Surveys in Geophysics

, Volume 34, Issue 6, pp 755–767 | Cite as

Lightning Applications in Weather and Climate Research

Article

Abstract

Thunderstorms, and lightning in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. Lightning causes great damage and death every year but also tells us about the inner working of storms. Since lightning can be monitored from great distances from the storms themselves, lightning may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. Lightning itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in lightning and thunderstorm activity? Many studies show that higher surface temperatures produce more lightning, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, lightning itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between lightning, temperature, upper tropospheric water vapor, and cloud cover.

Keywords

Lightning Severe weather Climate Thunderstorms 

References

  1. Abreu D, Chandan D, Holzworth RH, Strong K (2010) A performance assessment of the WWLLN via comparison with the CLDN. Atmos Meas Tech 3:1143–1153CrossRefGoogle Scholar
  2. Altaratz O, Koren I, Yair Y, Price C (2010) Lightning response to smoke from Amazonian fires. Geophys Res Lett 37:L07801. doi:10.1029/2010GL042679 CrossRefGoogle Scholar
  3. Beard KV, Ochs HT III (1993) Warm-rain initiation: an overview of microphysical mechanisms. J Appl Met 32:608–625CrossRefGoogle Scholar
  4. Bell TL, Rosenfeld D, Kim KM (2009) Weekly cycle of lighting: evidence of storm invigoration by pollution. Geophys Res Lett 36:L23805. doi:10.1029/2009GL040915 CrossRefGoogle Scholar
  5. Betz HD, Schmidt K, Oettinger WP (2009) LINET—An international VLF/LF lightning detection network in Europe. In: Betz HD, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, BerlinGoogle Scholar
  6. Black RA, Hallett J (1999) Electrification of the hurricane. J Atmos Sci 56:2004–2028CrossRefGoogle Scholar
  7. Carey LDS, Rutledge A (1998) Electrical and multiparameter radar observations of a severe hailstorm. J Geophys Res 103(12):13979–14000 doi:10.1029/97JD02626 CrossRefGoogle Scholar
  8. Carey LD, Petersen WA, Rutledge SA (2003) Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic super cell of 30 May 1998. Mon Weather Rev 131:1811–1831CrossRefGoogle Scholar
  9. Chagnon SA (1985) Secular variations in thunder-day frequencies in the twentieth century. J Geophys Res 90:6181–6194CrossRefGoogle Scholar
  10. Chagnon SA (1992) Temporal and spatial relations between hail and lightning. J Appl Met 31(6):587–604CrossRefGoogle Scholar
  11. Chen AB et al (2008) Global distributions and occurrence rates of transient luminous events. J Geophys Res 113:A08306. doi:10.1029/2008JA013101
  12. Christian HJ et al (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108:4005. doi:10.1029/2002JD002347 CrossRefGoogle Scholar
  13. Cooray V, Cooray C, Andrews CJ (2007) Lightning caused injuries in humans. J Electrost 65:386–394CrossRefGoogle Scholar
  14. Deierling W, Petersen WA (2008) Total lightning activity as an indicator of updraft characteristics. J Geophys Res 113:D16210. doi:10.1029/2007JD009598 CrossRefGoogle Scholar
  15. Del Genio AD, Mao-Sung Y, Jonas J (2007) Will moist convection be stronger in a warmer climate? Geophys Res Lett 34:L16703. doi:10.1029/2007GL030525 Google Scholar
  16. Dotzek N, Price C (2009) Lightning characteristics in severe weather. In: Betz HD, Schumann U, Laroche P (eds) Lightning principles, instruments and applications. Springer, Berlin, pp 487–508Google Scholar
  17. Emersic C, Heinselman PL, MacGorman DR, Bruning EC (2011) Lightning activity in a hail-producing storm observed with phased-array radar. Mon Weather Rev 139:1809–1825CrossRefGoogle Scholar
  18. Fullekrug M, Constable S (2000) Global triangulation of intense lightning discharges. Geophys Res Lett 27(3):333–336CrossRefGoogle Scholar
  19. Futyan JM, Del Genio AD (2007) Relationships between lightning and properties of convective cloud clusters. Geophys Res Lett 34:L15705. doi:10.1029/2007GL030227 CrossRefGoogle Scholar
  20. Gatlin PN, Goodman SJ (2010) A total lightning trending algorithm to identify severe thunderstorms. J Atmos Ocean Tech 27:3–22CrossRefGoogle Scholar
