Skip to main content
Log in

Flux-Gate Magnetometers Design Peculiarities

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The most widespread instrument used today for the measurement of quasi-stationary and slowly fluctuating vector magnetic fields is a flux-gate magnetometer (FGM). The most important parameter characterizing the magnetometer quality is its magnetic noise—its threshold sensitivity or its own noise level (NL). Based on the results of experimental research, we may state that the FGM NL mainly depends on the quality of the magnetic material used for FGM sensor core. The “solid liquid” model explaining the nature of magnetic noise is proposed and substantiated. It is demonstrated that special attention has to be paid to the annealing of the core. A new effect—termed gamma-magnetic normalization—is discovered and discussed. It is shown that the magnetometer NL depends not only on the core length and volume but also on the excitation mode of the core. Besides, the ways to improve other factors, such as power consumption and thermal drift which must be taken into account in order to create a FGM with the highest possible performance, are discussed. Some examples are given of the parameters of present advanced FGMs for geophysical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acuna MM (2002) Space based magnetometers. Rev Sci Instr 73(11):3717–3736

    Article  Google Scholar 

  • Amalou F, Gijs MAM (2001) Giant magnetoimpedance of chemically thinned and polished magnetic amorphous ribbons. J Appl Phys 90:3466–3470

    Google Scholar 

  • Appino C, Beatrice C, Ferrara E, Fiorillo F (2004) Magnetization process and magnetic losses in field-annealed amorphous and nanocrystalline ribbons. J Optoelectron Adv Mater 6(2):511–521

    Google Scholar 

  • Aschenbrenner H, Goubau G (1936) Eine Anordnung zur Registrierung rascher magnetischer Stoerungen. Hochfrequenrtecnik und Elektroakustik XLV11(6):177–181

  • Auster HU, Lichopoj A, Rustenbach J, Bitterlich H, Fornacon KH, Hillenmaier O, Krause R, Schenk HJ, Auster V (1995) Concept and first results of a digital fluxgate magnetometer. Meas Sci Technol 6:477–481

    Article  Google Scholar 

  • Bartington Instruments. http://www.bartington.com. Accessed 19 April 2011

  • Berkman R (1999) Theoretic and experimental investigation of flux-gate magnetometer noise. In: Proceedings of IMEKO-XV World Congress. Osaka, Japan, pp 149–156

  • Berkman RY, Afanasenko MP (1976) The magnetic modulators own noise decreasing at the core operation near Curie temperature. Inf Extr Process 48:83–87 (in Russian)

    Google Scholar 

  • Berkman RY, Bondaruk BL, Fedotov VM (1972) Ferroresonance excitation mode of the magnetic modulators and flux-gates. Geophys Instr 50:20–28 (in Russian)

    Google Scholar 

  • Bertotti G (1988) General properties of power losses in soft ferromagnetic material. IEEE Trans Magn 24(1):621–630

    Article  Google Scholar 

  • Bertotti G (1998) Hysteresis in magnetism. Academic Press, San Diego, CA

    Google Scholar 

  • Bertotti G, Fiorillo F, Sassi MP (1981) Barkhausen noise and domain structure dynamics in Si-Fe at different points of the magnetization curve. J Magn Magn Mater 23:136–148

    Article  Google Scholar 

  • Billingsley Aerospace & Defense (2008) http://www.magnetometer.com/specs/TFM100%20G2%20Spec%20Sheet%20February%202008.pdf. Accessed 15 April 2011

  • Bittel H (1969) Noise of ferromagnetic materials. Trans Magn MAG-5 (3): 359–364

    Google Scholar 

  • Bohn F, Gündel A, Landgraf FJG, Severino AM, Sommer RL (2007) Magnetostriction, Barkhausen noise and magnetization processes in E110 grade non-oriented electrical steels. J Magn Magn Mater 317:20–28

