Surveys in Geophysics

, Volume 32, Issue 2, pp 101–195 | Cite as

Density Perturbations in the Upper Atmosphere Caused by the Dissipation of Solar Wind Energy

Article

Abstract

The upper atmosphere constitutes the outer region of the terrestrial gas envelope above about 100 km altitude. The energy budget of this outer gas layer is partly controlled by the dissipation of solar wind energy. Since this energy input is largely irregular, the resulting density changes are considered as perturbations. The properties and physics of such density perturbations are reviewed here. Besides being an important link in the complex chain of solar-terrestrial relations, such disturbances are also of practical interest because they affect the orbits of satellites and space stations and are responsible for ionospheric disturbance effects.

Keywords

Thermosphere (density and composition) Thermosphere (disturbances and storms) Solar-terrestrial relations (space weather effects) 

References

  1. Aikin AC, Hedin AE, Kendig DJ, Drake S (1993) Thermospheric molecular oxygen measurements using the ultraviolet spectrometer on the solar maximum mission spacecraft. J Geophys Res 98:17607–17613Google Scholar
  2. Aikio AT, Selkälä A (2009) Statistical properties of Joule heating rate, electric field and conductances at high latitudes. Ann Geophys 27:2661–2673Google Scholar
  3. Allan RR (1974) Response of dayside thermosphere to an intense geomagnetic storm. Nature 247:23–25Google Scholar
  4. Allan RR, Cook GE (1974) Thermospheric densities during an intense magnetic storm, from the LOGACS experiment. J Atmos Terr Phys 36:1739–1752Google Scholar
  5. Allen JH, Kroehl HW (1975) Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices. J Geophys Res 80:3667–3677Google Scholar
  6. Almár I, Illés-Almár E (2004) A proposal to improve the CIRA ’86 model in the equatorial region: the ddMSIS model. Adv Space Res 34(8):1768–1772Google Scholar
  7. Almár I, Illés-Almár E, Horváth A, Kolláth Z, Bisikalo DV, Kasimenko TV (1992) Improvement of the MSIS 86 and DTM thermospheric models by investigating the geomagnetic effect. Adv Space Res 12(6):313–316Google Scholar
  8. Anderson W (1928) Über die Hypothese von H. Peterson daß die höchsten Atmosphärenschichten durch β-Strahlen erwärmt werden. Physik Zeitschr 29:232–233Google Scholar
  9. Anderson AD (1973) The relation between low-latitude neutral density variations near 400 km and magnetic activity indices. Planet Space Sci 21:2049–2060Google Scholar
  10. Appleton EV, Ingram LJ (1935) Magnetic storms and upper-atmospheric ionisation. Nature 136:548–549Google Scholar
  11. Balthazor RL, Moffett RJ (1997) A study of atmospheric gravity waves and travelling ionospheric disturbances at equatorial latitudes. Ann Geophys 15:1048–1056Google Scholar
  12. Banks PM (1977) Observations of joule and particle heating in the auroral zone. J Atmos Terr Phys 39:179–193Google Scholar
  13. Banks PM (1980) Energy sources of the high latitude upper atmosphere. In: Deehr CS, Holtet JA (eds) Exploration of the polar upper atmosphere. Reidel, Dordrecht, pp 113–127Google Scholar
  14. Banks PM, Nagy AF (1974) Cyclonic disturbances and their consequences in the thermosphere. Geophys Res Lett 1:305–308Google Scholar
  15. Bartels J (1928) Die höchsten Atmosphärenschichten. In: Ergebnisse der exakten Naturwissenschaften, vol 7. Springer, Berlin, pp 114–157Google Scholar
  16. Barth CA, Bailey SM (2004) Comparison of a thermospheric photochemical model with student nitric oxide explorer (SNOE) observations of nitric oxide. J Geophys Res 109:A03304. doi:10.1029/2003JA010227 Google Scholar
  17. Barth CA, Mankoff KD, Bailey SM, Solomon SC (2003) Global observations of nitric oxide in the thermosphere. J Geophys Res 108:A1, 1027. doi:10.1029/2002JA009458 Google Scholar
  18. Barth CA, Lu G, Roble RG (2009) Joule heating and nitric oxide in the thermosphere. J Geophys Res 114:A05301. doi:10.1029/2008JA013765 Google Scholar
  19. Bates DR (1960) The auroral spectrum and its interpretation. In: Ratcliffe JA (eds) Physics of the upper atmosphere. Academic Press, New York, pp 297–353Google Scholar
  20. Bates HF (1974a) Atmospheric expansion from joule heating. Planet Space Sci 22:925–937Google Scholar
  21. Bates HF (1974b) Thermospheric changes shortly after the onset of daytime joule heating. Planet Space Sci 22:1625–1636Google Scholar
  22. Bencze P, Almár I, Illés-Almár E (1993) Ring current heating of the low latitude thermosphere connected with geomagnetic disturbances. Adv Space Res 13(1):303–306Google Scholar
  23. Berger C, Barlier F, Ill M (1988) Diurnal variations of the response of the equatorial thermosphere to geomagnetic activity. Phys Scr 37:427–431Google Scholar
  24. Bhatnagar VP, Tan A, Ramachandaran R (2006) On the response of the exospheric temperature to the auroral heating impulse during geomagnetic disturbances. J Atmos Solar Terr Phys 68:1237–1244Google Scholar
  25. Blum P, Prölss GW (1987) Changes in thermospheric density caused by turbulence variations. Adv Space Res 7(10):247–254Google Scholar
  26. Blum PW, Wulf-Mathies C, Trinks H (1975) Interpretation of local thermospheric disturbances of composition observed by ESRO-4 in the polar region. Space Res 15:209–214Google Scholar
  27. Bowman BR, Tobiska WK, Marcos FA, Huang CY, Lin CS, Burke WJ (2008) A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: Proceedings of AIAA/AAS astrodynamics specialist conference, 18–21 Aug 2008, Honolulu, AIAA2008-6438:1–19Google Scholar
  28. Brekke A (1976) Electric fields, Joule and particle heating in the high latitude thermosphere. J Atmos Terr Phys 38:887–895Google Scholar
  29. Brinkman DG, Walterscheid RL, Richmond AD, Venkateswaran SV (1992) Wave-mean flow interaction in the storm-time thermosphere: a two-dimensional model simulation. J Atmos Sci 49:660–680Google Scholar
  30. Bruinsma SL, Forbes JM (2009) Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations. Adv Space Res 43:369–376Google Scholar
  31. Bruinsma SL, Forbes JM (2010) Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data. J Atmos Solar Terr Phys 72:1057–1066Google Scholar
  32. Bruinsma S, Thuillier G, Barlier F (2003) The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J Atmos Solar Terr Phys 65:1053–1070Google Scholar
