Skip to main content

Advertisement

Log in

Climatic Variability Over Time Scales Spanning Nine Orders of Magnitude: Connecting Milankovitch Cycles with Hurst–Kolmogorov Dynamics

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We overview studies of the natural variability of past climate, as seen from available proxy information, and its attribution to deterministic or stochastic controls. Furthermore, we characterize this variability over the widest possible range of scales that the available information allows, and we try to connect the deterministic Milankovitch cycles with the Hurst–Kolmogorov (HK) stochastic dynamics. To this aim, we analyse two instrumental series of global temperature and eight proxy series with varying lengths from 2 thousand to 500 million years. In our analysis, we use a simple tool, the climacogram, which is the logarithmic plot of standard deviation versus time scale, and its slope can be used to identify the presence of HK dynamics. By superimposing the climacograms of the different series, we obtain an impressive overview of the variability for time scales spanning almost nine orders of magnitude—from 1 month to 50 million years. An overall climacogram slope of −0.08 supports the presence of HK dynamics with Hurst coefficient of at least 0.92. The orbital forcing (Milankovitch cycles) is also evident in the combined climacogram at time scales between 10 and 100 thousand years. While orbital forcing favours predictability at the scales it acts, the overview of climate variability at all scales suggests a big picture of irregular change and uncertainty of Earth’s climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adhemar JA (1842) Revolutions de lamer. Privately published, Paris

    Google Scholar 

  • Agassiz L (1840) Etudes sur les glaciers. Privately published, Neuchatel

    Google Scholar 

  • Alley RB, Meese DA, Shuman CA et al (1993) Abrupt increase in Greenland snow accumulation and the end of the Younger Dryas event. Nature 362:527–529

    Article  Google Scholar 

  • Alvarez-Ramirez J, Alvarez J, Dagdug L, Rodriguez E, Carlos Echeverria J (2008) Long-term memory dynamics of continental and oceanic monthly temperatures in the recent 125 years. Phys A 387(14):3629–3640

    Article  Google Scholar 

  • Ashkenazy Y (2006) The role of phase locking in a simple model for glacial dynamics. Clim Dyn 27(4):421–431

    Article  Google Scholar 

  • Ashkenazy Y, Tziperman E (2004) Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing? Quat Sci Rev 23(18–19):1879–1890

    Article  Google Scholar 

  • Ashkenazy Y, Baker DR, Gildor H, Havlin S (2003) Nonlinearity and multifractality of climate change in the past 4,20,000 years. Geophys Res Lett. doi:10.1029/2003GL018099

    Google Scholar 

  • Baillie RT (1996) Long memory processes and fractional integration in econometrics. J Econom 73:5–59

    Article  Google Scholar 

  • Bakker AMR, Hurk BJJM (2011) Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe. Clim Dyn. doi:10.1007/s00382-011-1248-1

    Google Scholar 

  • Beckers F, Verheyden B, Couckuyt K, Aubert AE (2006) Fractal dimension in health and heart failure. Biomed Eng 51(4):194–197

    Article  Google Scholar 

  • Benzi R, Parisi G, Sutera A, Vulpiani A (1981) Stochastic resonance in climatic change. Tellus 34(1):10–16

    Google Scholar 

  • Beran J (1994) Statistics for long-memory processes. Chapman & Hall, New York

    Google Scholar 

  • Berger AL (1978) Long- term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:23622367

    Article  Google Scholar 

  • Berger A, Li XS, Loutre MF (1999) Modelling northern hemisphere ice volume over the last 3 Ma. Quat Sci Rev 18:1–11

    Article  Google Scholar 

  • Bernard F, Salvador R, Bullmore E, Suckling J, Wink AM (2006) Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus. Neurobiol Aging 27(10):1395–1404

    Article  Google Scholar 

  • Bloomfield P (1992) Trends in global temperature. Clim Change 21:1–16

    Article  Google Scholar 

  • Bolshakov VA (2008) How long will the ‘precession epoch’ last in terms of Pleistocene glacial cycles? Rus J Earth Sci 10:ES3004

    Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S et al (2001) Persistent solar influence on north Atlantic climate during the Holocene. Science 294(5549):2130–2136. doi:10.1126/science.1065680

