GOCE, Satellite Gravimetry and Antarctic Mass Transports

Abstract

In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth’s gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andersen OB et al (2008) The DTU10 global Mean sea surface and Bathymetry. Presented EGU-2008, Vienna, Austria, April, 2008

  2. Albertella A, Rummel R (2009) On the spectral consistency of the altimetric ocean and geoid surface, a one-dimensional example. J Geod 83:805–815. doi:10.1007/s00190-008-02999-5

    Article  Google Scholar 

  3. Allison I, Alley R, Fricker H, Thomas R, Warner R (2009) Ice sheet mass balance and sea level. Antarct Sci 21(5):413–426. doi:10.1017/S0954102009990137

    Article  Google Scholar 

  4. Armano M et al (2009) LISA Pathfinder: the experiment and the route to LISA. Class Quantum Grav 26:094001. doi:10.1088/0264-9381/26/9/094001

    Article  Google Scholar 

  5. Balmino G, Perosanz F, Rummel R, Sneeuw N, Sünkel H (1999) CHAMP, GRACE and GOCE: mission concepts and simulations. Boll Geof Teor Appl 40(3–4):309–319

    Google Scholar 

  6. Balmino G, Perosanz F, Rummel R, Sneeuw N, Sünkel H, Woodworth PL (1998) European views on dedicated gravity field missions: GRACE and GOCE. European Space Agency, ESD-MAG-REP-COW-01

  7. Bevis M, Kendrick E, Smalley Jr R, Dalziel I, Caccamise D, Sasgen I, Helsen M, Taylor FW, Zhou H, Brown A, Raleigh D, Willis M, Wilson T, Konfal S (2009) Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem Geophys Geosystems 10(10):Q10005. doi:10.1029/2009GC002642

    Google Scholar 

  8. Bindschadler R (2006) The environment and evolution of the West Antarctic ice sheet: setting the stage. Phil Trans R Soc A 364(1844):1583–1605. doi:10.1098/rsta.2006.1790

    Article  Google Scholar 

  9. Böning C, Timmermann R, Danilov S, Schröter J (2010) Antarctic circumpolar current transport variability in GRACE gravity solutions and numerical ocean model simulations. In: Flechtner FM, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert T (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin, pp 187–199. doi:10.1007/978-3-642-10228-8_15

    Google Scholar 

  10. Bosch W, Savcenko R (2007) Satellite altimetry: multi-mission cross calibration. In: Tregoning P, Ch Rizos (eds) Dynamic planet 2005. IAG symposia 130:51–56. Springer, Berlin

    Google Scholar 

  11. Chao BF (2003) Geodesy is not just for static measurements anymore. Eos Trans AGU 84(16). doi:10.1029/2003EO160001

  12. Chen JL, Wilson CR, Blankenship D, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–864. doi:10.1038/ngeo694

    Article  Google Scholar 

  13. Dettmering D, Bosch W (2010a) Global calibration of Jason-2 by multi-mission crossover analysis. Marine Geod 33(S1):150–161. doi:10.1080/01490419.2010.487779

    Article  Google Scholar 

  14. Dettmering D, Bosch W (2010b) Envisat radar altimeter calibration by multi-mission crossover analysis. In: Proceedings of ESA living planet symposium, SP-686, ESA ESTEC, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6

  15. Drinkwater M, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE Gravity Mission: ESA’s first core earth explorer. In: Proceedings of 3rd International GOCE User Workshop, ESA SP-627, Frascati

  16. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale R, Lemoine J-M, Barthelmes F, Bruinsma S, König R, Meyer U (2008a) EIGEN-GL05C–A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abstr 10:EGU2008-A-03426

  17. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J-M, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008b) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82:331–346. doi:10.1007/s00190-007-0183-8

    Article  Google Scholar 

  18. Han S-C, Shum CK, Ditmar P, Visser P, van Beelen C, Schrama EJO (2006) Aliasing effect of high-frequency mass variations on GOCE recovery of the Earth’s gravity field. J Geodyn 41:69–76

    Article  Google Scholar 

  19. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864. doi:10.1111/j.1365-246X.2009.04139.x

    Article  Google Scholar 

  20. Horwath M, Legrésy B, Rémy F, Blarel F, Lemoine J-M (2010) Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys Res Abstr 12:EGU2010-4972