  21. Goodman SJ et al (2010) The geostationary lightning mapper (GLM) for GOES-R: a new operational capability to improve storm forecasts and warnings. In: Proceedings of 6th annual symposium on future national operational environmental satellite systems-NPOESS and GOES-R, AMS Annual meetingGoogle Scholar
  22. Gorbatenko V, Dulzon A (2001) Variations of thunderstorms, KORUS ‘01 Proceedings. The fifth Russian-Korean International Symposium on Science and Technology, 2, 62–66Google Scholar
  23. Grenfell JL, Shindell DT, Grewe V (2003) Sensitivity studies of oxidative changes in the troposphere in 2100 using the GISS GCM. Atmos Chem Phys Discuss 3:1805–1842CrossRefGoogle Scholar
  24. Grewe V (2004) Technical note: a diagnostic for ozone contributions of various NOx emissions in multi-decadal chemistry-climate model simulations. Atmos Chem Phys 4:729–736CrossRefGoogle Scholar
  25. Gungle B, Krider EP (2006) Cloud-to-ground lightning and surface rainfall in warm-season florida thunderstorms. J Geophys Res 111:D19203 doi:10.1029/2005JD006802 CrossRefGoogle Scholar
  26. Hamid EY, Kawasaki Z, Mardiana R (2001) Impact of the 1997–98 El Nino on lightning activity over Indonesia. Geophys Res Lett 28:147–150CrossRefGoogle Scholar
  27. Huntrieser H et al (2002) Airborne measurements of NOx, tracer species, and small particles during the European lightning nitrogen oxides experiment. J Geophys Res 107:4113. doi:10.1029/2000JD000209 CrossRefGoogle Scholar
  28. Huntrieser H et al (2007) Lightning-produced NOx over Brazil during TROCCINOX: airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems. Amos Chem Phys 7:2987–3013Google Scholar
  29. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. World Meteorological Organization (WMO) and UN Environment Programme (UNEP)Google Scholar
  30. Johnson DB (1981) The role of giant and ultragiant aerosol particles in warm rain initiation. J Atmos Sci 39:448–460CrossRefGoogle Scholar
  31. Kane RJ (1991) Correlating lightning to severe local storms in the Northern United States. Weather Forecast 6(1):3–12CrossRefGoogle Scholar
  32. Kohn M, Galanti E, Price C, Lagouvardos K, Kotroni V (2010) Now-casting thunderstorms in the mediterranean region using lightning data. Atmos Res 100:489–502CrossRefGoogle Scholar
  33. Kuhlman KM, MacGorman DR, Biggerstaff MI, Krehbiel PR (2009) Lightning initiation in the anvils of two super cell storms. Geophys Res Lett 36:L07802. doi:10.1029/2008GL036650 CrossRefGoogle Scholar
  34. Labrador LJ, von Kuhlmann R, Lawrence MG (2004) The effects of lightning–produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC. Atmos Chem Phys Discuss 4:6239–6281CrossRefGoogle Scholar
  35. Lagouvardos K, Kotroni V, Betz HD, Schmidt K (2009) A comparison of lightning data provided by ZEUS and LINET networks over Western Europe. Nat Hazards Earth Syst Sci 9:1713–1717CrossRefGoogle Scholar
  36. Latham DJ, Schleiter JA (1989) Ignition probabilities of wildland fuels based on simulated lightning discharges, USDA FS Report INT-411, Ogden, UT, USAGoogle Scholar
  37. Liu D, Feng G, Wu S (2009) The characteristics of cloud-to-ground lightning activity in hailstorms over northern China. Atmos Res 91:459–465CrossRefGoogle Scholar
  38. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737CrossRefGoogle Scholar
  39. Lyons WA, Nelson TE, Williams ER, Cramer JA, Turner TR (1998) Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science 282:77–80CrossRefGoogle Scholar
  40. MacGorman DR, Burgess DW (1994) Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon Weather Rev 122:1671–1697CrossRefGoogle Scholar
  41. Markson R (2007) The global circuit intensity: its measurement and variation over the last 50 years, Bull Am Meteorol Soc 223–241 doi:10.1175/BAMS-88-2223
  42. Markson R, Price C (1999) Ionospheric potential as a proxy index for global temperature. Atmos Res 51:309–314CrossRefGoogle Scholar
  43. Martin RV, Sauvage B, Folkins I, Sioris CE, Boone C, Bernath P, Ziemke J (2007) Space-based constraints on the production of nitric oxide by lightning. J Geophys Res 112:D09309. doi:10.1029/2006JD007831 CrossRefGoogle Scholar
