Scholar 

  34. Dasgupta R, Hirschmann MM (2006) Melting in the earth’s deep upper mantle caused by carbon dioxide. Nature 440:659–662

    Google Scholar 

  35. Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124

    Google Scholar 

  36. De Bruin HJ, Franklin AD (1981) An impedance spectroscopy model for electron transfer reactions at an electrode/solid electrolyte interface. J Electroanal Chem 118:405–418

    Google Scholar 

  37. Demouchy S (2010a) Hydrogen diffusion in spinel grain boundaries and consequences for chemical homogenization in hydrous peridotite. Contrib Mineral Petrol. doi:10.1007/s00410-010-0512-4

    Google Scholar 

  38. Demouchy S (2010b) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295:305–313

    Google Scholar 

  39. Demouchy S, Mackwell S (2003) Water diffusion in synthetic iron-free forsterite. Phys Chem Miner 30:486–494

    Google Scholar 

  40. Demouchy S, Mackwell S (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Miner 33:347–355

    Google Scholar 

  41. Dixon JE, Stolper E, Delaney JR (1988) Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca basaltic glasses. Earth Planet Sci Lett 90:87–104

    Google Scholar 

  42. Dixon JE, Clague DA, Wallace P, Poreda R (1997) Volatiles in alkalic basalts from the North Arch Volcanic Field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. J Petrol 38:911–939

    Google Scholar 

  43. Dobson DP, Brodholt JP (2000) The electrical conductivity and thermal profile of the earth’s mid-mantle. Geophys Res Lett 27(15):2325–2328

    Google Scholar 

  44. Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S (1996) In situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215

    Google Scholar 

  45. Du Frane WL, Tyburczy JA (2012) Deuterium-hydrogen exchange in olivine: Implications for point defects and electrical conductivity. Geochem Geophys Geosyst 13(3):Q03004. doi:10.1029/2011GC003895

    Google Scholar 

  46. Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in dry olivine. Geophys Res Lett 32:L24315. doi:10.1029/2005GL023879

    Google Scholar 

  47. Duba A (1976) Are laboratory electrical conductivity data relevant to the Earth? Acta Geodaet Geophys Montanist Acad Sci Hung 11(3–4):485–495

    Google Scholar 

  48. Duba A (1982) Limits to electrical measurements of silicates. In: Schreyer W (ed) High-pressure researches in geosciences. Schweizerbartische Verlagsbuchhandlung, Stuttgart, pp 375–381

    Google Scholar 

  49. Duba A, Constable S (1993) The electrical conductivity of lherzolite. J Geophys Res 98(B7):11885–11899

    Google Scholar 

  50. Duba A, Nicholls IA (1973) The influence of oxidation state on the electrical conductivity of olivine. Earth Planet Sci Lett 18:59–64

    Google Scholar 

  51. Duba A, Shankland TJ (1982) Free carbon and electrical conductivity in the earth’s mantle. Geophys Res Lett 9(11):1271–1274

    Google Scholar 

  52. Duba A, Heard HC, Schock RN (1974) Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity. J Geophys Res 79(11):1667–1673

    Google Scholar 

  53. Duba A, Piwinskii AJ, Heard HC, Schock RN (1976) The electrical conductivity of forsterite, enstatite and albite. In: Strens (ed) Physics and chemistry of minerals and rocks. Wiley-Interscience Publication. ISBN: 0471833681

  54. Ducea MN, Park SK (2000) Enhanced conductivity from sulfide minerals, southern Sierra Nevada, California. Geophys Res Lett 27:2405–2408. doi:10.1029/2000GL011565

    Google Scholar 

  55. Dupas-Bruzek C, Sharp TG, Rubie DC, Durham WB (1998) Mechanisms of transformation and deformation in Mg1.8 Fe0.2 SiO4 olivine and wadsleyite under non-hydrostatic stress. Phys Earth Planet Int 108:33–48

    Google Scholar 

  56. Eaton DW, Jones AG, Ferguson IJ (2004) Lithospheric anisotropy structure inferred from collocated teleseismic and magnetotelluric observations: Great Slave Lake shear zone, northern Canada. Geophys Res Lett 31. doi:10.1029/2004GL020939

  57. Evans RL (2012) Conductivity of earth materials. In: Chave A, Jones AG (eds) The magnetotelluric method: theory and practice. Cambridge University Press, Cambridge, pp 50–95

    Google Scholar 

  58. Evans RL, Chave AD, Booker JR (2002) On the importance of offshore data for magnetotelluric studies of ocean-continent subduction systems. Geophys Res Lett 29(9). doi:10.1029/2001GL013960

  59. Evans RL, Hirth G, Baba K, Forsyth D, Chave A, Mackie R (2005) Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437:249–252

    Google Scholar 

  60. Evans RL, Jones AG, Garcia X, Muller M, Hamilton M, Evans S, Fourie CJS, Spratt J, Webb S, Jelsma H, Hutchins D (2011) Electrical lithosphere beneath the Kaapvaal craton, southern Africa. J Geophys Res 116:B04105. doi:10.1029/2010JB007883

    Google Scholar 

  61. Faul UH, Toomey DR, Waff HS (1994) Intergranular basaltic melt is distributed in thin, elongated inclusions. Geophys Res Lett 21:29–32

    Google Scholar 

  62. Frost DJ, McCammon CA (2008) The redox state of earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Google Scholar 

