Skip to main content
Log in

Spatial and Spectral Analysis of Refined Gravity Data for Modelling the Crust–Mantle Interface and Mantle-Lithosphere Structure

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We analyse spatial and spectral characteristics of various refined gravity data used for modelling and gravimetric interpretation of the crust–mantle interface and the mantle-lithosphere structure. Depending on the purpose of the study, refined gravity data have either a strong or weak correlation with the Moho depths (Moho geometry). The compilation of the refined gravity data is purely based on available information on the crustal density structure obtained from seismic surveys without adopting any isostatic hypothesis. We demonstrate that the crust-stripped relative-to-mantle gravity data have a weak correlation with the CRUST2.0 Moho depths of about 0.02. Since gravitational signals due to the crustal density structure and the Moho geometry are subtracted from gravity field, these refined gravity data comprise mainly the information on the mantle lithosphere and sub-lithospheric mantle. On the other hand, the consolidated crust-stripped gravity data, obtained from the gravity field after applying the crust density contrast stripping corrections, comprise mainly the gravitational signal of the Moho geometry, although they also contain the gravitational signal due to anomalous mass density structures within the mantle. In the absence of global models of the mantle structure, the best possible option of computing refined gravity data, suitable for the recovery/refinement of the Moho interface, is to subtract the complete crust-corrected gravity data from the consolidated crust-stripped gravity data. These refined gravity data, that is, the homogenous crust gravity data, have a strong absolute correlation of about 0.99 with the CRUST2.0 Moho depths due to removing a gravitational signal of inhomogeneous density structures within the crust and mantle. Results of the spectral signal decomposition and the subsequent correlation analysis reveal that the correlation of the homogenous crust gravity data with the Moho depths is larger than 0.9 over the investigated harmonic spectrum up to harmonic degree 90. The crust-stripped relative-to-mantle gravity data correlate substantially with the Moho depths above harmonic degree 50 where the correlation exceeds 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008) Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth Planet Sci Lett 274:310–321

    Article  Google Scholar 

  • Artemieva IM (2007) Dynamic topography of the East European craton: shedding light upon lithospheric structure, composition and mantle dynamics. Global Planet Change 58(1–4):411–434. doi:10.1016/j.gloplacha.2007.02.013

    Article  Google Scholar 

  • Artemjev ME, Kaban MK (1994) Density inhomogeneities, isostasy and flexural rigidity of the lithosphere in the Transcaspian region. Tectonophysics 240:281–297

    Article  Google Scholar 

  • Artemjev ME, Kaban MK, Kucherinenko VA, Demjanov GV, Taranov VA (1994) Subcrustal density inhomogeneities of the Northern Euroasia as derived from the gravity data and isostatic models of the lithosphere. Tectonophysics 240:248–280

    Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Bielik M (1988) A preliminary stripped gravity map of the Pannonian Basin. Phys Earth Planet Inter 51:185–189

    Article  Google Scholar 

  • Bielik M, Šefara J, Kováč M, Bezák V, Plašienka D (2004) The Western Carpathians–interaction of Hercynian and Alpine processes. Tectonophysics 393:63–86

    Article  Google Scholar 

  • Braun A, Kim HR, Csatho B, von Frese RRB (2007) Gravity-inferred crustal thickness of Greenland. Earth Planet Sci Lett 262:138–158

    Article  Google Scholar 

  • Čadek O, Martinec Z (1991) Spherical harmonic expansion of the earth’s crustal thickness up to degree and order 30. Studia Geophys Geodaet 35:151–165

    Article  Google Scholar 

  • Cutnell JD, Kenneth WJ (1995) Physics, 3rd edn. Wiley, New York

    Google Scholar 

  • Dérerová J, Zeyen H, Bielik M, Salman K (2006) Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics 25(3): TC3009. doi:10.1029/2005TC001883

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Ekholm S (1996) A full coverage, high-resolution, topographic model of Greenland, computed from a variety of digital elevation data. J Geophys Res B10(21):961–972