    Article  Google Scholar 

  • Bordi I, Fraedrich K, Sutera A (2009) Observed drought and wetness trends in Europe: an update. Hydrol Earth Syst Sci 13(8):1519–1530

    Article  Google Scholar 

  • Bouette JC, Chassagneux JF, Sibai D, Terron R, Charpentier A (2006) Wind in Ireland: long memory or seasonal effect? Stoch Environ Res Ris Assess 20(3):141–151

    Article  Google Scholar 

  • Broecker SW, Denton GH, Edwards RL, Cheng H, Alley RB, Putnam AE (2010) Putting the Younger Dryas cold event into context. Quat Sci Rev 29(9–10):1078–1081

    Article  Google Scholar 

  • Brohan P, Kennedy J, Harris I, Tett SFB, Jones P (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res. doi:10.1029/2005JD006548

  • Bunde A, Eichner JF, Kantelhardt JW, Halvin S (2005) Long-term memory: a natural mechanism for the clustering of extreme events and anomalous residual times in climate records. Phys Rev Lett 94:048701

    Google Scholar 

  • Cook ER, Palmer JG, D’Arrigo RD (2002) Evidence for a ‘Medieval Warm Period’ in a 1,100 tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys Res Lett 29:1–4

    Article  Google Scholar 

  • Croll J (1864) On the physical cause of the change of climate during geological epochs. Philos Mag 28:121–137

    Google Scholar 

  • Crowell JC, Frakes LA (1970) Phanerozoic glaciation and the causes of ice ages. Am J Sci 268:193–224. doi:10.2475/ajs.268.3.193

    Article  Google Scholar 

  • Dansgaard W, Scientific Team GRIP (1993) Evidence for general instability in past climate from a 250-kyr ice-core record. Nature 364:218–220

    Article  Google Scholar 

  • Ditlevsen P (2009) Climate transitions on long timescales. Contem Phys 50(4):511–532

    Article  Google Scholar 

  • Drysdale RN, Hellstrom JC, Zanchetta G, Fallick AE, Sanchez Goni MF, Couchoud I, McDonald J et al (2009) Evidence for obliquity forcing of glacial termination II. Science 325(5947):1527–1531

    Article  Google Scholar 

  • Ehsanzadeh E, Adamowski K (2010) Trends in timing of low stream flows in Canada: impact of autocorrelation and long term persistence. Hydrol Process 24(8):970–980

    Article  Google Scholar 

  • Eichner JF, Koscielny-Bunde E, Bunde A, Havlin S, Schellnhuber H-J (2003) Power-law persistence and trends in the atmosphere: a detailed study of long temperature records. Phys Rev E 68:046133

    Article  Google Scholar 

  • Elkibbi M, Rial JA (2001) An outsider’s review of the astronomical theory of the climate: is the eccentricity-driven insolation the main driver of the ice ages? Earth-Sci Rev 56(1–4):161–177

    Article  Google Scholar 

  • Eltahir EAB (1996) El Niño and the natural variability in the flow of the Nile River. Water Res Resour 32(1):131–137

    Article  Google Scholar 

  • Evans TE (1996) The effects of changes in the world hydrological cycle on availability of water resources. In: Global Climate Change and Agricultural Production: Direct and Indirect Effects of Changing Hydrological Pedological and Plant Physiological Processes, Chapter 2. FAO and John Wiley, Chichester, West Sussex, UK

  • Fraedrich K, Blender R (2003) Scaling of atmosphere and Ocean temperature correlations in observations and climate models. Phys Rev Lett 90(1–4):108501

    Article  Google Scholar 

  • Fraedrich K, Blender R, Zhu X (2009) Continuum climate variability: long-term memory, extremes, and predictability. Int J Mod Phys B 23(28–29):5403–5416

    Article  Google Scholar 

  • Gama S, Ruskin H, Sharkasi A, Crane M, Matos JAO (2008) Time and scale hurst exponent analysis for financial markets. Phys A Stat Mech Appl 387(15):3910–3915

    Article  Google Scholar 

  • Gies DR, Helsel JW (2005) Ice age epochs and Sun’s path through the galaxy. Astrophys J 626:844–848

    Article  Google Scholar 

  • Gildor H, Tziperman E (2000) Sea ice as the glacial cycles climate switch: role of seasonal and orbital forcing. Paleoceanogrphy 15:605–615