  63. Frost BR, Fyfe WS, Tazaki K, Chan T (1989) Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature 340:134

    Google Scholar 

  64. Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578

    Google Scholar 

  65. Gaetani GA, Grove TL (2003) Experimental constraints on melt generation in the mantle wedge. In: Inside the subduction factory, Geophysical Monograph 138, pp 107–133

  66. Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218(1–2):215–228. doi:10.1016/S0012-821X(03)00639-3

    Google Scholar 

  67. Gaillard F, Iacono Marziano G (2005) Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition. J Geophys Res 110:B06204. doi:10.1029/2004JB003282

    Google Scholar 

  68. Gaillard F, Marki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 32:1363–1365

    Google Scholar 

  69. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Google Scholar 

  70. Glover PWJ, Pous J, Queralt P, Munoz JA, Liesa M, Hole MJ (2000) Integrated two-dimensional lithospheric conductivity modelling in the pyrenees using field-scale and laboratory measurements. Earth Planet Sci Lett 178:59–72

    Google Scholar 

  71. Grandjean A, Malki M, Simonnet C, Manara D, Penelon B (2007) Correlation between electrical conductivity, viscosity, and structure in borosilicate glass-forming melts. Phys Rev B 75:054112. doi:10.1103/PhysRevB.75.054112

    Google Scholar 

  72. Grant FS, West GF (1965) Introduction to the electrical methods. In: Shrock RR (ed) Interpretation theory in applied geophysics. McGraw-Hill, New York, pp 385–401

  73. Green DH (1973) Experimental melting studies on a model upper mantle composition at high-pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53

    Google Scholar 

  74. Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439

    Google Scholar 

  75. Guéguen Y, Palciauskas V (1994) Introduction to the physics of rocks. Princeton University Press, Princeton

    Google Scholar 

  76. Guéguen Y, Chelidze T, Le Ravalec M (1997) Microstructures, percolation thresholds, and rock physical properties. Tectonophysics 279:23–35

    Google Scholar 

  77. Guo X, Yoshino T, Katayama I (2011) Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3 GPa. Phys Earth Planet Int 188:69–81

    Google Scholar 

  78. Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melt. Geology 28:283–285

    Google Scholar 

  79. Hashin Z, Shtrikmann S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Google Scholar 

  80. Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248:715–734

    Google Scholar 

  81. Heinson G, White A (2005) Electrical resistivity of the Northern Australian lithosphere: crustal anisotropy or mantle heterogeneity? Earth Planet Sci Lett 232:157–170

    Google Scholar 

  82. Hermance JF, Grillot LR (1970) Correlation of magnetotelluric, seismic, and temperature data from Southwest Iceland. J Geophys Res 75(32):6582–6591

    Google Scholar 

  83. Hernlund J, Leinenwewber K, Locke D, Tyburczy JA (2006) A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am Mineral 91:295–305

    Google Scholar 

  84. Hier-Majumder S, Courtier A (2011) Seismic signature of small melt fraction atop the transition zone. Earth Planet Sci Lett. doi:10.1016/j.epsl.2011.05.055

    Google Scholar 

  85. Hirschmann MM (2006a) Water, melting, and the deep earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653

    Google Scholar 

  86. Hirschmann MM (2006b) A wet mantle conductor? Arising from: X. Huang, Y. Xu & S. Karato Nature 434, 746–749 (2005). Nature. doi:10.1038/nature04528

  87. Hirschmann MM (2010) Partial melt in the oceanic low velocity zone. Phys Earth Planet Int 179:60–71

    Google Scholar 

  88. Hirschmann MM, Ghiorso MS, Stolper EM (1999) Calculation of peridotite partial melting from thermodynamic models of minerals and melts. II. Isobaric variations in melts near the solidus and owing to variable source composition. J Petrol 40(2):297–313

    Google Scholar 

  89. Hirschmann MM, Aubaud C, Withers AC (2005) Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet Sci Lett 236:167–181

    Google Scholar 

  90. Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Google Scholar 

  91. Hirth G, Evans RL, Chave AD (2000) Comparison of continental and oceanic mantle electrical conductivity: is the Archean lithosphere dry? Geochim Geophys Geosyst 1. doi:10.1029/2000GC000048

  92. Hodges FN (1974) The solubility of H2O in silicate melts. Year b Carnegie Instn Wash 73:251–255

    Google Scholar 

  93. Holloway JR, Pan V, Gudmundsson G (1992) High-pressure fluid-absent melting experiments in the presence of graphite: oxygen fugacity, ferric/ferrous ratio and dissolved CO2. Eur J Mineral 4:105–114

    Google Scholar 

  94. Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T, Hustoft J (2003) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301:1227–1230

    Google Scholar 

  95. Holzapfel WB (1969) Effect of pressure and temperature on the conductivity and ionic dissociation of water up to 10 kbar and 1000°C. J Chem Phys 50:4424–4428

    Google Scholar 

  96. Huang XG, Xu YS, Karato SI (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749

    Google Scholar 

  97. Huebner JS, Dillenburg RG (1995) Impedance spectra of hot, dry silicate minerals and rock: qualitative interpretation of spectra. Am Mineral 80:46–64

    Google Scholar 

  98. Hunter RH, McKenzie D (1989) The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth Planet Sci Lett 92:347–356

    Google Scholar 

  99. Ichiki M, Uyeshima M, Utada H, Zhao G, Tang J, Ma M (2001) Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys Res Lett 28:3773–3776