  33. Burke WJ et al (2008) Storm time energy budgets of the global thermosphere. In: Kintner PM (eds) Midlatitude ionospheric dynamics and disturbances. AGU monograph 181, American Geophysical Union, Washington, pp 235–245Google Scholar
  34. Burke WJ, Huang CY, Marcos FA, Wise JO (2007) Interplanetary control of thermospheric densities during large magnetic storms. J Atmos Solar Terr Phys 69:279–287Google Scholar
  35. Burke WJ, Gentile LC, Hagan MP (2010a) Thermospheric heating by high-speed streams in the solar wind. J Geophys Res 115:A06318. doi:10.1029/2009JA014585 Google Scholar
  36. Burke WJ, Huang CY, Weimer DR, Wise JO, Wilson GR, Lin CS, Marcos FA (2010b) Energy and power requirements of the global thermosphere during the magnetic storm of November 10, 2004. J Atmos Solar Terr Phys 72:309–318Google Scholar
  37. Burns AG, Killeen TL, Roble RG (1989) Processes responsible for the compositional structure of the thermosphere. J Geophys Res 94:3670–3686Google Scholar
  38. Burns AG, Killeen TL, Roble RG (1991) A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm. J Geophys Res 96:14153–14167Google Scholar
  39. Burns AG, Killeen TL, Roble RG (1992) Thermospheric heating away from the auroral oval during geomagnetic storms. Can J Phys 70:544–552Google Scholar
  40. Burns AG, Wang W, Killeen TL, Solomon SC (2004a) A “tongue” of neutral composition. J Atmos Solar Terr Phys 66:1457–1468Google Scholar
  41. Burns AG, Killeen TL, Wang W, Roble RG (2004b) The solar-cycle-dependent response of the thermosphere to geomagnetic storms. J Atmos Solar Terr Phys 66:1–14Google Scholar
  42. Burns AG, Wang W, Killeen TL, Solomon SC, Wiltberger M (2006) Vertical variations in the N 2 mass mixing ratio during a thermospheric storm that have been simulated using a coupled magnetosphere-ionosphere-thermosphere model. J Geophys Res 111:A11309. doi:10.1029/2006JA011746 Google Scholar
  43. Burns AG, Solomon SC, Wang W, Killeen TL (2007) The ionospheric and thermospheric response to CMEs: challenges and successes. J Atmos Solar Terr Phys 69:77–85Google Scholar
  44. Carter VL, Ching BK, Elliott DD (1969) Atmospheric density above 158 kilometers inferred from magnetron and drag data from the satellite OV1-15 (1968-059A). J Geophys Res 74:5083–5091Google Scholar
  45. Caspers T, Prölss GW (1999) Thermospheric density cells at high latitudes. Adv Space Res 24(11):1433–1437Google Scholar
  46. Chamberlain JW (1961) Physics of the aurora and airglow. Academic Press, New York, pp 297 ffGoogle Scholar
  47. Chandra S, Herman JR (1969) F-region ionization and heating during magnetic storms. Planet Space Sci 17:841–851Google Scholar
  48. Chandra S, Stubbe P (1971) Ion and neutral composition changes in the thermospheric region during magnetic storms. Planet Space Sci 19:491–502Google Scholar
  49. Chapman S (1937) The heating of the ionosphere by the electric currents associated with geomagnetic variations. Terr Mag Atmos Electr 42:355–358Google Scholar
  50. Chapman S (1959) Interplanetary space and the earth’s outermost atmosphere. Proc R Soc Lond A 253:462–481Google Scholar
  51. Christensen AB, Hecht JH, Walterscheid RL, Larsen MF, Sharp WE (1997) Depletion of oxygen in aurora: evidence for a local mechanism. J Geophys Res 102:22273–22277Google Scholar
  52. Clemmons JH, Hecht JH, Salem DR, Strickland DJ (2008) Thermospheric density in the Earth’s magnetic cusp as observed by the Streak mission. Geophys Res Lett 35:L24103. doi:10.1029/2008GL035972 Google Scholar
  53. Cole KD (1962a) Atmospheric blow-up at the auroral zone. Nature 194:761Google Scholar
  54. Cole KD (1962b) Joule heating of the upper atmosphere. Aust J Phys 15:223–235Google Scholar
  55. Cole KD (1962c) Orbital acceleration of satellites during geomagnetic disturbance. Nature 194:42 and 75Google Scholar
  56. Cole KD (1965) Stable auroral red arcs, sinks for energy of Dst main phase. J Geophys Res 70:1689–1706Google Scholar
  57. Cole KD (1971) Electrodynamic heating and movement of the thermosphere. Planet Space Sci 19:59–75Google Scholar
  58. Cole KD (1975) Energy deposition in the thermosphere caused by the solar wind. J Atmos Terr Phys 37:939–949Google Scholar
  59. Cole KD (1981) Electromagnetic field dissipation and corpuscular bombardment and their implications in atmospheric modelling. Adv Space Res 1(12):19–25Google Scholar
  60. Cole KD, Hickey MP (1981) Energy transfer by gravity wave dissipation. Adv Space Res 1(12):65–75Google Scholar
  61. Cosgrove RB, Lu G, Bahcivan H, Matsuo T, Heinselman CJ, McCready MA (2009) Comparison of AMIE-modeled and Sondrestrom-measured Joule heating: a study in model resolution and electric field-conductivity correlation. J Geophys Res 114:A04316. doi:10.1029/2008JA013508 Google Scholar
  62. Craven JD, Nicholas AC, Frank LA, Strickland DJ, Immel TJ (1994) Variations in the FUV dayglow after intense auroral activity. Geophys Res Lett 21:2793–2796Google Scholar
  63. Crowley G, Emery BA, Roble RG, Carlson HC Jr, Knipp DJ (1989) Thermospheric dynamics during September 18–19, 1984 1. Model simulations. J Geophys Res 94:16925–16944Google Scholar
  64. Crowley G, Schoendorf J, Roble RG, Marcos FA (1996) Cellular structures in the high-latitude thermosphere. J Geophys Res 101:211–223Google Scholar
  65. Crowley G, Immel TJ, Hackert CL, Craven J, Roble RG (2006) Effect of IMF B y on thermospheric composition at high and middle latitudes: 1. Numerical experiments. J Geophys Res 111:A10311. doi:10.1029/2005JA011371 Google Scholar
  66. Crowley G, Reynolds A, Thayer JP, Lei J, Paxton LJ, Christensen AB, Zhang Y, Meier RR, Strickland DJ (2008) Periodic modulations in thermospheric composition by solar wind high speed streams. Geophys Res Lett 35:L21106. doi:10.1029/2008GL035745 Google Scholar
  67. Crowley G, Knipp DJ, Drake KA, Lei J, Sutton E, Lühr H (2010) Thermospheric density enhancements in the dayside cusp region during strong B Y conditions. Geophys Res Lett 37:L07110. doi:10.1029/2009GL042143 Google Scholar
  68. Cummings WD, Dessler AJ (1967) Ionospheric heating associated with the main-phase ring current. J Geophys Res 72:257–263Google Scholar
  69. Demars HG, Schunk RW (2007) Thermospheric response to ion heating in the dayside cusp. J Atmos Solar Terr Phys 69:649–660Google Scholar
  70. Deng Y, Ridley AJ (2007) Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity. J Geophys Res 112:A09308. doi:10.1029/2006JA012006 Google Scholar