    Article  Google Scholar 

  • Grove JM, Switsur R (1994) Glacial geological evidence for the Medieval warm period. Clim Change 26:143–169

    Article  Google Scholar 

  • Hahn T, Dresler T, Ehlis AC, Pyka M, Dieler AC, Saathoff C, et al. (2012) Randomness of resting-state brain oscillations encodes Gray’s personality trait. Neuroimage 16;59(2):1842–1845

    Google Scholar 

  • Haslett J, Raftery AE (1989) Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. J R Stat Soc 38(1):1–50

    Google Scholar 

  • Hass H, Kuhn G, Forwick M, Vorren T (2008) The Medieval Warm Period and the Little Ice Age in marine sediments from Maxwell Bay, King George Island, West Antarctic Peninsula. The 33rd International Geological Congress, Oslo, Norway, August 6–14

  • Hasselmann K (1976) Stochastic climate models. 1. theory. Tellus 28(6):473–485

    Article  Google Scholar 

  • Hurst HE (1951) Long term storage capacities of reservoirs. Trans Am Soc Civ Eng 116:776–808

    Google Scholar 

  • Huybers P (2006) Early pleistocene glacial cycles and the integrated summer insolation forcing. Science 313(5786):508–511

    Article  Google Scholar 

  • Huybers P (2007) Glacial variability over the last two million years: an extended depth derived age model, continuous obliquity pacing, and the Pleistocene progression. Quat Sci Rev 26(1–2):37–55

    Article  Google Scholar 

  • Huybers P (2009) Antarctica’s Orbital Beat. Science 325(5944):1085–1086

    Article  Google Scholar 

  • Huybers P (2011) Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature 480:229–232

    Google Scholar 

  • Huybers P, Tziperman E (2008) Integrated summer insolation forcing and 40,000 year glacial cycles: the perspective from an icesheet/energy-balance model. Paleoceanography. doi:10.1029/2007PA001463

    Google Scholar 

  • Imbrie J (1982) Astronomical theory of the Pleistocene ice ages: a brief historical review. Icarus 50(2–3):408–422

    Article  Google Scholar 

  • Imbrie J, Berger A, Kutzbach J, Pisias NG, Raymo ME, Shackleton NJ et al (1993) On the structure and origin of major glaciation cycles 2. The 100,000 year cycle. Paleoceangraphy 8:699–735

    Article  Google Scholar 

  • Jiang T, Zhang Q, Blender R, Fraedrich K (2005) Yangtze Delta floods and droughts of the last millennium: abrupt changes and long term memory. Theor Appl Climatol 82(3–4):131–141

    Article  Google Scholar 

  • Jouzel, J, EPICA Scientific Team (2007), EPICA Dome C Ice Core 800KYr Deuterium Data and Temperature Estimates, IGBP PAGES/World Data Center for Paleoclimatology. 2007-091NOAA/NCDC Paleoclimatology Program, Boulder Co

  • Karagiannis T, Molle M, Faloutsos M (2004) Long-range dependence: ten years of internet traffic modeling. IEEE Internet Comp 8(5):57–64

    Article  Google Scholar 

  • Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA et al (2007) Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448(7156):912–916

    Article  Google Scholar 

  • Khaliq MN, Gachon P (2010) Pacific Decadal oscillation climate variability and temporal pattern of winter flows in Northwestern North America. J Hydrometeor 11(4):917–933

    Article  Google Scholar 

  • Kirkby J (2007) Cosmic rays and climate. Surv Geoph 28:333–375

    Article  Google Scholar 

  • Klemes V (1974) The hurst phenomenon: a puzzle? Water Resour Res 10(4):675–688

    Article  Google Scholar 

  • Kolmogorov AN (1940) Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum. Dokl Akad Nauk URSS 26:115–118

    Google Scholar 

  • Kominz MA, Pisias NG (1979) Pleistocene climate: deterministic or stochastic? Science 204:171–173

    Article  Google Scholar 

  • Koscielny-Bunde E, Bunde A, Havlin S (1998) Roman HE. Goldreich Y, Schellnhuber HJ

    Google Scholar 

  • Koutsoyiannis D (2002) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrol Sci J 47(4):573–595