    Google Scholar 

  100. Inoue T, Weidner DJ, Northrup PA, Parise JB (1998) Elastic properties of hydrous ringwoodite (γ-phase) on Mg2SiO4. Earth Planet Sci Lett 160:107–113

    Google Scholar 

  101. Inoue T, Wada T, Sasaki R, Yurimoto H (2010) Water partitioning in the earth’s mantle. Phys Earth Planet Int 183:245–251

    Google Scholar 

  102. Jacobsen SD, Smyth JR, Spetzler H, Holl CM, Frost DJ (2004) Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys Earth Planet Int 143–144:47–56

    Google Scholar 

  103. Jambon A (1994) Earth degassing and large-scale geochemical cycling of volatile elements. In: Volatiles in magmas. Rev Mineral 30:479–517

    Google Scholar 

  104. Jegen M, Edwards RN (1998) Electrical properties of a 2D conductive zone under the Juan de Fuca ridge. Geophys Res Lett 25:3647–3650

    Google Scholar 

  105. Ji S, Rondenay S, Mareschal L, Senechal G (1996) Obliquity between seismic and electrical anisotropies as a potential indicator of movement sense for ductile shear zones in the upper mantle. Geology 24:1033–1036

    Google Scholar 

  106. Jones AG (1999) Imaging the continental upper mantle using electromagnetic methods. Lithos 48:57–80

    Google Scholar 

  107. Jones AG (2006) Electromagnetic interrogation of the anisotropic earth: looking into the earth with polarized spectacles. Phys Earth Planet Int 158:281–291

    Google Scholar 

  108. Jones AG, Dumas I (1993) Electromagnetic images of a volcanic zone. Phys Earth Planet Sci 81:289–314

    Google Scholar 

  109. Jones AG, Gough DI (1995) Electromagnetic images of crustal structures in southern and central Canadian Cordillera. Can J Earth Sci 32(10):1541–1563

    Google Scholar 

  110. Jones AG, Evans RL, Muller MR, Hamilton MP, Miensopust MP, Garcia X, Cole P, Ngwisanyi T, Hutchins D, Fourie CJS, Jelsma H, Evans S, Aravanis T, Pettit W, Webb S, Wasborg J, The SAMTEX Team (2009) Area selection for diamonds using magnetotellurics: examples from southern Africa. Lithos 112S:83–92

    Google Scholar 

  111. Jones AG, Fullea J, Evans RL, Muller MR (2012) Water in cratonic lithosphere: calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations. Geochem Geophys Geosyst V13(1):Q06010. doi:10.1029/2012GC004055

    Google Scholar 

  112. Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463

    Google Scholar 

  113. Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273. doi:10.1038/347272a0

    Google Scholar 

  114. Karato S (2006) Remote sensing of hydrogen in earth’s mantle. In: Keppler H, Smyth J (eds) Water in nominally anhydrous minerals. Mineralogical Society of America, Washington, DC, pp 343–375

    Google Scholar 

  115. Kariya KA, Shankland TJ (1983) Electrical conductivity of dry lower crustal rocks. Geophysics 48:52–61

    Google Scholar 

  116. Karki BB, Stixrude L (2010) Viscosity of MgSiO3 liquid at earth’s mantle conditions: implications for an early magma ocean. Science 328:740–742

    Google Scholar 

  117. Katayama I, Hirose K, Yurimoto H, Nakashima S (2003) Water solubility in majoritic garnet in subducting oceanic crust. Geophys Res Lett 30:2155. doi:10.1029/2003GL018127

    Google Scholar 

  118. Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T, Araki E, Suyehiro K (2009) Seismic evidence for sharp lithosphere–asthenosphere boundaries of oceanic plates. Science 324:499–502

    Google Scholar 

  119. Kelbert A, Schultz A, Egbert G (2009) Global electromagnetic induction constraints on transition-zone water content variations. Nature 460. doi:10.1038/nature08257

  120. Key K, Constable S (2002) Broadband marine MT exploration of the East Pacific Rise at 9°50′N. Geophys Res Lett 29. doi:10.1029/2002GL016035

  121. Khan A, Shankland TJ (2012) A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet Sci Lett 317–318:27–43

    Google Scholar 

  122. Khan A, Connolly JAD, Olsen N (2006a) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. J Geophys Res 111:B10102. doi:10.1029/2006JB004270

    Google Scholar 

  123. Khan A, Connolly JAD, Olsen N, Mosegaard K (2006b) Constraining the composition and thermal state of the moon from an inversion of electromagnetic lunar day-side transfer functions. Earth Planet Sci Lett 248:579–598

    Google Scholar 

  124. Khan A, Kuvshinov, Semenov A (2011) On the heterogeneous electrical conductivity structure of the Earth’s mantle with implications for transition zone water content, J Geophys Res 116:B01103. doi:10.1029/2010JB007458

  125. Khan A, Pommier A, Connolly JAD (2013) On the presence of a titanium-rich melt-layer in the deep lunar interior lunar and planetary science conference XLIV, abstract 1272. Lunar and Planetary Institute, Houston

  126. Khitarov N, Slutskii B (1965) The effect of pressure on the melting temperatures of albite and basalt (based on electroconductivity measurements). Geochem Int 2:1034–1041

    Google Scholar 

  127. Koga K, Hauri E, Hirschmann M, Bell D (2003) Hydrogen concentration analyses using SIMS and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst. doi:10.1029/2002GC000378

    Google Scholar 

  128. Kohlstedt DL, Holtzman BK (2009) Shearing melt out of the earth: an experimentalist’s perspective on the influence of deformation on melt extraction. Annu Rev Earth Planet Sci 37:561–593