    Google Scholar 

  • Eshagh M, Sjöberg LE (2008) Impact of topographic and atmospheric masses over Iran on validation and inversion of GOCE gradiometric data. J Earth Space Phys 34(3):15–30

    Google Scholar 

  • Eshagh M, Sjöberg LE (2009) Atmospheric effect on satellite gravity gradiometry data. J Geodyn 47:9–19

    Article  Google Scholar 

  • Gladkikh V, Tenzer R (2011) A mathematical model of the global ocean saltwater density distribution. Pure Appl Geophysics. doi:10.1007/s00024-011-0275-5

    Google Scholar 

  • Gouretski VV, Koltermann KP (2004) Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Nr. 35

  • Grafarend E, Engels J (1993) The gravitational field of topographic isostaticmasses and the hypothesis of mass condensation. Surv Geophys 14:495–524

    Article  Google Scholar 

  • Grafarend E, Engels J, Sorcik P (1996) The gravitational field of topographic- isostatic masses and the hypothesis of mass condensation II—the topographic- isostatic geoid. Surv Geophys 17:41–66

    Article  Google Scholar 

  • Heiskanen WH, Moritz H (1967) Physical geodesy. WH Freeman and Co., San Francisco

    Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560. doi:10.1190/1.1620629

    Google Scholar 

  • Jiménez-Munt I, Fernàndez M, Vergés J, Platt JP (2008) Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth Planet Sci Lett 267:276–289

    Article  Google Scholar 

  • Johnson DR, Garcia HE, Boyer TP (2009) World ocean database 2009 tutorial. In: Levitus S (Ed) NODC internal report 21. NOAA Printing Office, Silver Spring, MD

  • Kaban MK (2001) A gravity model of the north Eurasia crust and upper mantle: 1. Mantle and isostatic residual gravity anomalies. Russ J Earth Sci 3:143–163

    Article  Google Scholar 

  • Kaban MK (2002) A gravity model of the north Eurasia crust and upper mantle: 2. The Alpine-Mediterranean fold-belt and adjacent structures of the southern former USSR. Russ J Earth Sci 4. http://www.agu.org/wps/rjes/

  • Kaban MK, Schwintzer P (2001) Oceanic upper mantle structure from experimental scaling of vs. and density at different depths. Geophys J Int 147:199–214

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Tikhotsky SA (1999) Global isostatic gravity model of the Earth. Geophys J Int 136:519–536

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Artemieva IM, Mooney WD (2003) Density of the continental roots: compositional and thermal contributions. Earth Planet Sci Lett 209:53–69

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Reigber C (2004) A new isostatic model of the lithosphere and gravity field. J Geod 78:368–385

    Article  Google Scholar 

  • Makhloof AA (2007) The use of topographic-isostatic mass information in geodetic application. Dissertation D98, Institute of Geodesy and Geoinformation, Bonn

  • Maystrenko Y, Scheck-Wenderoth M (2009) Density contrasts in the upper mantle and lower crust across the continent–ocean transition: constraints from 3-D gravity modelling at the Norwegian margin. Geophys J Int 179(1):536–548

    Article  Google Scholar 

  • Meier U, Curtis A, Trampert J (2007) Global crustal thickness from neural network inversion of surface wave data. Geophys J Int 169:706–722

    Article  Google Scholar 

  • Mooney WD, Kaban MK (2010) The North American upper mantle: density, composition, and evolution. J Geophys Res 115:B12424. doi:10.1029/2010JB000866

    Article  Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: A global crustal model at 5° × 5°. J Geophys Res 103B:727–747

    Article  Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Abacus Press, Tunbridge Wells

    Google Scholar 

  • Nahavandchi H (2004) A new strategy for the atmospheric gravity effect in gravimetric geoid determination. J Geod 77:823–828

    Article  Google Scholar 

  • Nataf HC, Ricard Y (1996) 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling. Phys Earth Planet Int 95:101–122