    Article  Google Scholar 

  • Delevoye E, Audoin M, Beranger M, Cuchet R, Hida R, Jager T (2008) Microfluxgate sensors for high frequency and low power applications. Sens Actuators A 145–146:271–277

    Google Scholar 

  • DTU Space (2009) http://www.space.dtu.dk/English/Research/Instruments_Systems_Methods/3-axis_Fluxgate_Magnetometer_Model_FGM-FGE.aspx. Accessed 15 April 2011

  • Ferrara E, Infortuna A, Magni A, Pasquale M (1997) Structural and magnetic analysis of amorphous Fe64Co21B15 ribbons. IEEE Trans Magn 33(5):3781–3783

    Article  Google Scholar 

  • Flohrer S, Schafer R, McCord J, Roth S, Schultz L, Fiorillo F, Gu¨nther W, Herzer G (2006) Dynamic magnetisation process of nanocrystalline tape wound cores with transverse field-induced anisotropy. Acta Mater 54:4693–4698

    Article  Google Scholar 

  • Forslund A, Belyayev S, Ivchenko N, Olsson G, Edberg T, Marusenkov A (2008) Miniaturized digital fluxgate magnetometer for small spacecraft applications. Meas Sci Technol 19:015202–015211

    Article  Google Scholar 

  • Ioan C, Tibu M, Chiriac H (2004) Magnetic noise measurement for Vacquier type fluxgate sensor with double excitation. J Optoelectron Adv Mater 6(2):705–708

    Google Scholar 

  • Koch RH, Rozen JR (2001) Low-noise flux-gate magnetic-field sensors using ring- and rod-core geometries. Appl Phys Lett 73(13):1897–1899

    Article  Google Scholar 

  • Koch RH, Deak JG, Grinstein G (1999) Fundamental limits to magnetic field sensitivity of flux-gate magnetic-field sensors. Appl Phys Lett 75(24):3862–3864

    Article  Google Scholar 

  • Kominis IK, Kornack NW, Allred JC, Romalis MV (2003) A subfemtotesla multichannel atomic magnetometer. Lett Nat 422:596–599

    Article  Google Scholar 

  • Korepanov V, Berkman R (1999) Comparison of magnetometers efficiency for ELF band. In: Proceedings of the 2nd international conference of measurement, Smolenice, Slovac Republic, pp 195–198

  • Korepanov V, Berkman R, Bondaruk B (1997) Advanced flux-gate magnetometer with low drift. XIV IMEKO Word Congress. New measurements—challenges and visions, Tampere, Finland, IVA(4) pp 121–126

  • Korepanov V, Marusenkov A, Rasson J (2008) A candidate for a new INTERMAGNET standard 1-second variometer: key features and test results. XIII IAGA Geomagnetic Observatory Workshop, Co., USA, p 26

    Google Scholar 

  • Kubik J, Janosek M, Ripka P (2007) Low-power fluxgate sensor signal processing using gated differential integrator. Sens Lett 5:149–152

    Article  Google Scholar 

  • LC ISR (2009) http://www.isr.lviv.ua/lemi024.htm. Accessed 5 May 2011

  • Liu J, Sellmyer D J, Shindo D (ed) (2006) Nanostructural effects. In: Handbook of advanced magnetic materials. Volume 1. Springer

  • Magnes W, Oberst M, Valavanoglou A, Hauer H, Hagen C, Jernej I, Neubauer H, Baumjohann W, Pierce D, Means J, Falkner P (2008) Highly integrated front-end electronics for spaceborne fluxgate sensors. Meas Sci Technol 19:115801–115813

    Article  Google Scholar 

  • Magni A, Fiorino F, Caprile A, Ferrara E, Martino L (2011) Fluxmetrix-magnetooptical approach to broadband energy losses in amorphous ribbons J. Appl. Phys. 109:07A322

    Google Scholar 

  • Magson GmbH Ringcores (2008) http://www.magson.de/pdf/ringcores.pdf. Accessed 19 April 2008