    Google Scholar 

  129. Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207:147–162

    Google Scholar 

  130. Kohlstedt DL, Mackwell SJ (1999) Solubility and diffusion of “water” in silicate minerals. In: Wright Kate, Catlow Richard (eds) Microscopic properties and processes in minerals. Kluwer, Dordrecht, pp 539–559

    Google Scholar 

  131. Kohlstedt DL, Mackwell SJ (2010) Strength and deformation of planetary lithospheres. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University, Cambridge, pp 397–456

    Google Scholar 

  132. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib Mineral Petrol 123:345–357. doi:10.1007/s004100050161

    Google Scholar 

  133. Kurtz RD, Craven JA, Niblett ER, Stevens RA (1993) The conductivity of the crust and upper mantle beneath Kapuskasing uplift: electrical anisotropy in the upper mantle. Geophys J Int 113:483–498

    Google Scholar 

  134. Le Pape F, Jones AG, Vozar J, Wenbo W (2012) Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nat Geosci. doi:10.1038/NGEO1449

    Google Scholar 

  135. Lebedev EB, Khitarov NI (1964) Dependence of the beginning of melting of granite and the electrical conductivity of its melt on high water vapor pressure. Geochem Int 1:193–197

    Google Scholar 

  136. Lee W-J, Wyllie PJ (1997a) Liquid immiscibility between nephelinite and carbonatite from 2.5 to 1.0 GPa compared with mantle melt compositions. Contrib Mineral Petrol 127:1–12

    Google Scholar 

  137. Lee W-J, Wyllie PJ (1997b) Liquid immiscibility in the join NaAlSiO4–NaAlSi3O8–CaCO3 at 1.0 GPa: implications for crustal carbonatites. J Petrol 38:1113–1135

    Google Scholar 

  138. Lee W-J, Wyllie PJ (1998) Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. J Petrol 39(11–12):2005–2013

    Google Scholar 

  139. Leinenweber KD, Tyburczy JA, Sharp TG, Soignard E, Diedrich T, Petuskey WB, Wang Y, Mosenfelder JL (2012) Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Am Mineral 97:353–368

    Google Scholar 

  140. Lindsley DH, Dixon SA (1976) Diopside–enstatite equilibria at 850 to 1400°C, 5 to 35 kb. Am J Sci 276(10):1285–1301

    Google Scholar 

  141. Lizarralde D, Chave A, Hirth G, Schultz A (1995) Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J Geophys Res 100(B9):17837–17854

    Google Scholar 

  142. Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. J Geophys Res 95:5079–5088

    Google Scholar 

  143. Mackwell SJ, Kohlstedt DL, Paterson MS (1985) The role of water in the deformation of olivine single crystals. J Geophys Res 90:11319–11333

    Google Scholar 

  144. Manthilake MAGM, Matsuzaki T, Yoshino T, Yamashita S, Ito E, Katsura T (2009) Electrical conductivity of wadsleyite as a function of temperature and water content. Phys Earth Planet Int 174:10–18

    Google Scholar 

  145. Manzella A, Volpi G, Zaja A, Meju M (2004) Combined TEM‐MT investigation of shallow‐depth resistivity structure of Mt. Somma‐Vesuvius. J Volcanol Geotherm Res 131(1–2):19–32. doi:10.1016/S0377-0273(03)00313-5

    Google Scholar 

  146. Martí A (this volume) The role of electrical anisotropy in magnetotelluric responses: From modelling and dimensionality analysis to inversion and interpretation

  147. McCammon C (2005) The paradox of mantle redox. Science 308:807–808

    Google Scholar 

  148. McGary RS, Rondenay S, Evans RL, Abers GA, Wannamaker PE (2011) A joint geophysical investigation of the Cascadia subduction system in central Washington using dense arrays of passive seismic and magnetotelluric station data. Abstract V54B-03, AGU Fall Meeting, CA

  149. Meju MA (2002) Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv Geophys 23(203):133–205

    Google Scholar 

  150. Michael PJ (1995) Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131:301–320

    Google Scholar 

  151. Mierdel K, Keppler H, Smyth JR, Langenhorst F (2007) Water solubility in aluminous orthopyroxene and the origin of earth’s asthenosphere. Science 315:364–368

    Google Scholar 

  152. Minarik WG (1998) Complications to carbonate melt mobility due to the presence of an immiscible silicate melt. J Petrol 39(11–12):1965–1973

    Google Scholar 

  153. Moynihan CT (1998) Description and analysis of electrical relaxation data for ionically conducting glasses and melts. Solid State Ionics 105:175–183

    Google Scholar 

  154. Mysen BO, Boettcher AL (1975) Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol 16:520–548

    Google Scholar 

  155. Nabighian MN, Asten MW (2002) Metalliferous mining geophysics—state of the art in the last decade of the 20th century and the beginning of the new millennium. Geophysics 67(3):964–978

    Google Scholar 

  156. Nesbitt BE (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310

    Google Scholar 

  157. Ni H, Keppler H, Behrens H (2011a) Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib Mineral Petrol 162:637–650

    Google Scholar 

  158. Ni H, Keppler H, Manthilake MAGM, Katsura T (2011b) Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures. Contrib Mineral Petrol. doi:10.1007/s00410-011-0608-5

    Google Scholar 

  159. Nover G (2005) Electrical properties of crustal and mantle rocks—a review of laboratory measurements and their explanation. Surv Geophys 26:593–651. doi:10.1007/s10712-005-1759-6