    Article  Google Scholar 

  • Novák P (2010a) High resolution constituents of the earth gravitational field. Surv Geoph 31(1):1–21

    Article  Google Scholar 

  • Novák P (2010b) Direct modeling of the gravitational field using harmonic series. Acta Geodynamica Geomaterialia 157(1):35–47

    Google Scholar 

  • Novák P, Grafarend EW (2005) The ellipsoidal representation of the topographical potential and its vertical gradient. J Geod 78(11–12):691–706

    Article  Google Scholar 

  • Novák P, Grafarend EW (2006) The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data. Stud Geoph Geod 50(4):549–582

    Article  Google Scholar 

  • Novák P, Vaníček P, Martinec Z, Veronneau M (2001) Effects of the spherical terrain on gravity and the geoid. J Geod 75(9–10):491–504

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM 2008, presented at Session G3: “GRACE Science Applications”. EGU Vienna

  • Perry HKC, Forte AM, Eaton DWS (2003) Upper-mantle thermochemical structure below North America from seismic—geodynamic flow models. Geophys J Int 154:279–299

    Article  Google Scholar 

  • Phillips R, Lambeck K (1980) Gravity fields of the terrestrial planets: long-wavelength anomalies and tectonics. Rev Geophys Space Phys 18:27–76

    Article  Google Scholar 

  • Ramillien G (2002) Gravity/magnetic potential of uneven shell topography. J Geod 76:139–149

    Article  Google Scholar 

  • Rummel R, Rapp RH, Suenkel H, Tscherning CC (1988) Comparison of global topographic/isostatic models to the earth’s observed gravitational field, Report, 388, The Ohio State University, Columbus, Ohio 43210-1247

  • Shapiro NM, Ritzwoller MH (2002) Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys J Int 151:88–105

    Article  Google Scholar 

  • Sjöberg LE (1993) Terrain effects in the atmospheric gravity and geoid correction. Bull Geod 64:178–184

    Article  Google Scholar 

  • Sjöberg LE (1998) The atmospheric geoid and gravity corrections. Bollettino di Geodesia e Scienze Affini 57(4):421–435

    Google Scholar 

  • Sjöberg LE (1999) The IAG approach to the atmospheric geoid correction in Stokes’s formula and a new strategy. J Geod 73:362–366

    Article  Google Scholar 

  • Sjöberg LE (2000) Topographic effects by the Stokes-Helmert method of geoid and quasi-geoid determinations. J Geod 74(2):255–268

    Article  Google Scholar 

  • Sjöberg LE (2001) Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one. J Geod 75:283–290

    Article  Google Scholar 

  • Sjöberg LE (2007) Topographic bias by analytical continuation in physical geodesy. J Geod 81:345–350

    Article  Google Scholar 

  • Sjöberg LE (2009) Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys J Int 179:1527–1536

    Article  Google Scholar 

  • Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys 59(3):502–525

    Article  Google Scholar 

  • Sjöberg LE, Nahavandchi H (1999) On the indirect effect in the Stokes-Helmert method of geoid determination. J Geod 73:87–93

    Article  Google Scholar 

  • Sjöberg LE, Nahavandchi H (2000) The atmospheric geoid effects in Stokes formula. Geoph J Int 140:95–100

    Article  Google Scholar 

  • Soller DR, Richard DR, Richard DB (1982) A new global crustal thickness map. Tectonics 1:145–149

    Article  Google Scholar 

  • Sun W, Sjöberg LE (2001) Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections. J Geod 74:627–636

    Article  Google Scholar 

  • Sϋnkel H (1986) Global topographic-isostatic models. In: Sϋnkel H (ed) Mathematical and numerical techniques in physical geodesy. Lecture Notes in Earth Sciences, 7. Springer, Berlin, pp 417–462

    Google Scholar 

  • Tenzer R, Hamayun, Vajda P (2008) Global map of the gravity anomaly corrected for complete effects of the topography, and of density contrasts of global ocean, ice, and sediments. Contrib Geophys Geodesy 38(4):357–370