  • Marusenkov AA (2003) The possibilties of increasing efficiency of flux-gate magnetometers. Ukrainian Metrol J 1:42–44 (in Russian)

    Google Scholar 

  • Marusenkov A (2006) Operation peculiarities of the fluxgate sensor in non-uniform compensation magnetic field. In: Proceedings of the IXth International Conference “Modern problems of radio engineering, telecommunications and computer science. TCSET’2006, pp 327–329

  • Mayer S Instruments. http://www.stefan-mayer.com. Accessed 15 April 2011

  • Moldovanu A, Diaconu ED, Moldovanu E, Macovei C, Moldovanu BO, Bayreuther G (2000) The applicability of VITROVAC6025X ribbons for parallel-gated configuration sensors. Sens Actuators 81:193–196

    Article  Google Scholar 

  • Musmann G, Afanassiev YV (2010) Fluxgate magnetometers for space research. Books on Demand GmbH, Norderstedt: p 292

  • Mykolaitis H (1994) Cyclic magnetization noise of nonlinear ferromagnetic cores. J Magn Magn Mater 133:520–524

    Article  Google Scholar 

  • Narod B (2006) Magnetic permeability and domain structure, and their influence on fluxgate magnetometer noise. In: Proceedings of EGU General Assembly 2006, Vienna, Austria

  • Nielsen OV, Petersen JR, Fernandez A, Hernando B, Spisak P, Primdahl F, Moser N (1991) Analysis of a fluxgate magnetometer based on metallic glass sensors. Meas Sci Technol 2:435–440

    Article  Google Scholar 

  • Paperno E (2004) Suppression of magnetic noise in the fundamental-mode orthogonal fluxgate. Sens Actuators A 116:405–409

    Article  Google Scholar 

  • Paperno E, Weiss E, Plotkin A (2008) A tube-core orthogonal fluxgate operated in fundamental mode. Trans Magn 44:4018–4021

    Article  Google Scholar 

  • Primdahl F, Jensen AP (1982) Compact spherical coil for flux-gate magnetometer vector feedback. J Phys E Sci Instrum 15:221–226

    Article  Google Scholar 

  • Ripka P (ed.) (2001) Magnetic Sensors and Magnetometers. Artech House

  • Sasada I, Kashima H (2009) Simple design for orthogonal fluxgate magnetometer in fundamental mode. J Magn Soc Jpn 33(2):43–45

    Article  Google Scholar 

  • Shirae K (1984) Noise in amorphous magnetic materials. IEEE Trans on Magn 20(5):1299–1301

    Article  Google Scholar 

  • Stern DP (2002) A millennium of geomagnetism. Rev Geophys 40(3):B1–B30

    Article  Google Scholar 

  • Tejedor M, Hernando B, Sánchez ML (1995) Magnetization processes in metallic glasses for fluxgate sensors. J Magn Magn Mater 140–144:349–350

    Article  Google Scholar 

  • Vetoshko PM, Valeiko VV, Nikitin PI (2003) Epitaxial yttrium iron garnet film as an active medium of an even-harmonic magnetic field transducer. Sens Actuators A 106:270–273

    Article  Google Scholar 

  • Weiss E, Paperno E (2011) Noise investigation of the orthogonal fluxgate employing alternating direct current bias. J Appl Phys 109: 07E529

  • Yang JS, Son D, Cho Y, Ryu KS (1997) Soft Magnetic properties of annealed co-based amorphous Co66Fe4Ni1B15Si14 alloy ribbon. J Magn 2(4):130–134

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Dr Hakan Svedhem, ESTEC, for assistance in the experimental verification of the gamma-magnetic normalization effect and to the referees and the editor who helped to improve the quality of the paper very much. This work was partially supported by STCU Grant 5567.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Korepanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korepanov, V., Marusenkov, A. Flux-Gate Magnetometers Design Peculiarities. Surv Geophys 33, 1059–1079 (2012). https://doi.org/10.1007/s10712-012-9197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-012-9197-8

Keywords

Navigation