  44. Molinari J, Moore PK, Idone VP, Henderson RW, Saljoughy AB (1994) Cloud-to-ground lightning in hurricane Andrew. J Geophys Res 99:16665–16676CrossRefGoogle Scholar
  45. Montanya J, Soula S, Pineda N, van der Velde O, Clapers P, Sola G, Bech J, Romero D (2009) Study of the total lightning activity in a hailstorm. Atmos Res 91:430–437CrossRefGoogle Scholar
  46. Pawar SD, Lal DM, Murugavel P (2011) Lightning characteristics over central India during Indian summer monsoon. Atmos Res 106:44–49CrossRefGoogle Scholar
  47. Perez AH, Wicker LJ, Orville RE (1997) Characteristics of cloud-to-ground lightning associated with violent tornadoes, Wea. Forecasting 12:428–437CrossRefGoogle Scholar
  48. Petersen WA, Rutledge SA (1998) On the relationship between cloud-to-ground lightning and convective rainfall. J Geophys Res 103(D12):14025–14040 doi:10.1029/97JD02064 CrossRefGoogle Scholar
  49. Petersen WA, Christian HJ, Rutledge SA (2005) TRMM observations of the global relationship between ice water content and lightning. Geophys Res Lett 32:L14819. doi:10.1029/2005GL023236 CrossRefGoogle Scholar
  50. Piepgrass MV, Krider EP, Moore CB (1982) Lightning and surface rainfall during florida thunderstorms. J Geophys Res 87:11193–11201CrossRefGoogle Scholar
  51. Price C (1993) Global surface temperatures and the atmospheric electrical circuit. Geophys Res Lett 20:1363–1366CrossRefGoogle Scholar
  52. Price C (2000) Evidence for a link between global lightning activity and upper tropospheric water vapor. Nature 406:290–293CrossRefGoogle Scholar
  53. Price C (2006) Global thunderstorm activity. In: Fullekrug M et al (eds) Sprites, elves and intense lightning discharges. Springer, Amsterdam, pp 85–99CrossRefGoogle Scholar
  54. Price C, Asfur M (2006) Can lightning observations be used as an indicator of upper-tropospheric water vapor variability? Bull Am Meteor Soc 87:291–298CrossRefGoogle Scholar
  55. Price C, Federmesser B (2006) Lightning-rainfall relationships in mediterranean winter thunderstorms. Geophys Res Lett 33:L07813. doi:10.1029/2005GL024794 CrossRefGoogle Scholar
  56. Price CG, Murphy BP (2002) Lightning activity during the 1999 superior derecho. Geophys Res Lett 29(23):2142. doi:10.1029/2002GL015488 CrossRefGoogle Scholar
  57. Price C, Rind D (1994a) Modeling global lightning distributions in a general circulation model. Mon Weather Rev 122:1930–1939CrossRefGoogle Scholar
  58. Price C, Rind D (1994b) Possible implications of global climate change on global lightning distributions and frequencies. J Geophys Res 99:10823–10831CrossRefGoogle Scholar
  59. Price C, Penner J, Prather M (1997a) NOx from lightning, Part I: global distribution based on lightning physics. J Geophys Res 102:5929–5941CrossRefGoogle Scholar
  60. Price C, Prather M, Penner J (1997b) NOx from lightning, part II: using the global atmospheric electric circuit. J Geophys Res 102:5943–5951CrossRefGoogle Scholar
  61. Price C, Asfur M, Yair Y (2009) Maximum hurricane intensity preceded by increase in lightning frequency. Nat Geosci 2:329–332. doi:10.1038/NGEO477 CrossRefGoogle Scholar
  62. Price C et al (2011) Using lightning data to better understand and predict flash floods in the mediterranean. Sur Geophys 32:733–751CrossRefGoogle Scholar
  63. Reeve N, Toumi R (1999) Lightning activity as an indicator of climate change. Q J R Meteorol Soc 125:893–903CrossRefGoogle Scholar
  64. Rodger C et al (2006) Detection efficiency of the VLF world-wide lightning location network (WWLLN): initial case study. Ann Geophys 24:3197–3214CrossRefGoogle Scholar
  65. Rosenfeld D et al (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309. doi:10.1126/science.1160606 CrossRefGoogle Scholar
  66. Rudlosky SD, Fuelberg HE (2011) Seasonal, regional, and storm-scale variability of cloud-to-ground lightning characteristics in Florida. Mon Weather Rev 139:1826–1843CrossRefGoogle Scholar
  67. Samsury CE, Orville RE (1994) Cloud-to-ground lightning in tropical cyclones: a study of Hurricanes Hugo (1989) and Jerry (1989). Mon Weather Rev 122:1887–1896CrossRefGoogle Scholar