  71. Deng Y, Maute A, Richmond AD, Roble RG (2008) Analysis of thermospheric response to magnetospheric inputs. J Geophys Res 113:A04301. doi:10.1029/2007JA012840 Google Scholar
  72. Deng Y, Maute A, Richmond AD, Roble RG (2009) Impact of electric field variability on Joule heating and thermospheric temperature and density. Geophys Res Lett 36:L08105. doi:10.1029/2008GL036916 Google Scholar
  73. Dessler AJ (1959a) Ionospheric heating by hydromagnetic waves. J Geophys Res 64:397–401Google Scholar
  74. Dessler AJ (1959b) Upper atmosphere density variations due to hydromagnetic heating. Nature 184:261–262Google Scholar
  75. Dessler AJ, Hanson WB, Parker EN (1961) Formation of the geomagnetic storm main-phase ring current. J Geophys Res 66:3631–3637Google Scholar
  76. DeVries LL (1972) Analysis and interpretation of density data from the low-g accelerometer calibration system (Logacs). Space Res 12:777–789Google Scholar
  77. DeVries LL, Friday EW, Jones LC (1967) Analysis of density data reduced from low-altitude, high resolution satellite tracking data. Space Res 7:1173–1182Google Scholar
  78. Dobbin AL, Aylward AD (2008) A three-dimensional modelling study of the processes leading to mid latitude nitric oxide increases in the lower thermosphere following periods of high geomagnetic activity. Adv Space Res 42:1576–1585Google Scholar
  79. Doornbos E, Klinkrad H (2006) Modelling of space weather effects on satellite drag. Adv Space Res 37:1229–1239Google Scholar
  80. Duncan RA (1969) F-region seasonal and magnetic-storm behaviour. J Atmos Terr Phys 31:59–70Google Scholar
  81. Emery BA, Coumans V, Evans DS, Germany GA, Greer MS, Holeman E, Kadinsky-Cade K, Rich FJ, Xu W (2008) Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J Geophys Res 113:A06311. doi:10.1029/2007JA012866 Google Scholar
  82. Engebretson MJ, Mauersberger K (1983) The response of thermospheric atomic nitrogen to magnetic storms. J Geophys Res 88:6331–6338Google Scholar
  83. Engebretson MJ, Nelson JT (1985) Atomic nitrogen densities near the polar cusp. J Geophys Res 90:8407–8416Google Scholar
  84. Fang X, Liemohn MW, Kozyra JU, Evans DS, DeJong AD, Emery BA (2007a) Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 1. Patterns. J Geophys Res 112:A05301. doi:10.1029/2006JA011867 Google Scholar
  85. Fang X, Ridley AJ, Liemohn MW, Kozyra JU, Evans DS (2007b) Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 3. Impact on the ionosphere and thermosphere. J Geophys Res 112:A07310. doi:10.1029/2006JA012144 Google Scholar
  86. Forbes JM, Lu G, Bruinsma S, Nerem S, Zhang X (2005) Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J Geophys Res 110:A12S27. doi:10.1029/2004JA010856 Google Scholar
  87. Fujiwara H, Miyoshi Y (2006) Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model. Geophys Res Lett 33:L20108. doi:10.1029/2006GL027103 Google Scholar
  88. Fujiwara H, Maeda S, Fukunishi H, Fuller-Rowell TJ, Evans DS (1996) Global variations of thermospheric winds and temperatures caused by substorm energy injection. J Geophys Res 101:225–239Google Scholar
  89. Fujiwara H, Kataoka R, Suzuki M, Maeda S, Nozawa S, Hosokawa K, Fukunishi H, Sato N, Lester M (2007) Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations. Ann Geophys 25:2393–2403Google Scholar
  90. Fuller-Rowell TJ (1984) A two-dimensional, high-resolution, nested-grid model of the thermosphere 1. Neutral response to an electric field “spike”. J Geophys Res 89:2971–2990Google Scholar
  91. Fuller-Rowell TJ (1985) A two-dimensional, high-resolution, nested-grid model of the thermosphere 2. Response of the thermosphere to narrow and broad electrodynamic features. J Geophys Res 90:6567–6586Google Scholar
  92. Fuller-Rowell TJ, Rees D, Tinsley BA, Rishbeth H, Rodger AS, Quegan S (1990) Modelling the response of the thermosphere and ionosphere to geomagnetic storms: effects of a mid-latitude heat source. Adv Space Res 10(6):215–223Google Scholar
  93. Fuller-Rowell TJ, Rees D, Rishbeth H, Burns AG, Killeen TL, Roble RG (1991) Modelling of composition changes during F-region storms: a reassessment. J Atmos Terr Phys 53:541–550Google Scholar
  94. Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99:3893–3914Google Scholar
  95. Fuller-Rowell TJ, Codrescu MV, Rishbeth H, Moffett RJ, Quegan S (1996) On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101:2343–2353Google Scholar
  96. Fuller-Rowell TJ, Matsuo T, Codrescu MV, Marcos FA (1999) Modeling thermospheric neutral density waves and holes in response to high latitude forcing. Adv Space Res 24(11):1447–1458Google Scholar
  97. Fuller-Rowell TJ, Codrescu MV, Minter CF, Strickland D (2006) Application of thermospheric general circulation models for space weather operations. Adv Space Res 37:401–408Google Scholar
  98. Galperin YI, Poluyektov IA, Sobelman II (1966) Flux and spectrum of protons responsible for hydrogen emission in auroras. Geomag Aeron 6:479–492Google Scholar
  99. Gardner LC, Schunk RW (2010) Generation of traveling atmospheric disturbances during pulsating geomagnetic storms. J Geophys Res 115:A08314. doi:10.1029/2009JA015129 Google Scholar
  100. Golovchanskaya IV (2008) Assessment of Joule heating for the observed distributions of high-latitude electric fields. Geophys Res Lett. 35:L16102Google Scholar
  101. Goncharenko L, Salah J, Crowley G, Paxton LJ, Zhang Y, Coster A, Rideout W, Huang C, Zhang S, Reinisch B, Taran V (2006) Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF B y. J Geophys Res 111:A03303. doi:10.1029/2004JA010683 Google Scholar
  102. Groves GV (1961) Correlation of upper atmosphere air density with geomagnetic activity, November 1960. Space Res 2:751–753Google Scholar
  103. Hardy DA, Holeman EG, Burke WJ, Gentile LC, Bounar KH (2008) Probability distributions of electron precipitation at high magnetic latitudes. J Geophys Res 113:A06305. doi:10.1029/2007JA012746 Google Scholar
  104. Hays PB, Jones RA, Rees MH (1973) Auroral heating and the composition of the neutral atmosphere. Planet Space Sci 21:559–573Google Scholar
  105. Hecht JH, Strickland DJ, Conde MG (2006) The application of ground-based optical techniques for inferring electron energy deposition and composition change during auroral precipitation events. J Atmos Solar Terr Phys 68:1502–1519Google Scholar
  106. Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92:4649–4662Google Scholar