    Google Scholar 

  160. Ogawa Y, Mishina M, Goto T, Satoh H, Oshiman N, Kasaya T, Takahashi Y, Nishitani T, Sakanaka S, Uyeshima M, Takahashi Y, Honkura Y, Matsushima M (2001) Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan back arc. Geophys Res Lett 28(19):3741–3744

    Google Scholar 

  161. Ohta, K Onoda, S Hirose, K, Sinmyo R, Shimizu K, Sata N, Ohishi Y, Yasuhara A (2008) The electrical conductivity of post-perovskite in Earth’s D” layer. Science 320:89–91

    Google Scholar 

  162. Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Int 143–144:255–269

    Google Scholar 

  163. Olhoeft GR (1981) Electrical properties of granite with implications for the lower crust. J Geophys Res 86(B2):931–936

    Google Scholar 

  164. Parman SW, Dann JC, Grove TL, de Wit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 150:303–323

    Google Scholar 

  165. Parsons RA, Nimmo F, Hustoft JW, Holtzman BK, Kohlstedt DL (2008) An experimental and numerical study of surface tension-driven melt flow. Earth Planet Sci Lett 267:548–557

    Google Scholar 

  166. Pek J, Santos FAM (2002) Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media. Comput Geosci 28:939–950

    Google Scholar 

  167. Peslier AH (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res 197:239–258

    Google Scholar 

  168. Peslier AH, Luhr JF (2006) Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett 242:302–319

    Google Scholar 

  169. Peslier AH, Woodland AB, Wolff JA (2008) Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic olivines from Southern Africa. Geochim Cosmochim Acta 72:2711–2722

    Google Scholar 

  170. Peslier AH, Woodland AB, Bell DR, Lazarov M, Lapen TJ (2012) Metasomatic control of water contents in the Kaapvaal cratonic mantle. Geochim Cosmochim Acta 97:213–246

    Google Scholar 

  171. Piwinskii AJ, Duba A (1974) High temperature electrical conductivity of albite. Geophys Res Lett 1:209–211

    Google Scholar 

  172. Poe BT, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Int 181:103–111

    Google Scholar 

  173. Pommier A, LeTrong E (2011) ‘‘SIGMELTS’’: a web portal for electrical conductivity calculations in geosciences. Comput Geosci. doi:10.1016/j.cageo.2011.01.002

    Google Scholar 

  174. Pommier A, Gaillard F, Pichavant M, Scaillet B (2008) Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure. J Geophys Res 113:B05205. doi:10.1029/2007JB005269

    Google Scholar 

  175. Pommier A, Gaillard F, Malki M, Pichavant M (2010a) Methodological re-evaluation of the electrical conductivity of silicate melts. Am Mineral 95:284–291

    Google Scholar 

  176. Pommier A, Gaillard F, Pichavant M (2010b) Time-dependent changes of the electrical conductivity of basaltic melts with redox state. Geochim Cosmochim Acta 74:1653–1671

    Google Scholar 

  177. Pommier A, Tarits P, Hautot S, Pichavant M, Scaillet B, Gaillard F (2010c) A new petrological and geophysical investigation of the present-day plumbing system of Mount Vesuvius. Geochem Geophys Geosyst 11:Q07013. doi:10.1029/2010GC003059

    Google Scholar 

  178. Pommier A, Evans RL, Key K (2011) Joint-modeling of the viscosity and the electrical conductivity of silicate and carbonatitic melts and implications for geophysical data interpretation. Abstract V22D-08, AGU Fall Meeting, CA

  179. Pommier A, Evans RL, Key K, Tyburczy J, Mackwell S, Elsenbeck J (2013) Prediction of silicate melt viscosity from electrical conductivity: a model and its geophysical implications. G-Cubed 14. doi:10.1002/2012GC004467

  180. Quist AS, Marshall WL (1968) Electrical conductances of aqueous sodium chloride solutions from 0 to 800 degrees and at pressures to 4000 bars. J Phys Chem 72:684–703

    Google Scholar 

  181. Rauen A, Lastovickova M (1995) Investigation of electrical anisotropy in the deep borehole KTB. Surv Geophys 16:37–46

    Google Scholar 

  182. Reynard B, Mibe K, Van de Moortèle B (2011) Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth Planet Sci Lett 307:387–394

    Google Scholar 

  183. Righter K, Drake MJ (1999) Effect of water on metal-silicate partitioning of siderophile elements” a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet Sci Lett 171:383–399

    Google Scholar 

  184. Roberts JJ, Tyburczy JA (1991) Frequency dependent electrical properties of polycrystalline olivine compacts. J Geophys Res 96(B10):16205–16222

    Google Scholar 

  185. Roberts JJ, Tyburczy JA (1993) Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport. Phys Chem Miner 20:19–26

    Google Scholar 

  186. Roberts JJ, Tyburczy JA (1994) Frequency-dependent electrical properties of minerals and partial-melts. Surv Geophys 15:239–262

    Google Scholar 

  187. Roberts JJ, Tyburczy JA (1999) Partial-melt electrical conductivity: influence of melt composition. J Geophys Res 104:7055–7065

    Google Scholar 

  188. Roberts JJ, Tyburczy JA (2000) Partial-melt conductivity: influence of melt composition. J Geophys Res 104:7055–7065

    Google Scholar 

  189. Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature. doi:10.1038/nature09899

