Surveys in Geophysics

, Volume 29, Issue 6, pp 499–551 | Cite as

Thunderstorms, Lightning, Sprites and Magnetospheric Whistler-Mode Radio Waves

  • Devendraa Siingh
  • A. K. SinghEmail author
  • R. P. Patel
  • Rajesh Singh
  • R. P. Singh
  • B. Veenadhari
  • Madhuparna Mukherjee
Original Paper


Thunderstorms and the lightning that they produce are inherently interesting phenomena that have intrigued scientists and mankind in general for many years. The study of thunderstorms has rapidly advanced during the past century and many efforts have been made towards understanding lightning, thunderstorms and their consequences. Recent observations of optical phenomena above an active lightning discharge along with the availability of modern technology both for data collection and data analysis have renewed interest in the field of thunderstorms and their consequences in the biosphere. In this paper, we review the electrification processes of a thunderstorm, lightning processes and their association with global electric circuit and climate. The upward lightning discharge can cause sprites, elves, jets, etc. which are together called transient luminous events. Their morphological features and effects in the mesosphere are reviewed. The wide spectrum of electromagnetic waves generated during lightning discharges couple the lower atmosphere with the ionosphere/magnetosphere. Hence various features of these waves from ULF to VHF are reviewed with reference to recent results and their consequences are also briefly discussed.


Thunderstorm/lightning Global electric circuit and climate Sferics Transient luminous events Schumann resonances Whistler-mode waves ELF/VLF emissions 



DS acknowledges financial support from the Ministry of Earth Sciences (MoES), Government of India, New Delhi and also Head, I&OT Division for support. This work is partly supported by DST, New Delhi under SERC project and partly by ISRO, Bangalore, under the CAWSES program. R. P. Patel thanks DST for the award of a FASTTRACK fellowship (SR/FTP/PS-12/2006). The authors thank both the anonymous reviewers for their critical comments which helped in improving the scientific value of this paper. They also express their gratitude to Prof. M. J. Rycroft for his valuable suggestions.