  68. Sato M, Fukunishi H (2005) New evidence for a link between lightning activity and tropical upper cloud coverage. Geophys Res Lett 32:L12807. doi:10.1029/2005GL022865 CrossRefGoogle Scholar
  69. Saunders CPR, Keith WD, Mitzeva RP (1991) The effect of liquid water on thunderstorm charging. J Geophys Res 96:11007–11017CrossRefGoogle Scholar
  70. Saunders CPR, Bax-Norman H, Emersic C, Avila EE, Castellano E (2006) Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Q J R Meteorol Soc 132:2653–2673CrossRefGoogle Scholar
  71. Schultz CJ, Petersen WA, Carey LD (2009) Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J Appl Met Clim 48:2543–2563CrossRefGoogle Scholar
  72. Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides source. Atmos Chem Phy 7:2623–2818CrossRefGoogle Scholar
  73. Sherwood S, Phillips VTJ, Wettlaufer JS (2006) Small ice crystals and the climatology of lightning. Geophys Res Lett 33:L05804. doi:10.1029/2005GL025242 CrossRefGoogle Scholar
  74. Shindell DT, Faluvegi G, Unger N, Aguilar E, Schmidt GA, Koch DM, Bauer SE, Miller RL (2006) Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos Chem Phys 6:4427–4459CrossRefGoogle Scholar
  75. Siingh D, Ramesh Kumar P, Kulkarni MN, Singh RP, Singh AK (2012) Lightning, convective rain and solar activity—Over the South/Southeast Asia. Atmos Res 120–121:99–111Google Scholar
  76. Skamarock WC et al (2003) Observational- and modeling-based budget of lightning-produced NOx in a continental thunderstorm. J Geophys Res 108:4305. doi:10.1029/2002JD002163 CrossRefGoogle Scholar
  77. Steiger SM, Orville RE, Huffines G (2002) Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J Geophys Res 107:4117. doi:10.1029/2001JD001142 CrossRefGoogle Scholar
  78. Stocks BJ et al (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 107:8149. doi:10.1029/2001JD000484 Google Scholar
  79. Stuhlman R et al (2005) Plans for EUMETSAT’s third generation Meteosat geostationary satellite programme. Adv Space Res 36:975–981CrossRefGoogle Scholar
  80. Takahashi T (1978) Riming electrification as a charge generation mechanism in thunderstorms. J Atmos Sci 55:1536–1548CrossRefGoogle Scholar
  81. Takahashi T (2006) Precipitation mechanisms in East Asian monsoon: videosonde study. J Geophys Res 111:D09202. doi:10.1029/2005JD006268 CrossRefGoogle Scholar
  82. Weber ME, Williams ER, Wolfson MM, Goodman SJ (1998) An assessment of the operational utility of a GOES lightning mapping sensor. Project Report NOAA-18, MIT Lincoln Laboratory, Lexington, MAGoogle Scholar
  83. Wild M (2012) Enlightening global dimming and brightening. Bull Am Met Soc 93:27–37CrossRefGoogle Scholar
  84. Williams ER (1992) The Schumann resonance: a global tropical thermometer. Science 256:1184–1187CrossRefGoogle Scholar
  85. Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature. Mon Wea Rev 122:1917–1929Google Scholar
  86. Williams ER (2001) The electrification of severe storms. In C. A. Dowswell III (ed) Severe Convective Storms. American Meteorological Society, AMS Monographs, Boston, pp 527–561Google Scholar
  87. Williams ER (2005) Lightning and climate: a review. Atmos Res 76:272–287CrossRefGoogle Scholar
  88. Williams ER (2009) The global electric circuit: a review. Atmos Rev 91:140–152CrossRefGoogle Scholar
  89. Williams ER, Weber ME, Orville RE (1989) The relationship between lightning type and convective state of thunderstorms. J Geophys Res 94:13213–13220CrossRefGoogle Scholar
  90. Williams ER, Zhang R, Rydock J (1991) Mixed-phase microphysics and cloud electrification. J Atmos Sci 48:2195–2203CrossRefGoogle Scholar
  91. Williams ER, Rutledge SA, Geotis SC, Renno N, Asmussen E, Rickenbach T (1992) A radar and electrical study of tropical hot tower. J Atmos Sci 49:1386–1395CrossRefGoogle Scholar
  92. Williams ER et al (1999) The behavior of total lightning activity in severe Florida thunderstorms. Atmos Res 51:245–265CrossRefGoogle Scholar
  93. Yoshida S, Morimoto T, Ushio T, Kawasaki Z (2007) ENSO and convective activities in Southeast Asia and western Pacific. Geophys Res Lett 34:L21806. doi:10.1029/2007GL030758 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Geophysical, Atmospheric and Planetary ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations