Advertisement

Surveys in Geophysics

, Volume 32, Issue 4–5, pp 643–657 | Cite as

GOCE, Satellite Gravimetry and Antarctic Mass Transports

  • Reiner Rummel
  • Martin Horwath
  • Weiyong Yi
  • Alberta Albertella
  • Wolfgang Bosch
  • Roger Haagmans
Article

Abstract

In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth’s gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.

Keywords

GOCE Satellite gravimetry GRACE Antarctica Ice mass balance Mean dynamic topography Geostrophic flow velocity 

Notes

Acknowledgments

The work of the first and third author is supported by the Institute for Advanced Study of Technische Universität München. Additional support of the work of the third author comes from Institute of Geodesy and Geophysics, Chinese Academy of Sciences. The work of the second author was supported by a research fellowship of the Deutsche Forschungsgemeinschaft (DFG). Roman Savcenko (German Geodetic Research Institute, DGFI) together with the fifth author provided the altimetric mean surface from the multi-mission analysis.

References

  1. Andersen OB et al (2008) The DTU10 global Mean sea surface and Bathymetry. Presented EGU-2008, Vienna, Austria, April, 2008Google Scholar
  2. Albertella A, Rummel R (2009) On the spectral consistency of the altimetric ocean and geoid surface, a one-dimensional example. J Geod 83:805–815. doi: 10.1007/s00190-008-02999-5 CrossRefGoogle Scholar
  3. Allison I, Alley R, Fricker H, Thomas R, Warner R (2009) Ice sheet mass balance and sea level. Antarct Sci 21(5):413–426. doi: 10.1017/S0954102009990137 CrossRefGoogle Scholar
  4. Armano M et al (2009) LISA Pathfinder: the experiment and the route to LISA. Class Quantum Grav 26:094001. doi: 10.1088/0264-9381/26/9/094001 CrossRefGoogle Scholar
  5. Balmino G, Perosanz F, Rummel R, Sneeuw N, Sünkel H (1999) CHAMP, GRACE and GOCE: mission concepts and simulations. Boll Geof Teor Appl 40(3–4):309–319Google Scholar
  6. Balmino G, Perosanz F, Rummel R, Sneeuw N, Sünkel H, Woodworth PL (1998) European views on dedicated gravity field missions: GRACE and GOCE. European Space Agency, ESD-MAG-REP-COW-01Google Scholar
  7. Bevis M, Kendrick E, Smalley Jr R, Dalziel I, Caccamise D, Sasgen I, Helsen M, Taylor FW, Zhou H, Brown A, Raleigh D, Willis M, Wilson T, Konfal S (2009) Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem Geophys Geosystems 10(10):Q10005. doi: 10.1029/2009GC002642 Google Scholar
  8. Bindschadler R (2006) The environment and evolution of the West Antarctic ice sheet: setting the stage. Phil Trans R Soc A 364(1844):1583–1605. doi: 10.1098/rsta.2006.1790 CrossRefGoogle Scholar
  9. Böning C, Timmermann R, Danilov S, Schröter J (2010) Antarctic circumpolar current transport variability in GRACE gravity solutions and numerical ocean model simulations. In: Flechtner FM, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert T (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin, pp 187–199. doi: 10.1007/978-3-642-10228-8_15 CrossRefGoogle Scholar
  10. Bosch W, Savcenko R (2007) Satellite altimetry: multi-mission cross calibration. In: Tregoning P, Ch Rizos (eds) Dynamic planet 2005. IAG symposia 130:51–56. Springer, BerlinGoogle Scholar
  11. Chao BF (2003) Geodesy is not just for static measurements anymore. Eos Trans AGU 84(16). doi: 10.1029/2003EO160001
  12. Chen JL, Wilson CR, Blankenship D, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–864. doi: 10.1038/ngeo694 CrossRefGoogle Scholar
  13. Dettmering D, Bosch W (2010a) Global calibration of Jason-2 by multi-mission crossover analysis. Marine Geod 33(S1):150–161. doi: 10.1080/01490419.2010.487779 CrossRefGoogle Scholar
  14. Dettmering D, Bosch W (2010b) Envisat radar altimeter calibration by multi-mission crossover analysis. In: Proceedings of ESA living planet symposium, SP-686, ESA ESTEC, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6Google Scholar
  15. Drinkwater M, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE Gravity Mission: ESA’s first core earth explorer. In: Proceedings of 3rd International GOCE User Workshop, ESA SP-627, FrascatiGoogle Scholar
  16. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale R, Lemoine J-M, Barthelmes F, Bruinsma S, König R, Meyer U (2008a) EIGEN-GL05C–A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abstr 10:EGU2008-A-03426Google Scholar