    Article  Google Scholar 

  • Koutsoyiannis D (2003a) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48(1):3–24

    Article  Google Scholar 

  • Koutsoyiannis D (2003b) Hydrological statistics for engineering design in a varying climate, EGS-AGU-EUG Joint Assembly, Geophysical Research Abstracts, Vol. 5, Nice, April 2003, European Geophysical Society, American Geophysical Union (http://www.itia.ntua.gr/g/docinfo/565/)

  • Koutsoyiannis D (2010) A random walk on water. Hydrol Earth Syst Sci 14:585–601

    Article  Google Scholar 

  • Koutsoyiannis D (2011a) Hurst-Kolmogorov dynamics as a result of extremal entropy production. Phys A 390(8):1424–1432

    Article  Google Scholar 

  • Koutsoyiannis D (2011b) Hurst-Kolmogorov dynamics and uncertainty. J Am Water Resour Assoc 47(3):481–495

    Article  Google Scholar 

  • Koutsoyiannis D, Montanari A (2007) Statistical analysis of hydroclimatic time series: Koutsoyiannis D, Cohn TA (2008) Hurst-Kolmogorov pragmaticity and climate. Climatic and hydrological perspectives on long-term changes, European Geosciences Union General Assembly. (Available in http://itia.ntua.gr/getfile/849/2/documents/2008EGU_HurstClimatePr.pdf)

  • Koutsoyiannis D, Cohn TA (2008) The Hurst phenomenon and climate (solicited). European Geosciences Union General Assembly 2008, Geophys Res Abstr, Vol. 10, Vienna, 11804, European Geosciences Union. (http://itia.ntua.gr/en/docinfo/849/)

  • Koutsoyiannis D, Montanari A, Lins HF, Cohn TA (2009) Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research—DISCUSSION of “The implications of projected climate change for freshwater resources and their management”. Hydrol Sci J 54(2):394–405

    Article  Google Scholar 

  • Lai MC, Lombardo MV, Chakrabarti B, Sadek SA, Pasco G, Wheelwright SJ, Bullmore ET, Baron-Cohen S, MRC AIMS Consortium, Suckling J (2010) A Shift to Randomness of Brain Oscillations in People with Autism. Biol Psyc. doi:10.1016/j.biopsych.2010.06.027

  • Lasdon LS, Smith S (1992) Solving sparse nonlinear programs using GRG. ORSA J Comput 4(1):2–15

    Article  Google Scholar 

  • Lasdon LS, Waren A, Jain A, Ratner M (1978) Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans Math Soft 4(1):34–50

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long term numerical solution for the insolation quantities of the Earth. Astron Astrophys. doi:10.1051/0004-6361:20041335

    Google Scholar 

  • Leland WE, Taqqu MS, Willingerand W, Wilson DV (1994) On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans Netw 2(1):1–15

    Article  Google Scholar 

  • Leland WE, Taqqu MS, Willingerand W, Wilson DV (1995) On the self-similar nature of Ethernet traffic. ACM SIGCOMM Comput Commun Rev 25(1):202–213

    Article  Google Scholar 

  • Lennartz S, Bunde A (2011) Distribution of natural trends in long-term correlated records: a scaling approach. Phys Rev E 84(2):021129

    Article  Google Scholar 

  • Lin LY, Lin JL, Du CC, Lai LP, Tseng YZ, Huang SKS (2001) Reversal of deteriorated fractal behavior of heart rate variability by beta-blocker therapy in patients with advanced congestive heart failure. J Cardiovasc Electrophysiol 12(1):26–32

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanogrphy. doi:10.1029/2004PA001071

    Google Scholar 

  • Liu H-S, Chao BF (1998) Wavelet spectral analysis of the Earth’s orbital variations and Paleoclimatic cycles. J Atmos Sci 55(2):227–236

    Article  Google Scholar 

  • Liu Z, Cleveland L, Herbert T (2007) Early onset and origin of 100-kyr cycles in Pleistocene tropical SST records. Earth Planet Sci Lett 265:703–715

    Article  Google Scholar 

  • Lo A (1991) Long term memory in stock market prices. Econometrica 59:1279–1313

    Article  Google Scholar 

  • Lohle C (2007) A 2000-year global temperature reconstruction based on non-treering proxies. Energ Environ 18(7–8):1049–1058