  107. Hedin AE, GR Carignan (1985) Morphology of thermospheric composition variations in the quiet polar thermosphere from dynamics explorer measurements. J Geophys Res 90:5269–5277Google Scholar
  108. Hedin AE, Reber CA (1972) Longitudinal variations of thermospheric composition indicating magnetic control of polar heat input. J Geophys Res 77:2871–2879Google Scholar
  109. Hedin AE, Mayr HG, Reber CA, Spencer NW, Carignan GR (1974) Empirical model of global thermospheric temperature and composition based on data from the Ogo 6 quadrupole mass spectrometer. J Geophys Res 79:215–225Google Scholar
  110. Hedin AE, Salah JE, Evans JV, Reber CA, Newton GP, Spencer NW, Kayser DC, Alcaydé D, Bauer P, Cogger L, McClure JP (1977a) A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N 2 density and temperature. J Geophys Res 82:2139–2147Google Scholar
  111. Hedin AE, Reber CA, Newton GP, Spencer NW, Brinton HC, Mayr HG, Potter WE (1977b) A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition. J. Geophys. Res. 82:2148–2156Google Scholar
  112. Hernandez S, Lopez RE, Wiltberger M (2005) Ionospheric joule heating during magnetic storms: MHD simulations. Adv Space Res 36(10):1845–1848Google Scholar
  113. Hines CO (1965) Dynamical heating of the upper atmosphere. J Geophys Res 70:177–183Google Scholar
  114. Horvath I (2007) Impact of 10 January 1997 geomagnetic storm on the nighttime Weddell Sea Anomaly: a study utilizing data provided by the TOPEX/Poseidon mission and the Defense Meteorological Satellite Program, and simulations generated by the Coupled Thermosphere/Ionosphere Plasmasphere model. J Geophys Res 112:A06329. doi:10.1029/2006JA012153 Google Scholar
  115. Iijima T, Potemra TA (1976) The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J Geophys Res 81:2165–2174Google Scholar
  116. Iijima T, Potemra TA (1978) Large-scale characteristics of field-aligned currents associated with substorms. J Geophys Res 83:599–615Google Scholar
  117. Illés-Almár E, Almár I, Bencze P (1996) Observational results hinting at the coupling of the thermosphere with the ionosphere/magnetosphere system and with the middle atmosphere. Adv Space Res 18(3):45–48Google Scholar
  118. Immel TJ, Craven JD, Frank LA (1997) Influence of IMF B y on large-scale decreases of O column density at middle latitudes. J Atmos Solar Terr Phys 59:725–737Google Scholar
  119. Immel TJ, Crowley G, Hackert CL, Craven JD, Roble RG (2006) Effect of IMF B y on thermospheric composition at high and middle latitudes: 2. Data comparisons. J Geophys Res 111:A10312. doi:10.1029/2005JA011372 Google Scholar
  120. Ishikawa G (1959) Solar corpuscular radiation as a heat source of the upper atmosphere. Papers Meteorol Geophys 10(2):93–123Google Scholar
  121. Ishimoto M, Torr MR, Richards PG, Torr DG (1986) The role of energetic O + precipitation in a mid-latitude aurora. J Geophys Res 91:5793–5802Google Scholar
  122. Jacchia LG (1959) Corpuscular radiation and the acceleration of artificial satellites. Nature 183:1662–1663Google Scholar
  123. Jacchia LG (1961) A working model for the upper atmosphere. Nature 192:1147–1148Google Scholar
  124. Jacchia LG (1969) Atmospheric density variations during solar maximum and minimum. In: Solar-terrestrial physics: terrestrial aspects, Ann. IQSY, vol 5. MIT Press, Cambridge, pp 323–339Google Scholar
  125. Jacchia LG (1972) Atmospheric models in the region from 110 to 2000 km. In: COSPAR international reference atmosphere (CIRA). Akademie Verlag, Berlin, pp 227–338Google Scholar
  126. Jacchia LG, Slowey J (1964) Atmospheric heating in the auroral zones: a preliminary analysis of the atmospheric drag of the Injun 3 satellite. J Geophys Res 69:905–910Google Scholar
  127. Jacchia LG, Slowey JW, von Zahn U (1977) Temperature, density, and composition in the disturbed thermosphere from Esro 4 gas analyzer measurements: a global model. J Geophys Res 82:684–688Google Scholar
  128. Jacobs RL (1967) Atmospheric density derived from the drag of eleven low-altitude satellites. J Geophys Res 72:1571–1581Google Scholar
  129. Jastrow R (1960) Geophysical effects of the trapped particle layer. Space Res 1:1009–1018Google Scholar
  130. Jee G, Burns AG, Wang W, Solomon SC, Schunk RW, Scherliess L, Thompson DC, Sojka JJ, Zhu L (2008) Driving the TING model with GAIM electron densities: ionospheric effects on the thermosphere. J Geophys Res 113:A03305. doi:10.1029/2007JA012580 Google Scholar
  131. Johnson FS (1960) Pressure and temperature equalization at 200-km altitude. J Geophys Res 65:2227–2232Google Scholar
  132. Johnson FS (1964) Composition changes in the upper atmosphere. In: Thrane E (eds) Electron density distribution in ionosphere and exosphere. North-Holland, Amsterdam, pp 81–84Google Scholar
  133. Johnson ES, Heelis RA (2005) Characteristics of ion velocity structure at high latitudes during steady southward interplanetary magnetic field conditions. J Geophys Res 110:A12301. doi:10.1029/2005JA011130 Google Scholar
  134. King GAM (1962) The ionospheric F region during a storm. Planet Space Sci 9:95–100Google Scholar
  135. King GAM (1966) The ionospheric disturbance and atmospheric waves. J Atmos Terr Phys 28:957–963Google Scholar
  136. Kirby SS, Gilliland TR, Judson EB, Smith N (1935) The ionosphere, sunspots, and magnetic storms. Phys Rev 48:849Google Scholar
  137. Klostermeyer J (1973) Thermospheric heating by atmospheric gravity waves. J Atmos Terr Phys 35:2267–2275Google Scholar
  138. Knipp DJ, Tobiska WK, Emery BA (2004) Direct and indirect thermospheric heating sources for solar cycles 21–23. Solar Phys 224:495–505Google Scholar
  139. Knipp DJ, Welliver T, McHarg MG, Chun FK, Tobiska WK, Evans D (2005) Climatology of extreme upper atmospheric heating events. Adv Space Res 36(12):2506–2510Google Scholar
  140. Köhnlein W (1980) A model of thermospheric temperature and composition. Planet Space Sci 28:225–243Google Scholar
  141. Kozyra JU, Cravens TE, Nagy AF (1982) Energetic O + precipitation. J Geophys Res 87:2481–2486Google Scholar
  142. Krassovsky VI (1959) Energy sources of the upper atmosphere. Planet Space Sci 1:14–19Google Scholar
  143. Krassovsky VI (1968) Aurorae. Planet Space Sci 16:47–59Google Scholar