  1. Abel B, Thorne RM (1998) Electron scattering loss in Earth’s inner magnetosphere 1: dominant physical processes. J Geophys Res 103:2385–2395. doi: 10.1029/97JA02919 Google Scholar
  2. Alexander GD et al (1999) The effect of assimilating rain rate derived from satellites and lightning on forecasts of the 1993 superstorm. Mon Weather Rev 127:1433–1457. doi: 10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2 Google Scholar
  3. Armstrong RA, Shorter JA, Taylor MJ, Suszcynsky DM, Lyons WA, Jeong LS (1998) Photometric measurements in the SPRITES ‘95 and ‘96 campaigns: nitrogen second positive (399.8 nm) and the first negative (427.8 nm) emission. J Atmos Terr Phys 60:787–799. doi: 10.1016/S1364-6826(98)00026-1 Google Scholar
  4. Armstrong RA, Suszcynsky DM, Lyons WA, Nelson TE (2000) Multi-color photometric measurements of ionization and energies in sprites. Geophys Res Lett 27:653–657. doi: 10.1029/1999GL003672 Google Scholar
  5. Arnone E et al (2008) Seeking sprite-induced signatures in remotely sensed middle atmosphere NO2. Geophys Res Lett 35:L05807. doi: 10.1029/2007GL031791 Google Scholar
  6. Baker MB, Blyth AM, Christian HJ, Latham J, Miller KL, Gadian AM (1999) Relationships between lightning activity and various thundercloud parameters: satellite and modeling studies. Atmos Res 51:221–236. doi: 10.1016/S0169-8095(99)00009-5 Google Scholar
  7. Balakrishnan N, Dalgarno A (2003) Nitric oxide production in collisions of hot O (3P) atoms with N2. J Geophys Res 108(A2). doi: 10.1029/2002JA009566
  8. Barr R, Llanwyn Jones D, Rodger CJ (2000) ELF and VLF radio waves. J Atmos Terr Phys 62:1689–1718. doi: 10.1016/S1364-6826(00)00121-8 Google Scholar
  9. Barrington RE, Belrose JS, Nelms GN (1966) Ion composition and temperatures at 1000 km as deduced from simultaneous observations of a VLF plasma resonance and top side sounding data from Alouette 1 satellite. J Geophys Res 70:1647–1664. doi: 10.1029/JZ070i007p01647 Google Scholar
  10. Barrington-Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106:1741–1750. doi: 10.1029/2000JA000073 Google Scholar
  11. Barrington-Leigh CP, Pasko VP, Inan US (2002) Exponential relaxation of optical emissions in sprites. J Geophys Res 107(A5):1065. doi: 10.1029/2001JA900117 Google Scholar
  12. Beard KV, Ochs HTIII, Twohy CH (2004) Aircraft measurements of high average charges on cloud drops in layer cloud. Geophys Res Lett 31:L14111. doi: 10.1029/2004GL020465 Google Scholar
  13. Bell TF, Luette JP, Inan US (1982) ISEE-1 observation of VLF line radiation in the Earth’s magnetosphere. J Geophys Res 87:3530–3536. doi: 10.1029/JA087iA05p03530 Google Scholar
  14. Berg P, Christiansen B, Thejll P, Arnold N (2007) The dynamical response of the middle atmosphere to the tropospheric solar signal. J Geophys Res 112:D20122. doi: 10.1029/2006JD008237 Google Scholar
  15. Bernard LC (1973) A new nose extension method for whistlers. J Atmos Terr Phys 35:871–880. doi: 10.1016/0021-9169(73)90069-X Google Scholar
  16. Block LP, Carpenter DL (1974) Derivation of magnetospheric electric fields from whistler data in a dynamic geomagnetic field. J Geophys Res 79:2783–2789. doi: 10.1029/JA079i019p02783 Google Scholar
  17. Boccippio DJ, William ER, Heckman SJ, Lyons WA, Baker IT, Boldi R (1995) Sprites ELF transients, and positive ground strokes. Science 269:1088–1091. doi: 10.1126/science.269.5227.1088 Google Scholar
  18. Bortnik J, Inan US, Bell TF (2003a) Frequency-time spectra of magnetospherically reflecting whistlers in the plasmasphere. J Geophys Res 108(A1):1030. doi: 10.1029/2002JA009387 Google Scholar
  19. Bortnik J, Inan US, Bell TF (2003b) Energy distribution and life-time of magnetospherically reflecting whistlers in the plasmasphere. J Geophys Res 108:1199. doi: 10.1029/2002JA09316 Google Scholar
  20. Bortnik J, Thorne RM, Meredith NP, Santolik O (2007) Ray tracing of penetrating chorus and its implications for the radiation belts. Geophys Res Lett 34:L15109. doi: 10.1029/2007GL030040 Google Scholar
  21. Bortnik J, Thorne RM, Meredith NP (2008) The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452:62–66. doi: 10.1038/nature06741 Google Scholar
  22. Bosinger T, Mika A, Shalimor SL, Haldoupis C, Neubert T (2006) Is there a unique signature in the ULF response to sprite associated lightning flashes. J Geophys Res 111:A10310. doi: 10.1029/2006JA011887 Google Scholar
  23. Breneman A, Kletzing CA, Chum J, Santolik O, Gurnett D, Pickett J (2007) Multispacecraft observations of chorus dispersion and source location. J Geophys Res 112:A05221. doi: 10.1029/2006JA012058 Google Scholar
  24. Brooks IM, Saunders CPR (1994) An experimental investigation of the inductive mechanism of thunderstorm electrification. J Geophys Res 99:10627–10632. doi: 10.1029/93JD01574 Google Scholar
  25. Buechler DE, Goodman SJ (1990) Echo size and symmetry: impact on NEXRAD storm identification. J Appl Meteorol 29(9):962–969. doi: 10.1175/1520-0450(1990)029<0962:ESAAIO>2.0.CO;2 Google Scholar
  26. Bucsela E, Morrill J, Heavner M, Siefring C, Berg S, Hampton D, Moudry D, Wescott E, Sentman D (2003) N2 (B3 IIg) and N2 + (A2 IIu) vibrational distributions observed in sprites. J Atmos Sol Terr Phys 65:583–590. doi: 10.1016/S1364-6826(02)00316-4 Google Scholar
  27. Burns GB, Tinsley BA, Frank-Kamenetsky AV, Bering EA (2007) Interplanetary magnetic field and atmospheric electric circuit influences on ground-level pressure at Vostok. J Geophys Res 112:D04103. doi: 10.1029/2006JD007246 Google Scholar