    Google Scholar 

  190. Roling B (1999) What do electrical conductivity and electrical modulus spectra tell us about the mechanisms of ion transport processes in melts, glasses, and crystals? J Non Cryst Solids 244:34–43

    Google Scholar 

  191. Romano C, Poe BT, Tyburczy J, Nestola F (2009) Electrical conductivity of hydrous wadsleyite. Eur J Mineral 21:615–622

    Google Scholar 

  192. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of earth’s upper mantle. Nature 419:451–455

    Google Scholar 

  193. Satherley J, Smedley SI (1985) The electrical conductivity of some hydrous and anhydrous molten silicates as a function of temperature and pressure. Geochim Cosmochim Acta 49:769–777

    Google Scholar 

  194. Sato H (1986) High temperature a.c. electrical properties of olivine single crystal with varying oxygen partial pressure: implications for the point defect chemistry. Phys Earth Planet Int 41:269–282

    Google Scholar 

  195. Sato H, Ida Y (1984) Low frequency electrical impedance of partially molten gabbro: the effect of melt geometry on electrical properties. Tectonophysics 107:105–134

    Google Scholar 

  196. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Google Scholar 

  197. Schock RN, Duba AG, Shankland TJ (1989) Electrical conduction in olivine. J Geophys Res 94:5829–5839

    Google Scholar 

  198. Schultz A (1990) On the vertical gradient and associated heterogeneity in mantle electrical conductivity. Phys Earth Planet Int 64:68–86

    Google Scholar 

  199. Seaman C, Sherman SB, Garcia MO, Baker MB, Balta B, Stolper E (2004) Volatiles in glasses from the HSDP2 drill core. Geochem Geophys Geosyst. doi:10.1029/2003GC000596

    Google Scholar 

  200. Shankland TJ, Waff HS (1977) Partial melting and electrical conductivity anomalies in the upper mantle. J Geophys Res 82:5409–5417

    Google Scholar 

  201. Shankland TJ, Peyronneau J, Poirier J-P (1993) Electrical conductivity of the earth’s lower mantle. Nature 366:453–455

    Google Scholar 

  202. Shankland TJ, Duba AG, Mathez EA, Peach CL (1997) Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks. J Geophys Res 102(B7):14741–14750

    Google Scholar 

  203. Shaw HR (1965) Comments on viscosity, crystal settling, and convection in granitic magmas. Am J Sci 263:120–152

    Google Scholar 

  204. Shimojuku A, Yoshino T, Yamazaki D, Okudaira T (2012) Electrical conductivity of fluid-bearing quartzite under lower crustal conditions. Phys Earth Planet Int 198–199:1–8

    Google Scholar 

  205. Simonnet C, Phalippou J, Malki M (2003) Electrical conductivity measurements of oxides from molten state to glassy state. Rev Sci Inst 74:2805–2810

    Google Scholar 

  206. Simpson F (2002) Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable? Earth Planet Sci Lett 203:535–547

    Google Scholar 

  207. Simpson F, Bahr R (2005) Practical magnetotellurics. Cambridge University Press, Cambridge, 270 pp. doi:10.1017/CBO9780511614095

  208. Simpson F, Tommassi A (2005) Hydrogen diffusivity and electrical anisotropy of a peridotite sample. Geophys J Int 160:1092–1102

    Google Scholar 

  209. Simpson F, Warner M (1998) Coincident magnetotelluric, P-wave and S-wave images of the deep continental crust beneath the Weardale granite, NE England: seismic layering, low conductance and implications against the fluids paradigm. Geophys J Int 133:419–434

    Google Scholar 

  210. Skrotzy W (1994) Defect structure and deformation mechanisms in naturally deformed augite and enstatite. Tectonophysics 229:43–68

    Google Scholar 

  211. Smyth JR (1987) A crystallographic model for hydrous wadsleyite(β-Mg2SiO4): an ocean in the earth’s interior? Am Mineral 79:1021–1024

    Google Scholar 

  212. Smyth JR, Holl CM, Frost DJ, Jacobsen SD, Langenhorst F, McCammon CA (2003) Structural systematics of hydrous ringwoodite and water in earth’s interior. Am Mineral 88(10):1402–1407

    Google Scholar 

  213. Song TRA, Helmberger DV, Grand SP (2004) Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427:530–533

    Google Scholar 

  214. Stachel T, Brey GP, Harris JW (2005) Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements 1:73–78

    Google Scholar 

  215. Stesky RM (1986) Electrical conductivity of brine-saturated fractured rock. Geophysics 51(8):1585–1593

    Google Scholar 

  216. Stesky RM, Brace WF (1973) Electrical conductivity of serpentinized rocks to 6 kilobars. J Geophys Res 78:7614–7621

    Google Scholar 

  217. Takei Y (2000) Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle. J Geophys Res 105(B7):16665–16682

    Google Scholar 

  218. Tarits P, Hautot S, Perrier F (2004) Water in the mantle: results from electrical conductivity beneath the French Alps. Geophys Res Lett 31:L06612. doi:10.1029/2003GL019277

    Google Scholar 

  219. ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurement. J Geophys Res 110:B12201. doi:10.1029/2004JB003462

    Google Scholar 

  220. Tenner TJ, Hirschmann MM, Withers AC, Hervig RL (2009) Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol 262:42–56

    Google Scholar 

  221. Tenner TJ, Hirschmann MM, Withers AC, Ardia P (2012) H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: consequences for dehydration melting above the transition zone. Contrib Mineral Petrol 163:297–316