  144. Kwak Y-S, Richmond AD, Deng Y, Forbes JM, Kim K-H (2009) Dependence of the high-latitude thermospheric densities on the interplanetary magnetic field. J Geophys Res 114:A05304. doi:10.1029/2008JA013882 Google Scholar
  145. Lathuillère C, Menvielle M, Marchaudon A, Bruinsma S (2008) A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes. J Geophys Res 113:A07311. doi::10.1029/2007JA012991 Google Scholar
  146. Lei J, Thayer JP, Forbes JM, Sutton EK, Nerem RS (2008a) Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys Res Lett 35:L10109. doi:10.1029/2008GL033875 Google Scholar
  147. Lei J, Wang W, Burns AG, Solomon SC, Richmond AD, Wiltberger M, Goncharenko LP, Coster A, Reinisch BW (2008b) Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: initial phase. J Geophys Res 113:A01314. doi:10.1029/2007JA012807 Google Scholar
  148. Lei J, Thayer JP, Burns AG, Lu G, Deng Y (2010a) Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm. J Geophys Res 115:A05303. doi:10.1029/2009JA014754 Google Scholar
  149. Lei J, Thayer JP, Forbes JM (2010b) Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly. J Geophys Res 115:A08311. doi:10.1029/2009JA015177 Google Scholar
  150. Liou K, Newell PT, Anderson BJ, Zanetti L, Meng C-I (2005) Neutral composition effects on ionospheric storms at middle and low latitudes. J Geophys Res 110:A05309. doi:10.1029/2004JA010840 Google Scholar
  151. Liu H, Lühr H, Henize V, Köhler W (2005) Global distribution of the thermospheric total mass density derived from Champ. J Geophys Res 110:A04301. doi:10.1029/2004JA010741 Google Scholar
  152. Liu R, Lühr H, Doornbos E, Ma S-Y (2010a) Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field. Ann Geophys 28:1633–1645Google Scholar
  153. Liu R, Lühr H, Ma S-Y (2010b) Storm-time related mass density anomalies in the polar cap as observed by CHAMP. Ann Geophys 28:165–180Google Scholar
  154. Lu G, Mlynczak MG, Hunt LA, Woods TN, Roble RG (2010) On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J Geophys Res 115:A05306. doi:10.1029/2009JA014662 Google Scholar
  155. Lühr H, Rother M, Köhler W, Ritter P, Grunwaldt L (2004) Thermospheric up-welling in the cusp region: evidence from CHAMP observations. Geophys Res Lett 31:L06805. doi:10.1029/2003GL019314 Google Scholar
  156. Maris HB, Hulburt EO (1929a) A theory of auroras and magnetic storms. Phys Rev 33:412–431Google Scholar
  157. Maris HB, Hulburt EO (1929b) Wireless telegraphy and magnetic storms. Proc Inst Radio Eng 17:494–500Google Scholar
  158. Martyn DF (1953) Geo-morphology of F -region ionospheric storms. Nature 171:14–16Google Scholar
  159. Marubashi K, Reber CA, Taylor HA Jr (1976) Geomagnetic storm effects on the thermosphere and the ionosphere revealed by in situ measurements from OGO 6. Planet Space Sci 24:1031–1041Google Scholar
  160. Matsuo T, Forbes JM (2010) Principal modes of thermospheric density variability: empirical orthogonal function analysis of CHAMP 2001–2008 data. J Geophys Res 115:A07309Google Scholar
  161. Matsuo T, Richmond AD (2008) Effects of high-latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate. J Geophys Res 113:A07309. doi:10.1029/2007JA012993 Google Scholar
  162. May BR, Miller DE (1971) The correlation between air density and magnetic disturbance deduced from changes of satellite spin-rate. Planet Space Sci 19:39–48Google Scholar
  163. Mayr HG, Hedin AE (1977) Significance of large-scale circulation in magnetic storm characteristics with application to AE-C neutral composition data. J Geophys Res 82:1227–1234Google Scholar
  164. Mayr HG, Trinks H (1977) Spherical asymmetry in thermospheric magnetic storms. Planet Space Sci 25:607–613Google Scholar
  165. Mayr HG, Volland H (1972) Magnetic storm effects in the neutral composition. Planet Space Sci 20:379–393Google Scholar
  166. Mayr HG, Volland H (1973) Magnetic storm characteristics of the thermosphere. J Geophys Res 78:2251–2264Google Scholar
  167. Mayr HG, Volland H (1974) Magnetic storm dynamics of the thermosphere. J Atmos Terr Phys 36:2025–2036Google Scholar
  168. Mayr HG, Harris I, Spencer NW (1978) Some properties of upper atmospheric dynamics. Rev Geophys Space Phys 16:539–565Google Scholar
  169. Mayr HG, Harris I, Herrero FA, Varosi F (1997) Winds and composition changes in the thermosphere using the transfer function model. J Atmos Solar Terr Phys 59:691–709Google Scholar
  170. McHarg M, Chun F, Knipp D, Lu G, Emery B, Ridley A (2005) High-latitude Joule heating response to IMF inputs. J Geophys Res 110:A08309. doi:10.1029/2004JA010949 Google Scholar
  171. Menzel DH, Salisbury WW (1948) Audio-frequency radio waves from the sun. Nature 161:91Google Scholar
  172. Mikhailov AV (2000) Ionospheric F2-layer storms. Fisica de la Tierra 12:223–262Google Scholar
  173. Mikhailov AV, Förster M, Skoblin MG (1997) An estimate of the non-barometric effect in the [O] height distribution at low latitudes during magnetically disturbed periods. J Atmos Solar Terr Phys 59:1209–1215Google Scholar
  174. Mögel H (1930) Über die Beziehung zwischen Empfangsstörungen bei Kurzwellen und den Störungen des magnetischen Feldes der Erde. Telefunken Z 11:14–31Google Scholar
  175. Müller S, Lühr H, Rentz S (2009) Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP. Ann Geophys 27:2087–2099Google Scholar
  176. Namgaladze AA, Zubova YuV, Namgaladze AN, Martynenko OV, Doronina EN, Goncharenko LP, Van Eyken A, Howells V, Thayer JP, Taran VI, Shpynev B, Zhou Q (2006) Modelling of the ionosphere/thermosphere behaviour during the April 2002 magnetic storms: a comparison of the UAM results with the ISR and NRLMSISE-00 data. Adv Space Res 37:380–391Google Scholar
  177. Newell RE (1966) Thermospheric energetics and a possible explanation of some observations of geomagnetic disturbances and radio aurorae. Nature 211:700–703Google Scholar
  178. Nicholas AC, Craven JD, Frank LA (1997) A survey of large-scale variations in thermospheric oxygen column density with magnetic activity as inferred from observations of the FUV dayglow. J Geophys Res 102:4493–4510Google Scholar
  179. Nicolet M (1962) Density and energy in the upper atmosphere. J Phys Soc Jpn 17(Suppl. A-I):314–320Google Scholar
  180. Nisbet JS, Glenar DA (1977) Thermospheric meridional winds and atomic oxygen depletion at high latitudes. J Geophys Res 82:4685–4693Google Scholar
  181. Noël S, Prölss GW (1993) Heating and radiation production by neutralized ring current particles. J Geophys Res 98:17317–17325Google Scholar