    Article  Google Scholar 

  • Long M, Jinghlu W, Hong Y, Haiao Z, Abuduwaili J (2011) The medieval warm period and the little Ice age from a sediment record of Lake Ebinur, Northwest China. Boreas 40:518–524

    Article  Google Scholar 

  • Lourens LJ, Becker J, Bintanja R, Hilgen FJ, Tuenter E, van de Wal RS, Ziegler M (2010) Linear and non-linear response of late Neogene glacial cycles to obliquity forcing and implications for the Milankovitch theory. Quat Sci Rev 29(1–2):352–365

    Article  Google Scholar 

  • Mandelbrot BB, Wallis JR (1968) Noah, Joseph, and operational hydrology. Water Resour Res 4(5):909–918

    Article  Google Scholar 

  • Mangerud J, Gulliksen S, Larsen E (2010) 14C-dated fluctuations of the western flank of the Scandinavian Ice Sheet 45–25 kyr BP compared with Bølling–Younger Dryas fluctuations and Dansgaard–Oeschger events in Greenland. Boreas 39:328–342

    Article  Google Scholar 

  • Maurizio S, Molnar P, Burlando P (2011) Seasonal long-term persistence in radar precipitation in complex terrain. Water Resour Res. doi:10.1029/2010WR010170

    Google Scholar 

  • Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E (2005) Fractional Gaussian noise, functional MRI and Alzheimer’s disease. NeuroImage 25:141–158

    Article  Google Scholar 

  • Mesa O and Poveda G (1993) The Hurst Effect: The scale of fluctuation approach. Water Resour Res 29(12):3995:4002

    Google Scholar 

  • Milankovitch M (1941) Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem. Royal Serbian Academy Special Publication,133, Belgrade [English version published by the Israel Program for Scientific Translations, Jerusalem, 1969.]

  • Moberg A, Sonechkin D, Holmgren K, Datsenko N, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433(7026):613–617

    Article  Google Scholar 

  • Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hvdrologic time series. Wat Resour Res 33(5):1035–1044

    Article  Google Scholar 

  • Mukhopadhyay B, Acharyya A, Dasgupta S (2008) Statistical analysis on yearly seismic moment release data to demarcate the source zone for an impending earthquake in the Himalaya. Acta Geophys 57(2):387–399

    Article  Google Scholar 

  • Muller RA, MacDonald GJ (2000) Ice ages and astronomical causes. Springer Praxis, Chichester

    Google Scholar 

  • Naish T, Powell R, Levy R, Wilson G et al (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458(7236):322–328

    Article  Google Scholar 

  • Navarro X, Beuchee A, Poree F, Carrault G (2011) Performance analysis of Hurst’s exponent estimators in higly immature breathing patterns of preterm infants. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), doi: 10.1109/ICASSP.2011.5946500

  • Norouzzadeh P, Dullaert W, Rahmani B (2007) Anti-correlation and multifractal features of Spain electricity spot market. Phys A Stat Mech Appl 380:333–342

    Article  Google Scholar 

  • Padmanabhan G, Shrestha SL, Kavasseri RG (2008) Persistence in North American Palmer drought severity index data reconstructed from tree ring history. Poster presentation in 13th World Water Congress, Montpellier, France

  • Paillard D (1998) The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391(6665):378–381

    Article  Google Scholar 

  • Paillard D (2010) Climate and the orbital parameters of the Earth. Comptes Rendus Geosci 342(4–5):273–285

    Article  Google Scholar 

  • Pelletier J (1997) Analysis and modeling of the natural variability of climate. J Clim 10(6):1331–1342

    Article  Google Scholar 

  • Pelletier J (2003) Coherence resonance and ice ages. J Geophys Res. doi:10.1029/2002JD003120

    Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685–1689

    Article  Google Scholar 

  • Pettersen EL, Larsen SE (1978) Statistical study of a composite isotopic, paleotemperature series from the last 700,000 years. Tellus 30:193–200

    Article  Google Scholar 

  • Pisias NG, Moore TC (1981) The evolution of Pleistocene climate: a time series approach. Earth Planet Sci Lett 52:450–458