    Google Scholar 

  222. Toffelmier DA, Tyburczy JA (2007) Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 447. doi:10.1038/nature05922

  223. Tolland HG (1973) Mantle conductivity and electrical properties of garnet, mica and amphibole. Nat Phys Sci 241:35–36

    Google Scholar 

  224. Tyburczy JA (2007) Properties of rocks and minerals—the electrical conductivity of rocks, minerals and the earth. Treatise Geophys 2:631–642

    Google Scholar 

  225. Tyburczy JA, Fisler DK (1995) Electrical properties of minerals and melts. Mineral physics and crystallography: a handbook of physical constants. AGU Reference Shelf 2 185–208

  226. Tyburczy JA, Waff HS (1983) Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: geophysical significance and implications for charge transport and melt structure. J Geophys Res 88(B3):2413–2430

    Google Scholar 

  227. Utada H, Koyama T, Shimizu H (2003) A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys Res Lett 31:1194. doi:10.1029/2002GL016902

    Google Scholar 

  228. Utada H, Koyama T, Obayashi M, Fukao Y (2009) A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry. Earth Planet Sci Lett 281:249–257

    Google Scholar 

  229. Verhoeven O, Mocquet A, Vacher P, Rivoldini A, Menvielle M, Arrial P-A, Choblet G, Tarits P, Dehant V, Van Hoolst T (2009) Constraints on thermal state and composition of the earth’s lower mantle from electromagnetic impedances and seismic data. J Geophys Res 114:B03302. doi:10.1029/2008JB005678

    Google Scholar 

  230. Vetere F, Behrens H, Holtz F, Vilardo G, Ventura G (2010) Viscosity of crystal-bearing melts and its implication for magma ascent. J Mineral Petrol Sci 105:151–163

    Google Scholar 

  231. Volarovich MP, Tolstoi DM (1936) The simultaneous measurement of viscosity and electrical conductivity of some fused silicates at temperatures up to 1400°C. J Soc Glass Technol 20:54–60

    Google Scholar 

  232. Volarovich MP, Bondarenko AT, Parkhomenko EI (1962) The influence of pressure on the electrical properties of rocks. Proc Inst Phys Earth Mosc 23:80–90

    Google Scholar 

  233. von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res 91:9261–9276

    Google Scholar 

  234. Waff HS (1974) Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res 79:4003–4010

    Google Scholar 

  235. Waff HS, Weill DF (1975) Electrical conductivity of magmatic liquids: effects of temperature, oxygen fugacity and composition. Earth Planet Sci Lett 28:254–260

    Google Scholar 

  236. Wang D, Mookherjee M, Xu YS, Karato S (2006) The effect of hydrogen on the electrical conductivity in olivine. Nature 443:977–980

    Google Scholar 

  237. Wang D, Li H, Yi L, Matsuzaki T, Yoshino T (2010) Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature. J Geophys Res 115:B09211. doi:10.1029/2009JB006695

    Google Scholar 

  238. Wang D, Guo Y, Yu Y, Karato S-I (2012) Electrical conductivity of amphibole-bearing rocks: influence of dehydration. Contrib Mineral Petrol. doi:10.1007/s00410-012-0722-z

    Google Scholar 

  239. Wannamaker PE (2005) Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physiochemical state. Surv Geophys 26:733–765

    Google Scholar 

  240. Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature 460:733–736

    Google Scholar 

  241. Watanabe T, Kurita K (1993) The relationship between electrical conductivity and melt fraction in a partially molten simple system. Phys Earth Planet Int 78:9–17

    Google Scholar 

  242. Watson EB, Brennan JM (1987) Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet Sci Lett 85:497–515

    Google Scholar 

  243. Watson HC, Roberts JJ, Tyburczy JA (2010) The effect of conductive grain boundary impurities on electrical conductivity in polycrystalline olivine. Geophys Res Lett 37:L02303. doi:10.1029/2009GL041566

    Google Scholar 

  244. Weidelt P (1999) 3D conductivity models: implications of electrical anisotropy. In: Oristaglio M, Spies B (eds) Three-dimensional electromagnetics. Society of Exploration Geophysicists, Tulsa, pp 119–137

  245. Wendlandt RF, Huebner JS, Harrison WL (1982) The redox potential of boron nitride and implications for its use as a crucible material in experimental petrology. Am Mineral 67:170–174

    Google Scholar 

  246. Williams Q, Hemley RJ (2001) Hydrogen in the deep earth. Annu Rev Earth Planet Sci 29:365–418

    Google Scholar 

  247. Withers AC, Bureau H, Raepsaet C, Hirschmann MM (2012) Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem Geol 334:92–98

    Google Scholar 

  248. Worzewski T, Jegen M, Kopp H, Brasse H, Castillo WT (2011) Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci 4:108–111. doi:10.1038/NGEO1041

    Google Scholar 

  249. Wunder B (1998) Equilibrium experiments in the system MgO-SiO2-H2O(MSH): stability fields of clinohumite-OH [Mg9Si4O16 (OH)2], chondrodite-OH [Mg5Si2O8(OH)2] and phase A [Mg7Si2O8(OH)6]. Contrib Mineral Petrol 132:111–120

    Google Scholar 

  250. Wyllie PJ, Baker MB, White BS (1990) Experimental boundaries for the origin and evolution of carbonatites. Lithos 26:3–19

    Google Scholar 

  251. Xu Y, Poe BT, Shankland TJ, Rubie DC (1998) Electrical conductivity of minerals of the mantle transition zone. Science 280:1415–1418