  17. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J-M, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008b) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82:331–346. doi: 10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  18. Han S-C, Shum CK, Ditmar P, Visser P, van Beelen C, Schrama EJO (2006) Aliasing effect of high-frequency mass variations on GOCE recovery of the Earth’s gravity field. J Geodyn 41:69–76CrossRefGoogle Scholar
  19. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864. doi: 10.1111/j.1365-246X.2009.04139.x CrossRefGoogle Scholar
  20. Horwath M, Legrésy B, Rémy F, Blarel F, Lemoine J-M (2010) Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys Res Abstr 12:EGU2010-4972Google Scholar
  21. Ivins ER, James TJ (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarct Sci 17(4):541–553CrossRefGoogle Scholar
  22. Jäggi A (2007) Pseudo stochastic orbit modelling of low earth satellites using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, 73, Schweizerische Geodätische Kommission, ISBN 978–3–908440–17–8Google Scholar
  23. Jarecki F, Müller J, Petrovic S, Schwintzer P (2005) Temporal gravity variations in GOCE gradiometric data. In: Jekeli C, Bastos C, Fernandes J (eds) Gravity, geoid and space missions: GGSM 2004. IAG International Symposium Porto, Portugal, August 30–September 3, 2004. Springer, Berlin, pp 333–338Google Scholar
  24. Joughin I, Tulaczyk S (2002) Positive mass balance of the Ross ice streams, West Antarctica. Science 295:476–480CrossRefGoogle Scholar
  25. Kaula WA (1966) Theory of satellite geodesy. Blaisdell Publishing Group, WalthamGoogle Scholar
  26. King MA, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernandez-Pajares M, Lavallee D, Cerveira PJM, Penna N, Riva REM, Steigenberger P, van Dam T, Vittuari L, Williams S, Willis P (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31:465507. doi: 10.1007/s10712-010-9100-4 CrossRefGoogle Scholar
  27. Moore P, King MA (2010) Satellite gravity gradiometry: secular gravity field change over polar Regions. J Geodyn 49:247–253. doi: 10.1016/j.jog.2010.01.007 CrossRefGoogle Scholar
  28. Office of Science and Technology Policy (2010) Achieving and sustaining earth observations: a preliminary plan based on a strategic assessment by the US group on earth observations. Washington DC. http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp-usgeo-report-earth-obs.pdf. Accessed 5 Jan 2011
  29. Pail R, Wermuth M (2003) GOCE SGG and SST quick-look gravity field analysis. Adv Geosci 1:5–9CrossRefGoogle Scholar
  30. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi: 10.1029/2010GL044906 CrossRefGoogle Scholar
  31. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) Model and GRACE. Ann Rev Earth Planet Sci 32(1):111–149. doi: 10.1146/annurev.earth.32.082503.144359; (AN 13161612)Google Scholar
  32. Plag H-P, Pearlman M (eds) (2009) Global geodetic observing system–meeting the requirements of a global society on a changing planet in 2020. Springer, BerlinGoogle Scholar
  33. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975. doi: 10.1038/nature08471 CrossRefGoogle Scholar
  34. Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Rémy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53:198–208CrossRefGoogle Scholar
  35. Rietbroek R, LeGrand P, Wouters B, Lemoine J-M, Ramillien G, Hughes CW (2006) Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet-Kerguelen region. Geophys Res Lett 33:L21601. doi: 10.1029/2006GL027452 CrossRefGoogle Scholar
  36. Rignot E, Bamber J, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1(13Jan 2008):106–110. doi: 10.1038/ngeo102 CrossRefGoogle Scholar
  37. Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE (2009) Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288:516–523. doi: 10.1016/j.epsl.2009.10.013 CrossRefGoogle Scholar
  38. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the Terrestrial Reference System by a reprocessed global GPS network. J Geophys Res 113:B08403. doi: 10.1029/2007JB005231 CrossRefGoogle Scholar
  39. Rummel R (2003) How to climb the gravity wall. In: Beutler G, Rummel R, Drinkwater MR, von Steiger R (eds) Earth gravity field from space–from sensors to earth sciences, Space Science Reviews, 108:1–14Google Scholar