  182. Obayashi T, Matuura N (1972) Theoretical model of F-region storms. In: Dyer ER (eds) Solar-Terrestrial Physics IV. Reidel, Dordrecht, pp 199–211Google Scholar
  183. Olson WP (1972) Corpuscular radiation as an upper atmospheric energy source. Space Res 12:1007–1013Google Scholar
  184. Owens JK, Niehuss KO, Vaughan WW, Shea MA (2000) NASA marshall engineering thermosphere model—1999 version (MET-99) and implications for satellite lifetime predictions. Adv Space Res 26(1):157–162Google Scholar
  185. Paetzold HK (1963) Solar activity effects in the upper atmosphere deduced from satellite observations. Space Res 3:28–52Google Scholar
  186. Palmroth M, Janhunen P, Germany G, Lummerzheim D, Liou K, Baker DN, Barth C, Weatherwax AT, Watermann J (2006) Precipitation and total power consumption in the ionosphere: global MHD simulation results compared with Polar and SNOE observations. Ann Geophys 24:861–872Google Scholar
  187. Pawlowski DJ, Ridley AJ, Kim I, Bernstein DS (2008) Global model comparison with Millstone Hill during September 2005. J Geophys Res 113:A01312. doi:10.1029/2007JA012390 Google Scholar
  188. Perreault P, Akasofu S-I (1978) A study of geomagnetic storms. Geophys J 54:547–573Google Scholar
  189. Petersen H (1927a) On the heating of the uppermost atmosphere caused by cathodic rays from the sun. Publ Dansk Meteor Inst 3:1–9Google Scholar
  190. Petersen H (1927b) Über die Temperatur in den höheren Schichten der Atmosphäre. Physik Zeitschr 28:510–513Google Scholar
  191. Philbrick CR, McIsaac JP, Faucher GA (1977) Variations in the atmospheric composition and density during a geomagnetic storm. Space Res 17:349–353Google Scholar
  192. Picone JM, Hedin AE, Drob DP (2002) NRLMSISe-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107:A12, 1468. doi:10.1029/2002JA009430 Google Scholar
  193. Potter WE, Kayser DC (1976) In situ measurements of neon in the thermosphere. Geophys Res Lett 3:665–668Google Scholar
  194. Potter WE, Kayser DC, Nier AO (1979a) Thermospheric variations as an indicator of magnetic storm heating and circulation. Space Res 19:259–262Google Scholar
  195. Potter WE, Kayser DC, Nier AO (1979b) Thermal and wind-induced variations in thermospheric molecular oxygen as measured on AE-D. J Geophys Res 84:10–16Google Scholar
  196. Prölss GW (1973) Radiation production and energy deposition by ring current protons precipitated into the mid-latitude upper atmosphere. Planet Space Sci 21:1681–1690Google Scholar
  197. Prölss GW (1980) Magnetic storm associated perturbations of the upper atmosphere: recent results obtained by satellite-borne gas analyzers. Rev Geophys Space Phys 18:183–202Google Scholar
  198. Prölss GW (1981) Latitudinal structure and extension of the polar atmospheric disturbance. J Geophys Res 86:2385–2396Google Scholar
  199. Prölss GW (1982) Perturbation of the low-latitude upper atmosphere during magnetic substorm activity. J Geophys Res 87:5260–5266Google Scholar
  200. Prölss GW (1985) Correlation between upper atmospheric temperature and solar wind conditions. J Geophys Res 902:11096–11100Google Scholar
  201. Prölss GW (1992) Satellite mass spectrometer measurements of composition changes. Adv Space Res 12(10):241–251Google Scholar
  202. Prölss GW (1993) Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. J Geophys Res 98:5981–5991Google Scholar
  203. Prölss GW (1997) Magnetic storm associated perturbations of the upper atmosphere. In: Tsurutani BT, Gonzalez WD, Kamide Y, Arballo JK (eds) Magnetic storms. Geophysics Monograph 98. AGU, Washington, pp 227–241Google Scholar
  204. Prölss GW (2004) Physics of the earth’s space environment—an introduction. Springer, BerlinGoogle Scholar
  205. Prölss GW (2005) Space weather effects in the upper atmosphere: Low and middle latitudes. In: Scherer K, Fichtner H, Heber B, Mall U (eds) Space weather. Lecture Notes in Physics 656. Springer, Berlin, pp 193–234Google Scholar
  206. Prölss GW (2008a) Ionospheric storms at mid-latitudes: a short review. In: Kintner PM (eds) Midlatitude ionospheric dynamics and disturbances. AGU monograph 181. American Geophysical Union, Washington, pp 9–24Google Scholar
  207. Prölss GW (2008b) Perturbations of the polar upper atmosphere in the cleft region. J Atmos Solar Terr Phys 70:2374–2380Google Scholar
  208. Prölss GW, Ocko M (2000) Propagation of upper atmospheric storm effects towards lower latitudes. Adv Space Res 26(1):131–135Google Scholar
  209. Prölss GW, Roemer M (1983) Seasonal and solar activity dependent variations of the geomagnetic activity effect at high latitudes. Adv Space Res 3(1):99–102Google Scholar
  210. Prölss GW, von Zahn U (1976) Large and small scale changes in the disturbed upper atmosphere. J Atmos Terr Phys 38:655–659Google Scholar
  211. Prölss GW, von Zahn U (1977) Seasonal variations in the latitudinal structure of atmospheric disturbances. J Geophys Res 82:5629–5632Google Scholar
  212. Prölss GW, von Zahn U (1978) On the local time variation of atmospheric-ionospheric disturbances. Space Res 18:159–162Google Scholar
  213. Prölss GW, Najita K, Yuen PC (1973) Heating of the low-latitude upper atmosphere caused by the decaying magnetic storm ring current. J Atmos Terr Phys 35:1889–1901Google Scholar
  214. Prölss GW, Roemer M, Slowey JW (1988) Dissipation of solar wind energy in the earth’s upper atmosphere: the geomagnetic activity effect. Adv Space Res 8(5-6):215–261Google Scholar
  215. Prölss GW, Werner S, Codrescu MV, Fuller-Rowell TJ, Burns AG, Killeen TL (1998) The thermospheric-ionospheric storm of Dec 8, 1982: model predictions and observations. Adv Space Res 22(1):123–128Google Scholar
  216. Qin G, Qiu S, Ye H, He A, Sun L, Lin X, Li H, Xu X, Zeng H (2008) The thermospheric composition different responses to geomagnetic storm in the winter and summer hemisphere measured by “SZ” Atmospheric Composition Detectors. Adv Space Res 42:1281–1287Google Scholar
  217. Rae IJ, Watt CEJ, Fenrich FR, Mann IR, Ozeke LG, Kale A (2007) Energy deposition in the ionosphere through a global field line resonance. Ann Geophys 25:2529–2539Google Scholar
  218. Reber CA, Hedin AE (1974) Heating of the high-latitude thermosphere during magnetically quiet periods. J Geophys Res 79:2457–2461Google Scholar