    Google Scholar 

  252. Xu Y, Shankland TJ, Duba A (2000) Pressure effect on electrical conductivity of mantle olivine. Phys Earth Planet Int 118:149–161

    Google Scholar 

  253. Yagi T, Akaogi M, Shimomura O, Suzuki T, Akimoto S (1987) In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. J Geophys Res 92:6207–6213

    Google Scholar 

  254. Yang X (2011) Origin of high electrical conductivity in the lower continental crust: a review. Surv Geophys 32:875–903

    Google Scholar 

  255. Yang X (2012) Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet Sci Lett 317–318:241–250

    Google Scholar 

  256. Yang X, Heidelbach F (2012) Grain size effect on the electrical conductivity of clinopyroxene. Contrib Mineral Petrol 163:939–947

    Google Scholar 

  257. Yang X, McCammon C (2012) Fe3+-rich augite and high electrical conductivity in the deep. Geology 40(2):131–134. doi:10.1130/G32725

    Google Scholar 

  258. Yang X, Keppler H, McCammon C, Ni H, Xia Q, Fan Q (2011) The effect of water on the electrical conductivity of lower crustal clinopyroxene. J Geophys Res 116:B04208. doi:10.1029/2010JB008010

    Google Scholar 

  259. Yang X, Keppler H, McCammon C, Ni H (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 163:33–48. doi:10.1007/s00410-011-0657-9

    Google Scholar 

  260. Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163–206. doi:10.1007/s10712-009-9084-0

    Google Scholar 

  261. Yoshino T, Katsura T (2009) Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the mantle transition zone. Phys Earth Planet Int 174:3–9

    Google Scholar 

  262. Yoshino T, Katsura T (2012) Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet Sci Lett 337–338:56–67

    Google Scholar 

  263. Yoshino T, Takuya M, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976

    Google Scholar 

  264. Yoshino T, Manthilake G, Matsuzaki T, Katsura T (2008) Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451:326–329

    Google Scholar 

  265. Yoshino T, Yamazaki D, Mibe K (2009) Well-wetted olivine grain boundaries in partial molten peridotites in the asthenosphere. Earth Planet Sci Lett 283:167–173

    Google Scholar 

  266. Yoshino T, Laumonier M, McIsaac E, Katsura T (2010) Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle. Earth Planet Sci Lett 295:593–602

    Google Scholar 

  267. Yoshino T, Ito E, Katsura T, Yamazaki D, Shan S, Guo X, Nishi M, Higo Y, Funakoshi K-i (2011) Effect of iron content on electrical conductivity of ferropericlase with implications for the spin transition pressure. J Geophys Res 116:B04202. doi:10.1029/2010JB007801

    Google Scholar 

  268. Yoshino T, McIsaac E, Laumonier M, Katsura T (2012) Electrical conductivity of partial molten carbonate peridotite. Phys Earth Planet Int 194–195:1–9

    Google Scholar 

  269. Zhang G-H, Chou K-C (2010) Simple method for estimating the electrical conductivity of oxide melts with optical basicity. Metall Trans B 41B:131–136

    Google Scholar 

  270. Zhang S, Karato S-I (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375:774–777

    Google Scholar 

  271. Zhang B, Yoshino T, Wu X, Matsuzaki T, Shan S, Katsura T (2012) Electrical conductivity of enstatite as a function of water content: implications for the electrical structure in the upper mantle. Earth Planet Sci Lett 357–358, 11–20

  272. Zhu M, Xie H, Guo J, Xu Z (2001) An experimental study of the conductivity of talc at high temperature and high pressure. Chin J Geophys 44:429–435

    Google Scholar 

  273. Zimmerman GH, Gruszkiewicz MS, Wood RH (1995) New apparatus for conductance measurements at high temperatures: conductance of aqueous solutions of LiCl, NaCl, NaBr, and CsBr at 28 MPa and water densities from 700 to 260 kg m−3. J Phys Chem 99:11612–11625

    Google Scholar 

  274. Zimmerman ME, Zhang S, Kohlstedt DL, Karato S-i (1999) Melt distribution in mantle rocks deformed in shear. Geophys Res Lett 26:1505–1508

    Google Scholar 

  275. Zimmerman GH, Scott PW, Greynolds W (2007) A new flow instrument for conductance measurements at elevated temperatures and pressures: measurements on NaCl(aq) to 458 K and 1.4 MPa. J Solution Chem 36:767–786

    Google Scholar 

Download references

Acknowledgments

I address many thanks to Yasuo Ogawa and the 21st EMIW Organizing Committee (in particular, Graham Heinson and Stephan Thiel) for giving me the opportunity to do this review. This paper benefited from different projects achieved during the last 6 years and discussions with many MT geophysicists. I am grateful to Jim Tyburczy, Ed Garnero and Steve Mackwell for permanent stimulating scientific discussions and current support. I deeply thank Anne Peslier, Takahashi Yoshino and an anonymous reviewer for constructive comments. Formal reviews by Jim Tyburczy, Rob Evans, Steve Constable, Amir Khan and Ed Garnero are greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne Pommier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pommier, A. Interpretation of Magnetotelluric Results Using Laboratory Measurements. Surv Geophys 35, 41–84 (2014). https://doi.org/10.1007/s10712-013-9226-2

Download citation

Keywords

  • Electrical conductivity
  • Impedance spectroscopy
  • Electromagnetics
  • Magnetotellurics