  40. Rummel R (2010) GOCE: gravitational gradiometry in a satellite, handbook of geo-mathematics, ch. 22. Springer, Heidelberg, BerlinGoogle Scholar
  41. Rummel R, Gruber T (2010) Gravity and steady-state ocean circulation explorer GOCE. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System earth via geodetic–geophysical space techniques. Springer, Heidelberg, Berlin, pp 203–212CrossRefGoogle Scholar
  42. Sabaka TJ, Rowlands DD, Luthcke SB, Boy JP (2010) Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation. J Geophys Res 115(B11403). doi: 10.1029/2010JB007533
  43. Sasgen I, Dobslaw H, Martinec Z, Thomas M (2010a) Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Plan Sci Lett. doi: 10.1016/j.epsl.2010.09.015
  44. Sasgen I, Martinec Z, Bamber J (2010b) Combined GRACE and InSAR estimate of West Antarctic ice-mass loss. J Geophys Res. doi: 10.1029/2009JF001543
  45. Schaeffer P, Ollivier A, Faugere Y, Bronner E, Picot N (2010) The new CNES CLS 2010 Mean Sea Surface. Oral presentation at OSTST 2010 meeting: http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2010/oral/Schaeffer.pdf
  46. Scheinert M, Müller J, Dietrich R, Damaske D, Damm V (2007) Regional geoid determination in Antarctica utilizing airborne gravity and topography data. J Geod. doi: 10.1007/s00190-007-0189-2
  47. Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29:319–334. doi: 10.1007/s10712-008-9033-3 CrossRefGoogle Scholar
  48. Stewart, RH (2003) Introduction to physical oceanography. Department of Oceanography, Texas A&M UniversityGoogle Scholar
  49. Sumner TJ (2009) The STEP and GAUGE missions. Space Sci Rev 148(1–4):475–487. doi: 10.1007/s11214-009-9558-x CrossRefGoogle Scholar
  50. Švehla D, Rothacher M (2004) Kinematic precise orbit determination for gravity field determination. In: Sansò F (ed) The proceedings of the international association of geodesy: a window on the future of geodesy. Springer, Berlin, pp 181–188Google Scholar
  51. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9):2193. doi: 10.1029/2001B000576 CrossRefGoogle Scholar
  52. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  53. Thomas RH (2001) Program for Arctic Regional Climate Assessment (PARCA): goals, key findings, and future directions. J Geophys Res 106(D24):33691–33705CrossRefGoogle Scholar
  54. Touboul P (2009) The microscope mission and its uncertainty analysis. Space Sci Rev 148(1–4):455–474. doi: 10.1007/s11214-009-9565-y CrossRefGoogle Scholar
  55. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi: 10.1029/2009GL040222 CrossRefGoogle Scholar
  56. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311(5768):1754–1756CrossRefGoogle Scholar
  57. Vitale S (2009) Space-time metrology for the LISA gravitational wave observatory, and its demonstration on LISA pathfinder. Space Sci Rev 148(1–4):441–454. doi: 10.1007/s11214-009-9521-x CrossRefGoogle Scholar
  58. von Frese RRB, Tan L, Kim JW, Bentley CR (1999) Antarctic crustal modeling from the spectral correlation of free-air gravity anomalies with the terrain. J Geophys Res 104(B11):25,275–25,296. doi: 10.1029/1999JB900232
  59. Wahr J, Molenaar M, Bryan F (1998) Time variablity of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229CrossRefGoogle Scholar
  60. Wahr J, Wingham D, Bentley C (2000) A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J Geophys Res 105(B7):16,279–16,294Google Scholar
  61. Wingham DJ, Wallis DW, Shepherd A (2009) Spatial and temporal evolution of Pine Island Glacier thinning 1995–2006. Geophys Res Lett 36:L17501. doi: 10.1029/2009GL039126
  62. Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3:642–646. doi: 10.1038/NGEO938 CrossRefGoogle Scholar
  63. Zlotnicki V, Wahr J, Fukumori E, Zong YT (2007) Antarctic circumpolar current transport variability during 2003–05 from GRACE. J Phys Oceanogr 37:230–244. doi: 10.1175/JPO3009.1 CrossRefGoogle Scholar
  64. Zwally HJ, Schutz B et al (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Reiner Rummel
    • 1
  • Martin Horwath
    • 1
  • Weiyong Yi
    • 1
  • Alberta Albertella
    • 1
  • Wolfgang Bosch
    • 2
  • Roger Haagmans
    • 3
  1. 1.Institute of Astronomical and Physical Geodesy (IAPG)Technische Universität MünchenMünchenGermany
  2. 2.Deutsches Geodätisches Forschungsinstitut (DGFI)MünchenGermany
  3. 3.ESA-ESTECAZ NoordwijkThe Netherlands

Personalised recommendations