    Article  Google Scholar 

  • Pollack HN, Smerdon JE (2004) Borehole climate reconstructions: spatial structure and hemispheric averages. J Geophys Res 109. doi:10.1029/2003JD004163

  • Radziejewski M, Kundzewicz ZW (1997) Fractal analysis of flow of the river Warta. J Hydrol 200:280–294

    Article  Google Scholar 

  • Rahmstorf S et al (2004) Cosmic rays, carbon dioxide, and climate. Eos 85(4):38–40

    Article  Google Scholar 

  • Ramachandra Rao A, Azli M, Pae LJ (2011) Identification of trends in Malaysian monthly runoff under the scaling hypothesis. Hydrol Sci J 56(6):917–929

    Article  Google Scholar 

  • Rasouli G, Rasouli M, Lenz FA, Verhagen L, Borrett DS, Kwan HC (2006) Fractal characteristics of human Parkinsonian neuronal spike trains. Neurosci 139(3):1153–1158

    Article  Google Scholar 

  • Rial JA (1999) Pacemaking the Ice Ages by frequency Modulation of Earth’s orbital eccentricity. Science 285(5427):564–568

    Article  Google Scholar 

  • Richards GR (1994) Orbital forcing and endogenous interactions: non-linearity, persistence and convergence in late Pleistocene climate. Quat Sci Rev 13(8):709–725

    Article  Google Scholar 

  • Riemann-Campe K, Blender R, Fraedrich K (2011) Global memory analysis in observed and simulated CAPE and CIN. Int J Climatol 31(8):1099–1107

    Article  Google Scholar 

  • Roe G (2006) In defense of Milankovitch. Geophys Res Lett. doi:10.1029/2006GL027817

    Google Scholar 

  • Royer DL et al (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14(3):4–10

    Article  Google Scholar 

  • Rybski D, Bunde A, Havlin S, von Storch H (2006) Long-term persistence in climate and the detection problem. Geophys Res Lett. doi:10.1029/2005GL025591

    Google Scholar 

  • Sakalauskiene G (2003) The hurst phenomenon in hydrology. Environ Res Eng Manag 3(25):16–20

    Google Scholar 

  • Saltzman B (1982) Stochastically-driven climatic fluctuations in the sea-ice, ocean temperature, CO2, feedback system. Tellus 34:97–112

    Article  Google Scholar 

  • Serinaldi F (2010) Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series. Phys A Stat Mech Appl 389(14):2770–2781

    Article  Google Scholar 

  • Serletis A, Rosenberg AA (2007) The Hurst exponent in energy futures prices. Phys A 380:325–332

    Article  Google Scholar 

  • Shackleton NJ, Imbrie J (1990) The δ18O spectrum of oceanic deep water over a five-decade band. Clim Change 16(2):217–230. doi:10.1007/BF00134658

    Article  Google Scholar 

  • Shaviv NJ, Veizer J (2003) Celestial driver of Phanerozoic climate? GSA Today, Geol Soc Am 4–10

  • Sheng H, Chen YQ, Qiu T (2011) Heavy-tailed distribution and local long memory in time series of molecular motion on the cell membrane. Fluc Noise Lett 10(01):93

    Article  Google Scholar 

  • Stanley HE, Afanasyev V, Amara LAN, Buldyrev SV, Goldberger AL, Havlin S, Leschhorn H, Maass P, Mantegna RN, Peng CK, Prince PA, Salinger MA, Stanley MHR, Viswanathan GM (1996) Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Phys A Stat Mech Appl 224(1–2):302–321

    Article  Google Scholar 

  • Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic Oscillation a random walk? Int J Climatol 20:1–18

    Google Scholar 

  • Steig EJ (1999) Mid-Holocene climate change. Science 286:1485–1487

    Google Scholar 

  • Sutera A (1981) On stochastic perturbation and longterm-climate behaviour. Quart J Roy Meteorol SOC 225–234(107):137–152

    Google Scholar 

  • Suwa M, Bender ML (2008) Chronology of the Vostok ice core constrained by O2/N2 ratios of occluded air, and its implication for the Vostok climate records. Quat Sci Rev 27:11–12

    Article  Google Scholar 

  • Telesca L, Cuomo V, Lapenna V, Vallianatos F (2000) Self-similarity properties of seismicity in the Southern Aegean area. Tectonophys 321(1):179–188