  219. Reber CA, Nicolet M (1965) Investigation of the major constituents of the April–May 1963 heterosphere by the Explorer XVII satellite. Planet Space Sci 13:617–646Google Scholar
  220. Rees MH (1975) Magnetospheric substorm energy dissipation in the atmosphere. Planet Space Sci 23:1589–1596Google Scholar
  221. Rees D (1985) The response of the high-latitude thermosphere to geomagnetic activity. Adv Space Res 5(4):267–282Google Scholar
  222. Rees D, Gordon R, Fuller-Rowell TJ, Smith M, Carignan GR, Killeen TL, Hays PB, Spencer NW (1985) The composition, structure, temperature and dynamics of the upper thermosphere in the polar regions during October to December 1981. Planet Space Sci 33:617–666Google Scholar
  223. Rentz S, Lühr H (2008) Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Ann Geophys 26:2807–2823Google Scholar
  224. Richards PG (2004) On the increases in nitric oxide density at midlatitudes during ionospheric storms. J Geophys Res 109:A06304. doi:10.1029/2003JA010110 Google Scholar
  225. Richards PG, Meier RR, Wilkinson PJ (2010) On the consistency of satellite measurements of thermospheric composition and solar EUV irradiance with Australian ionosonde electron density data. J Geophys Res 115:A10309. doi:10.1029/2010JA015368 Google Scholar
  226. Richmond AD (1979a) Thermospheric heating in a magnetic storm: dynamic transport of energy from high to low latitudes. J Geophys Res 84:5259–5266Google Scholar
  227. Richmond AD (1979b) Large-amplitude gravity wave energy production and dissipation in the thermosphere. J Geophys Res 84:1880–1890Google Scholar
  228. Richmond AD, Matsushita S (1975) Thermospheric response to a magnetic substorm. J Geophys Res 80:2839–2850Google Scholar
  229. Rishbeth H (1974) Some problems of the F-region. Radio Sci 9:183–187Google Scholar
  230. Rishbeth H (1975) F-region storms and thermospheric circulation. J Atmos Terr Phys 37:1055–1064Google Scholar
  231. Rishbeth H, Müller-Wodarg ICF (1999) Vertical circulation and thermospheric composition: a modelling study. Ann Geophys 17:794–805Google Scholar
  232. Rishbeth H, Gordon R, Rees D, Fuller-Rowell TJ (1985) Modelling of thermospheric composition changes caused by a severe magnetic storm. Planet Space Sci 33:1283–1301Google Scholar
  233. Rishbeth H, Fuller-Rowell TJ, Rees D (1987) Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: a computational study. Planet Space Sci 35:1157–1165Google Scholar
  234. Ritter P, Lühr H, Doornbos E (2010) Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Ann Geophys 28:1207–1220Google Scholar
  235. Roble RG, Forbes JM, Marcos FA (1987) Thermospheric dynamics during the March 22, 1979, magnetic storm, 1. model simulations. J Geophys Res 92:6045–6068Google Scholar
  236. Roemer M (1969) Structure of the thermosphere and its variations. Ann Geophys 25:419–437Google Scholar
  237. Roemer M (1971) Geomagnetic activity effect on atmospheric density in the 250 to 800 km altitude region. Space Res 11:965–974Google Scholar
  238. Roemer M (1972) Recent observational results on the thermosphere and exosphere. In: COSPAR international reference atmosphere (CIRA). Akademie-Verlag, Berlin, pp 341–396Google Scholar
  239. Rosenqvist L, Buchert S, Opgenoorth H, Vaivads A, Lu G (2006) Magnetospheric energy budget during huge geomagnetic activity using cluster and ground-based data. J Geophys Res 111:A10211. doi:10.1029/2006JA011608 Google Scholar
  240. Rothwell P, McIlwain CE (1960) Magnetic storms and the Van Allen radiation belts—observations from satellite 1958ε (Explorer IV). J Geophys Res 65:799–806Google Scholar
  241. Russell AT, St.-Maurice J-P, Sica RJ, Noël J-M (2007) Composition changes during disturbed conditions: are mass spectrometers overestimating the concentrations of atomic oxygen?. Geophys Res Lett 34:L21106. doi:10.1029/2007GL030607 Google Scholar
  242. Sætre C, Stadsnes J, Nesse H, Aksnes A, Petrinec SM, Barth CA, Baker DN, Vondrak RR, Østgaard N (2004) Energetic electron precipitation and the NO abundance in the upper atmosphere: a direct comparison during a geomagnetic storm. J Geophys Res 109:A09302. doi:10.1029/2004JA010485 Google Scholar
  243. Sætre C, Barth CA, Stadsness J, Østgaard N, Bailey SM, Baker DN, Gjerloev JW (2006) Comparisons of electron energy deposition derived from observations of lower thermospheric nitric oxide and from X-ray bremsstrahlung measurements. J Geophys Res 111:A04302. doi:10.1029/2005JA011391 Google Scholar
  244. Sætre C, Barth CA, Stadsnes J, Østgaard N, Bailey SM, Baker DN, Germany GA, Gjerloev JW (2007) Thermospheric nitric oxide at higher latitudes: model calculations with auroral energy input. J Geophys Res 112:A08306. doi:10.1029/2006JA012203 Google Scholar
  245. Schlegel K, Lühr H, St.-Maurice J-P, Crowley G, Hackert C (2005) Thermospheric density structures over the polar regions observed with CHAMP. Ann Geophys 23:1659–1672Google Scholar
  246. Schröder S, Prölss GW (1991) Heating of the upper atmosphere by oxygen ions precipitated from the ring current. Ann Geophys 9:267–272Google Scholar
  247. Schunk RW (1975) Transport equations for aeronomy. Planet Space Sci 23:437–485Google Scholar
  248. Schunk RW (1977) Mathematical structure of transport equations for multispecies flows. Rev Geophys Space Phys 15:429–445Google Scholar
  249. Schunk RW, Zhu L (2008) Response of the ionosphere-thermosphere system to magnetospheric processes. J Atmos Solar Terr Phys 70:2358–2373Google Scholar
  250. Schuster A (1908) The diurnal variation of terrestrial magnetism. Phil Trans R Soc Lond A 208:163–204Google Scholar
  251. Seaton MJ (1956) A possible explanation of the drop in F-region critical densities accompanying major ionospheric storms. J Atmos Terr Phys 8:122–124Google Scholar
  252. Shimazaki T (1972) Effects of vertical mass motions on the composition structure in the thermosphere. Space Res 12:1039–1045Google Scholar
  253. Sinha AK, Chandra S (1974) Seasonal and magnetic storm related changes in the thermosphere induced by eddy mixing. J Atmos Terr Phys 36:2055–2066Google Scholar
  254. Skoblin MG, Mikhailov AV (1996) Some peculiarities of altitudinal distribution of atomic oxygen at low latitudes during magnetic storms. J Atmos Terr Phys 58:875–881Google Scholar
  255. Slowey JW (1987) Thermospheric storm effects. Adv Space Res 7(10):237–245Google Scholar