    Google Scholar 

  • Tenzer R, Hamayun, Vajda P (2009a) Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J Geophys Res 114(B):05408

  • Tenzer R, Vajda P, Hamayun (2009b) Global atmospheric corrections to the gravity field quantities. Contrib Geophys Geodesy 39(3):221–236

    Article  Google Scholar 

  • Tenzer R, Hamayun, Vajda P (2009c) A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST 2.0 Moho boundary. Contrib Geophys Geodesy 39(2):133–147

    Article  Google Scholar 

  • Tenzer R, Vajda P, Hamayun (2010a) A mathematical model of the bathymetry-generated external gravitational field. Contrib Geophys Geodesy 40(1):31–44

    Article  Google Scholar 

  • Tenzer R, Abdalla A, Vajda P, Hamayun (2010b) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geodesy 40(3):207–223

    Article  Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2011a) The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of the seawater density. Marine Geodesy. Accepted 10 Dec 2011

  • Tenzer R, Novák P, Gladkikh V (2011b) On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Studia Geophys Geodaet 55(4):609–626

    Article  Google Scholar 

  • Tenzer R, Hamayun, Novák P, Gladkikh V, Vajda P (2011c) Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl Geophys. doi:10.1007/s00024-011-0410-3

  • Tesauro M, Kaban MK, Cloetingh SA, Hardebol NJ, Beekman F (2007) 3D strength and gravity anomalies of the European lithosphere. Earth Planet Sci Lett 263:56–73

    Article  Google Scholar 

  • Tsoulis D (1999) Spherical harmonic computations with topographic/isostatic coefficients. Reports in the series IAPG/FESG, Rep, No 3 (ISBN 3-934205-02-X). Institute of Astronomical and Physical Geodesy, Technical University of Munich

  • Tsoulis D (2001) A comparison between the Airy-Heiskanen and the Pratt-Hayford isostatic models for the computation of potential harmonic coefficients. J Geod 74(9):637–643

    Article  Google Scholar 

  • Vajda P, Vaníček P, Novák P, Tenzer R, Ellmann A (2007) Secondary indirect effects in gravity anomaly data inversion or interpretation. J Geophys Res 112(B):06411

    Google Scholar 

  • Vaníček P, Najafi M, Martinec Z, Harrie L, Sjöberg LE (1995) Higher-degree reference field in the generalised Stokes-Helmert scheme for geoid computation. J Geod 70(3):176–182

    Article  Google Scholar 

  • Wild F, Heck B (2004) Effects of topographic and isostatic masses in satellite gravity gradiometry. Proceedings: second international GOCE user workshop GOCE. The geoid and oceanography, ESA-ESRIN, Frascati, Italy. March 8–10, 2004 (ESA SP—569, June 2004), CD-ROM

  • Yegorova TP, Starostenko VI, Kozlenko VG (1998) Large-scale 3-D Gravity Analysis of the inhomogeneities in the European-Mediterranean Upper Mantle. Pure Appl Geophys 151:549–561

    Article  Google Scholar 

  • Zeyen H, Dérerová J, Bielik M (2002) Determination of the continental lithosphere thermal structure in the Western Carpathians: integrated modelling of surface heat flow, gravity anomalies and topography. Phys Earth Planet Inter 134:89–104

    Article  Google Scholar 

Download references

Acknowledgments

Pavel Novák was supported by the Czech Ministry of Education, Youth and Sport (MSM4977751301) and the Czech Science Foundation (P209/12/1929). Peter Vajda was supported by the Slovak Research and Development Agency under the contract No. APVV-0194-10 and by Vega grant agency under project No. 2/0107/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenzer, R., Gladkikh, V., Novák, P. et al. Spatial and Spectral Analysis of Refined Gravity Data for Modelling the Crust–Mantle Interface and Mantle-Lithosphere Structure. Surv Geophys 33, 817–839 (2012). https://doi.org/10.1007/s10712-012-9173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-012-9173-3

Keywords

Navigation