    Google Scholar 

  21. Ivins ER, James TJ (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarct Sci 17(4):541–553

    Article  Google Scholar 

  22. Jäggi A (2007) Pseudo stochastic orbit modelling of low earth satellites using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, 73, Schweizerische Geodätische Kommission, ISBN 978–3–908440–17–8

  23. Jarecki F, Müller J, Petrovic S, Schwintzer P (2005) Temporal gravity variations in GOCE gradiometric data. In: Jekeli C, Bastos C, Fernandes J (eds) Gravity, geoid and space missions: GGSM 2004. IAG International Symposium Porto, Portugal, August 30–September 3, 2004. Springer, Berlin, pp 333–338

    Google Scholar 

  24. Joughin I, Tulaczyk S (2002) Positive mass balance of the Ross ice streams, West Antarctica. Science 295:476–480

    Article  Google Scholar 

  25. Kaula WA (1966) Theory of satellite geodesy. Blaisdell Publishing Group, Waltham

    Google Scholar 

  26. King MA, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernandez-Pajares M, Lavallee D, Cerveira PJM, Penna N, Riva REM, Steigenberger P, van Dam T, Vittuari L, Williams S, Willis P (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31:465507. doi:10.1007/s10712-010-9100-4

    Article  Google Scholar 

  27. Moore P, King MA (2010) Satellite gravity gradiometry: secular gravity field change over polar Regions. J Geodyn 49:247–253. doi:10.1016/j.jog.2010.01.007

    Article  Google Scholar 

  28. Office of Science and Technology Policy (2010) Achieving and sustaining earth observations: a preliminary plan based on a strategic assessment by the US group on earth observations. Washington DC. http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp-usgeo-report-earth-obs.pdf. Accessed 5 Jan 2011

  29. Pail R, Wermuth M (2003) GOCE SGG and SST quick-look gravity field analysis. Adv Geosci 1:5–9

    Article  Google Scholar 

  30. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi:10.1029/2010GL044906

    Article  Google Scholar 

  31. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) Model and GRACE. Ann Rev Earth Planet Sci 32(1):111–149. doi:10.1146/annurev.earth.32.082503.144359; (AN 13161612)

    Google Scholar 

  32. Plag H-P, Pearlman M (eds) (2009) Global geodetic observing system–meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin

    Google Scholar 

  33. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975. doi:10.1038/nature08471

    Article  Google Scholar 

  34. Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Rémy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53:198–208

    Article  Google Scholar 

  35. Rietbroek R, LeGrand P, Wouters B, Lemoine J-M, Ramillien G, Hughes CW (2006) Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet-Kerguelen region. Geophys Res Lett 33:L21601. doi:10.1029/2006GL027452

    Article  Google Scholar 

  36. Rignot E, Bamber J, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1(13Jan 2008):106–110. doi:10.1038/ngeo102

    Article  Google Scholar 

  37. Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE (2009) Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288:516–523. doi:10.1016/j.epsl.2009.10.013

    Article  Google Scholar 

  38. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the Terrestrial Reference System by a reprocessed global GPS network. J Geophys Res 113:B08403. doi:10.1029/2007JB005231

    Article  Google Scholar 

  39. Rummel R (2003) How to climb the gravity wall. In: Beutler G, Rummel R, Drinkwater MR, von Steiger R (eds) Earth gravity field from space–from sensors to earth sciences, Space Science Reviews, 108:1–14

  40. Rummel R (2010) GOCE: gravitational gradiometry in a satellite, handbook of geo-mathematics, ch. 22. Springer, Heidelberg, Berlin

    Google Scholar 

  41. Rummel R, Gruber T (2010) Gravity and steady-state ocean circulation explorer GOCE. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System earth via geodetic–geophysical space techniques. Springer, Heidelberg, Berlin, pp 203–212

    Google Scholar 

  42. Sabaka TJ, Rowlands DD, Luthcke SB, Boy JP (2010) Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation. J Geophys Res 115(B11403). doi:10.1029/2010JB007533

  43. Sasgen I, Dobslaw H, Martinec Z, Thomas M (2010a) Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Plan Sci Lett. doi:10.1016/j.epsl.2010.09.015