    Article  Google Scholar 

  • Tziperman E, Raymo M, Huybers P, Wunsch C (2006) Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanogrphy. doi:10.1029/2005PA001241

    Google Scholar 

  • Varotsos C, Kirk-Davidoff D (2006) Long-memory processes in ozone and temperature variations at the region 60S–60 N. Atmos Chem Phys 6(12):4093–4100

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H (2000) 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Wallmann K (2004) Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine d18O record. Geochemistry Geophysics Geosystems 5. doi:10.1029/2003GC000683

  • Wang G, Jiang T, Chen G (2006) Structure and long-term memory of discharge series in Yangtze River. Acta Geogr Sinica 61(1):47–56

    Google Scholar 

  • Winograd IJ, Coplen TB, Landwehr JM, Riggs AC, Ludwig KR, Szabo BJ, Kolesar PT et al (1992) Continuous 500,000-Year climate record from Vein Calcite in Devils Hole Nevada. Science 258(5080):255–260

    Article  Google Scholar 

  • Wunsch C (2004) Quantitative estimate of the Milankovitch-forced contribution to observed quaternary climate change. Quat Sci Rev 23:1001–1012

    Article  Google Scholar 

  • Indication of a universal persistence law governing atmospheric variability. Phys Rev Lett 81:729–732

  • Yano J, Blender R, Zhang C, Fraedrich K (2004) 1/f—noise and pulse-like events in the tropical atmospheric surface variabilities. Q J R Meterol Soc 130:1697–1721

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Zbigniew W. Kundzewicz for his encouraging and detailed comments on an earlier short version of this manuscript. We also thank the Editor Dr. Michael Rycroft for his encouragement to create this expanded version of the paper, an anonymous reviewer for his positive reception of our work, and the eponymous reviewer Dr. B. De Saedeleer for his detailed and constructive review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Markonis.

Appendices

Appendix 1: Proof of Equation (2)

We assume a fully deterministic, strictly periodic process composed of a single harmonic with period T, described by,

$$ x\left( t \right) \, = \sqrt 2 { \cos }( 2\pi t/T + b) $$
(6)

It can be seen that during the time interval [t 1, t 2], where \( 2 { }\pi t_{ 1, 2} /T + b = \pm { \arccos }(x/\sqrt 2 ) \), the process \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} \left( t \right) \) takes on values greater than or equal to x, provided that \( - \sqrt 2 \le x \le \sqrt 2 \) (see Fig. 12). The length of the interval [t 1, t 2] is (T/π) arccos\( \left( {x/\sqrt 2 } \right) \). Consequently, if we treat the process x(t) stochastically, it follows that its marginal distribution function is

$$ {F}\left( {x} \right) \, = \, 1 - \arccos ({\text{x}}/\sqrt 2 )/\pi , \quad- \sqrt 2 \le {\text{x}} \le \sqrt 2 $$
(7)
Fig. 12
figure 12

Sketch to illustrate the proof of (7). For the ease of the illustration, it was assumed b = π, but this does not affect the result nor the length of the time interval, which does not depend on b

Taking its derivative with respect to x, we find its marginal density function as

$$ {f}\left( x \right) \, = \, 1/(\pi \sqrt {2 - x^{2} } ),\; \quad- \sqrt 2 \le x \le \sqrt 2 $$
(8)

By application of definitions of mean and variance, we readily obtain that the mean of the process is 0, and its variance is 1. Likewise, the process autocovariance is:

$$ R\left( \tau \right) = \text{cov} [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} \left( t \right), \;\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} \left( {t + \tau } \right)\left] { = E} \right[\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} \left( t \right)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} \left( {t + \tau } \right)] $$
(9)

where τ is lag time. If x(t) = x then \( t = \left( {T/ 2\pi } \right) \, \left[ { - b + { \arccos }\left( {x/\sqrt 2 } \right)} \right] \) (one of the infinitely many possibilities), so that \( t + \tau = \left( {T/ 2\pi } \right) \, \left[ { - b + { \arccos }\left( {{x \mathord{\left/ {\vphantom {x {\sqrt 2 }}} \right. \kern-0pt} {\sqrt 2 }}} \right)} \right] + \tau \) and \( x\left( {t + \tau } \right) = \sqrt 2 { \cos }\left[ { 2 { }\pi \tau /T + { \arccos }(x/\sqrt {2)} } \right] \). Consequently,