  256. St.-Maurice JP, Schunk RW (1981) Ion-neutral momentum coupling near discrete high-latitude ionospheric features. J Geophys Res 86:11299–11321Google Scholar
  257. Strickland DJ, Cox RJ, Meier RR, Drob DP (1998) Global O/N 2 derived from DE-1 FUV dayglow data: technique and examples from two storm periods. J Geophys Res 104:4251–4266Google Scholar
  258. Stubbe P (1972) Vertical neutral gas motions and deviations from the barometric law in the lower thermosphere. Planet Space Sci 20:209–215Google Scholar
  259. Stubbe P (1974) On deviations from the barometric law in the lower thermosphere. Planet Space Sci 22:186–189Google Scholar
  260. Stubbe P (1982) Interaction of neutral and plasma motions in the ionosphere. In: Rawer K (ed) Handbuch der Physik, 49/6, Geophysik 3/6. Springer, pp 247–308Google Scholar
  261. Sutton EK, Forbes JM, Nerem RS (2005) Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res 110:A09S40 010985. doi:10.1029/2004JA Google Scholar
  262. Taeusch DR, Hinton BB (1975) Structure of electrodynamic and particle heating in the undisturbed polar thermosphere. J Geophys Res 80:4346–4350Google Scholar
  263. Taeusch DR, Carignan GR, Reber CA (1971) Neutral composition variation above 400 kilometers during a magnetic storm. J Geophys Res 76:8318–8325Google Scholar
  264. Testud J (1970) Gravity waves generated during magnetic substorms. J Atmos Terr Phys 32:1793–1805Google Scholar
  265. Testud J, Amayenc P, Blanc M (1975) Middle and low latitude effects of auroral disturbances from incoherent scatter. J Atmos Terr Phys 37:989–1009Google Scholar
  266. Thayer JP, Lei J, Forbes JM, Sutton EK, Nerem RS (2008) Thermospheric density oscillations due to periodic solar wind high-speed streams. J Geophys Res 113:A06307. doi:10.1029/2008JA013190 Google Scholar
  267. Thomas GE, Ching BK (1969) Upper atmospheric response to transient heating. J Geophys Res 74:1796–1811Google Scholar
  268. Tinsley BA (1979a) Energetic neutral atom precipitation as a possible source of midlatitude F region winds. Geophys Res Lett 6:291–293Google Scholar
  269. Tinsley BA (1979b) Energetic neutral atom precipitation during magnetic storms: optical emission, ionization, and energy deposition at low and middle latitudes. J Geophys Res 84:1855–1864Google Scholar
  270. Tinsley BA (1981) Neutral atom precipitation—a review. J Atmos Terr Phys 43:617–632Google Scholar
  271. Tinsley BA, Sahai Y, Biondi MA, Meriwether JW Jr (1988) Equatorial particle precipitation during magnetic storms and relationship to equatorial thermospheric heating. J Geophys Res 93:270–276Google Scholar
  272. Torr MR, Torr DG (1979) Energetic oxygen: a direct coupling mechanism between the magnetosphere and thermosphere. Geophys Res Lett 6:700–702Google Scholar
  273. Torr MR, Torr DG, Roble RG, Ridley EC (1982) The dynamic response of the thermosphere to the energy influx resulting from energetic O + ions. J Geophys Res 87:5290–5300Google Scholar
  274. Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Araki T, Sato A, Tsuda T, Yumoto K (2007) Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event. Ann Geophys 25:569–574Google Scholar
  275. Turunen E, Verronen PT, Seppälä A, Rodger CJ, Clilverd MA, Tamminen J, Enell C-F, Ulich T (2009) Impact of different energies of precipitating particles on NO x generation in the middle and upper atmosphere during geomagnetic storms. J Atmos Solar Terr Phys 71:1176–1189Google Scholar
  276. Van Allen JA, McIlwain CE, Ludwig GH (1959) Radiation observations with satellite 1958 ε. J Geophys Res 64:271–286Google Scholar
  277. Vasyliūnas VM, Song P (2005) Meaning of ionospheric Joule heating. J Geophys Res 110:A02301. doi:10.1029/2004JA010615 Google Scholar
  278. Volland H (1967) Heat conduction waves in the upper atmosphere. J Geophys Res 72:2831–2841Google Scholar
  279. Volland H (1969) A theory of thermospheric dynamics—II Geomagnetic activity effect, 27-day variation and semiannual variation. Planet Space Sci 17:1709–1724Google Scholar
  280. Volland H (1979) Magnetospheric electric fields and currents and their influence on large scale thermospheric circulation and composition. J Atmos Terr Phys 41:853–866Google Scholar
  281. Volland H (1988) Thermospheric storms. In: Atmospheric tidal and planetary waves. Kluwer, pp 304–317Google Scholar
  282. Volland H, Mayr HG (1971) Response of the thermospheric density to auroral heating during geomagnetic disturbances. J Geophys Res 76:3764–3776Google Scholar
  283. von Zahn U (1975) Early aeronomy results from the satellite Esro 4. In: McCormac BM (eds) Atmospheres of earth and the planets. Reidel, Dordrecht, pp 133–157Google Scholar
  284. von Zahn U, Fricke KH (1978) Empirical models of global thermospheric composition and temperature during geomagnetically quiet times compared with ESRO-4 gas analyzer data. Rev Geophys Space Phys 16:169–175Google Scholar
  285. von Zahn U, Köhnlein W, Fricke KH, Laux U, Trinks H, Volland H (1977) ESRO-4 model of global thermospheric composition and temperatures during times of low solar activity. Geophys Res Lett 4:33–36Google Scholar
  286. Weimer DR (2005) Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J Geophys Res 110:A05306. doi:10.1029/2004JA010884 Google Scholar
  287. Wickwar VB (1975) Chatanika radar measurements. In: McCormac BM (eds) Atmospheres of earth and the planets. Reidel, Dordrecht, pp 111–124Google Scholar
  288. Wickwar VB, Baron MJ, Sears RD (1975) Auroral energy input from energetic electrons and joule heating at Chatanika. J Geophys Res 80:4364–4367Google Scholar
  289. Wilson GR, Weimer DR, Wise JO, Marcos FA (2006) Response of the thermosphere to Joule heating and particle precipitation. J Geophys Res 111:A10314. doi:10.1029/2005JA011274 Google Scholar
  290. Zhang XX, Wang C, Chen T, Wang YL, Tan A, Wu TS, Germany GA, Wang W (2005) Global patterns of Joule heating in the high-latitude ionosphere. J Geophys Res 110:A12208. doi:10.1029/2005JA011222 Google Scholar
  291. Zhou YL, Ma SY, Lühr H, Xiong C, Reigber C (2009) An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data. Adv Space Res 43:819–828Google Scholar
  292. Zuzic M, Scherliess L, Prölss GW (1997) Latitudinal structure of thermospheric composition perturbations J. Atmos Solar Terr Phys 59:711–724Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Argelander Institut für AstronomieUniversität BonnBonnGermany

Personalised recommendations