  44. Sasgen I, Martinec Z, Bamber J (2010b) Combined GRACE and InSAR estimate of West Antarctic ice-mass loss. J Geophys Res. doi:10.1029/2009JF001543

  45. Schaeffer P, Ollivier A, Faugere Y, Bronner E, Picot N (2010) The new CNES CLS 2010 Mean Sea Surface. Oral presentation at OSTST 2010 meeting: http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2010/oral/Schaeffer.pdf

  46. Scheinert M, Müller J, Dietrich R, Damaske D, Damm V (2007) Regional geoid determination in Antarctica utilizing airborne gravity and topography data. J Geod. doi:10.1007/s00190-007-0189-2

  47. Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29:319–334. doi:10.1007/s10712-008-9033-3

    Article  Google Scholar 

  48. Stewart, RH (2003) Introduction to physical oceanography. Department of Oceanography, Texas A&M University

  49. Sumner TJ (2009) The STEP and GAUGE missions. Space Sci Rev 148(1–4):475–487. doi:10.1007/s11214-009-9558-x

    Article  Google Scholar 

  50. Švehla D, Rothacher M (2004) Kinematic precise orbit determination for gravity field determination. In: Sansò F (ed) The proceedings of the international association of geodesy: a window on the future of geodesy. Springer, Berlin, pp 181–188

    Google Scholar 

  51. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9):2193. doi:10.1029/2001B000576

    Article  Google Scholar 

  52. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. doi:10.1126/science.1099192

    Article  Google Scholar 

  53. Thomas RH (2001) Program for Arctic Regional Climate Assessment (PARCA): goals, key findings, and future directions. J Geophys Res 106(D24):33691–33705

    Article  Google Scholar 

  54. Touboul P (2009) The microscope mission and its uncertainty analysis. Space Sci Rev 148(1–4):455–474. doi:10.1007/s11214-009-9565-y

    Article  Google Scholar 

  55. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  56. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311(5768):1754–1756

    Article  Google Scholar 

  57. Vitale S (2009) Space-time metrology for the LISA gravitational wave observatory, and its demonstration on LISA pathfinder. Space Sci Rev 148(1–4):441–454. doi:10.1007/s11214-009-9521-x

    Article  Google Scholar 

  58. von Frese RRB, Tan L, Kim JW, Bentley CR (1999) Antarctic crustal modeling from the spectral correlation of free-air gravity anomalies with the terrain. J Geophys Res 104(B11):25,275–25,296. doi:10.1029/1999JB900232

  59. Wahr J, Molenaar M, Bryan F (1998) Time variablity of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229

    Article  Google Scholar 

  60. Wahr J, Wingham D, Bentley C (2000) A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J Geophys Res 105(B7):16,279–16,294

    Google Scholar 

  61. Wingham DJ, Wallis DW, Shepherd A (2009) Spatial and temporal evolution of Pine Island Glacier thinning 1995–2006. Geophys Res Lett 36:L17501. doi:10.1029/2009GL039126

  62. Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3:642–646. doi:10.1038/NGEO938

    Article  Google Scholar 

  63. Zlotnicki V, Wahr J, Fukumori E, Zong YT (2007) Antarctic circumpolar current transport variability during 2003–05 from GRACE. J Phys Oceanogr 37:230–244. doi:10.1175/JPO3009.1

    Article  Google Scholar 

  64. Zwally HJ, Schutz B et al (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445

    Article  Google Scholar 

Download references

Acknowledgments

The work of the first and third author is supported by the Institute for Advanced Study of Technische Universität München. Additional support of the work of the third author comes from Institute of Geodesy and Geophysics, Chinese Academy of Sciences. The work of the second author was supported by a research fellowship of the Deutsche Forschungsgemeinschaft (DFG). Roman Savcenko (German Geodetic Research Institute, DGFI) together with the fifth author provided the altimetric mean surface from the multi-mission analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Horwath.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rummel, R., Horwath, M., Yi, W. et al. GOCE, Satellite Gravimetry and Antarctic Mass Transports. Surv Geophys 32, 643–657 (2011). https://doi.org/10.1007/s10712-011-9115-5

Download citation

Keywords

  • GOCE
  • Satellite gravimetry
  • GRACE
  • Antarctica
  • Ice mass balance
  • Mean dynamic topography
  • Geostrophic flow velocity