$$ R\left( \tau \right) \, = \sqrt 2 \int\limits_{ - \sqrt 2 }^{\sqrt 2 } {x{ \cos }[ 2\pi \tau /T + { \arccos }(x/\sqrt 2 )]f\left( x \right){\text{ d}}x} $$
(10)

which after algebraic manipulations becomes

$$ R\left( \tau \right) \, = { \cos }\left( { 2\pi \tau /T} \right) $$
(11)

Interestingly, this does not depend on t, thus behaving like a stationary process.

The climacogram value at scale k can be calculated from the variance \( {\text{Var }}\left[ {\underline{x}_{i}^{(k)} } \right] \), that is,

$$ {\text{Var}}\left[ {\underline{x}_{i}^{(k)} } \right] = E\left[ {\left\{ {\underline{x}_{i}^{(k)} } \right\}^{2} } \right] = \frac{1}{{k^{2} }}\int\limits_{0}^{k} {\int\limits_{0}^{k} {E\left[ {x\left( t \right)x\left( s \right)} \right]} } dtds $$
(12)

or

$$ {\text{Var}}\left[ {\underline{x}_{i}^{(k)} } \right] = \frac{1}{{k^{2} }}\int\limits_{0}^{k} {\int\limits_{0}^{k} {R\left( {t-s} \right){\text{ d}}t{\text{d}}s} = \frac{1}{{k^{2} }}\int\limits_{0}^{k} {\int\limits_{0}^{k} {\cos [2\pi \left( {t-s} \right) / {\text{T] d}}t{\text{d}}s} } } $$
(13)

which after algebraic manipulations becomes

$$ {\text{Var}}\left[ {\underline{x}_{i}^{(k)} } \right] = [T/(\pi k)]^{ 2} { \sin }^{ 2} (\pi k/T) $$
(14)

By taking the square root of \( {\text {Var}}\left[ {\underline{x}_{i}^{(k)} } \right] \), which by definition is the standard deviation σ (k), this gives Eq. (2).

From (2), we readily infer, that for increasing k, there appears a series of maxima at values k = αT/2, with α any odd integer, so that |sin(π k/T)| = 1. This series is described by σ (k) = T/(π k), which is an upper envelope curve of the climacogram. Obviously, across this envelope, θ = d(ln σ (k))/d(ln k) = −1. However, the local slope of the climacogram is not constant but varies. We can easily determine it from \( \theta : = {\text{d}}({ \ln }\sigma^{\left( k \right)} )/{\text{d}}({ \ln }k) = (k/ 2){\text{d}}\{ { \ln }[(\sigma^{\left( k \right)} )^{ 2} ]\} /{\text{d}}k = (k/ 2){\text{d}}({ \ln }\{ [T/(\pi k)]^{ 2} { \sin }^{ 2} (\pi k/T)\} /{\text{d}}k \) which after algebraic manipulations becomes

$$\theta = \, (\pi k/T){ \cot }(\pi k/T)- 1 $$
(15)

It can be seen that θ tends to ±∞ whenever k/T is integer.

Appendix 2: Assessment of the interpolation effect on the climacogram

In order to examine possible effects of the linear interpolation to the data, we compared it with the closest-point estimation. In the latter, we estimate the unknown value at a specific time using the value of the given time series at the point closest to this specific time (without doing any calculation). As shown in Fig. 13, where the climacograms estimated by both interpolation methods for the GRIP time series are depicted, the results of the two methods are virtually indistinguishable, which means that in the case examined the climacogram is practically indifferent to the type of interpolation.

Fig. 13
figure 13

Climacogram for the GRIP data set calculated from the time series constructed by linear interpolation in comparison with that of the time series constructed by closest-point estimation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markonis, Y., Koutsoyiannis, D. Climatic Variability Over Time Scales Spanning Nine Orders of Magnitude: Connecting Milankovitch Cycles with Hurst–Kolmogorov Dynamics. Surv Geophys 34, 181–207 (2013). https://doi.org/10.1007/s10712-012-9208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-012-9208-9

Keywords

Navigation