  28. Cattell C, Wygant JR, Goetz K, Kersten K, Kellogg PJ, Von Rosenvinge T, Bale SD, Roth I, Temerin M, Hudson MK, Mewaldt RA, Wiedenbeck M, Maksimovic M, Ergun R, Acuna M, Russell CT (2008) Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys Res Lett 35:L01105. doi: 10.1029/2007GL032009 Google Scholar
  29. Cheng Z, Cummer SA, Baker DN, Kanekal SG (2006) Nighttime D region electron density profiles and variabilities inferred from broadband measurements using VLF radio emissions from lightning. J Geophys Res 111:A05302. doi: 10.1029/2005JA011308 Google Scholar
  30. Chern JL et al (2003) Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite. J Atmos Sol Terr Phys 65:647–659. doi: 10.1016/S1364-6826(02)00317-6 Google Scholar
  31. Chez JL, Sauvageot H (1997) Area average rainfall and lightning. J Geophys Res 102:1707–1716. doi: 10.1029/96JD02972 Google Scholar
  32. Cho M, Rycroft MJ (1998) Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere. J Atmos Sol Terr Phys 60:871–888. doi: 10.1016/S1364-6826(98)00017-0 Google Scholar
  33. Cho M, Rycroft MJ (2001) Non-uniform ionization of the upper atmosphere due to the electromagnetic pulse from a horizontal lightning discharge. J Atmos Sol Terr Phys 63:559–580. doi: 10.1016/S1364-6826(00)00235-2 Google Scholar
  34. Christiansen B (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: model and reanalysis. J Geophys Res 106(D21):27307–27322. doi: 10.1029/2000JD000214 Google Scholar
  35. Christiansen B, Guldberg A, Hansen AW, Riishojgaard LP (1997) On the response of a three-dimensional general circulation model to imposed changes in the ozone distribution. J Geophys Res 102(11):13051–13077. doi: 10.1029/97JD00529 Google Scholar
  36. Church R, Thorne RM (1983) On the origin of plasmaspheric hiss: ray path integrated amplification. J Geophys Res 88:7941–7957. doi: 10.1029/JA088iA10p07941 Google Scholar
  37. Chum J, Santolik O (2005) Propagation of whistler-mode chorus to low altitudes divergent ray trajectories and ground accessibility. Ann Geophys 23:3727–3738Google Scholar
  38. Chum J, Jiricek F, Santolik O, Parrot M, Diendorfer G, Fiser J (2006) Assigning the causative lightning to the whistlers observed on satellites. Ann Geophys 24:2921–2929Google Scholar
  39. Chum J, Santolik O, Breneman AW, Kletzing CA, Gurnett DA, Pickett JS (2007) Chorus source properties that produce time shifts and frequency range differences observed on different cluster spacecraft. J Geophys Res 112:A06206. doi: 10.1029/2006JA012061 Google Scholar
  40. Clayton MD, Polk C (1977) Diurnal variation and absolute intensity of world wide lightning activity. In: Dolezalek H, Reiter R (eds) Electrical processes in atmospheres. Verlag, Darmstadt, Germany, p 440. (September 1970 to May 1971)Google Scholar
  41. Cobb WE (1967) Evidence of a solar influence on the atmospheric electric current at Mauna Lao observatory. Mon Weather Rev 95:905–911. doi: 10.1175/1520-0493(1967)095<0905:EOASIO>2.3.CO;2 Google Scholar
  42. Collier AB, Hughes ARW, Lichtenberger J, Steinbach P (2006) Seasonal and diurnal variation of lightning activity over southern Africa and correlation with European whistler observations. Ann Geophys 24:529–542Google Scholar
  43. Cornilleau-Wehrlin N, Solomon J, Korth A, Kremser C (1985) Experimental study of the relationship between energetic electrons and ELF waves observed on board GEOS: a support to quasi-linear theory. J Geophys Res 90:4141–4154. doi: 10.1029/JA090iA05p04141 Google Scholar
  44. Crutzen PJ (1974) Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air. Tellus 26:47–57Google Scholar
  45. Crutzen PJ, Solomon S (1980) Response of mesospheric ozone to particle precipitation. Planet Space Sci 28:1147–1153. doi: 10.1016/0032-0633(80)90073-2 Google Scholar
  46. Cummer SA (2000) Modeling electromagnetic propagation in the earth–ionosphere waveguide. IEEE Trans Antenna Propag 48(9):1420–1429. doi: 10.1109/8.898776 Google Scholar
  47. Cummer SA (2003) Current moment in sprite-producing lightning. J Atmos Sol Terr Phys 65:499–508. doi: 10.1016/S1364-6826(02)00318-8 Google Scholar
  48. Cummer SA, Inan US (1997) Measurement of charge transfer in sprite producing lightning using ELF radio atmospheric. Geophys Res Lett 24:1731–1734. doi: 10.1029/97GL51791 Google Scholar
  49. Cummer SA, Stanley M (1999) Submillisecond resolution lightning currents and sprite development: observations and implications. Geophys Res Lett 26:3205–3208. doi: 10.1029/1999GL003635 Google Scholar
  50. Cummer SA, Inan US, Bell TF, Barrington-Leigh CP (1998a) ELF radiation produced by electric currents in sprites. Geophys Res Lett 25:1281–1285. doi: 10.1029/98GL50937 Google Scholar
  51. Cummer SA, Inan US, Bell TF (1998b) Ionospheric D-region remote sensing using VLF radio atmospherics. Radio Sci 33:1781–1792. doi: 10.1029/98RS02381 Google Scholar
  52. Danilov AD, Vanina LB (2001) Electron density variation in the polar D region from in situ measurements. Int J Geomagn Aeron 2(3):195–200Google Scholar
  53. Davies K (1990) Ionospheric radio. Peregrinus, LondonGoogle Scholar
  54. Dowden RL (1971) Distinctions between mid-latitude VLF hiss discrete emissions. Planet Space Sci 19:374–376. doi: 10.1016/0032-0633(71)90100-0 Google Scholar
  55. Dowden RL, Helliwell RA (1962) Very-low-frequency discrete emissions received at conjugate points. Nature 195:1745–1750Google Scholar
  56. Dragonov AB, Inan US, Sonwalkar VS, Bell TF (1992) Magnetospherically reflected whistlers as a source of plasmaspheric hiss. Geophys Res Lett 19:233–236. doi: 10.1029/91GL03167 Google Scholar
  57. Dysthe KB (1971) Some studies of triggered whistler emissions. J Geophys Res 76:6915–6931. doi: 10.1029/JA076i028p06915 Google Scholar
  58. Enell C-F et al (2008) Parameterization of the chemical effect of sprites in the middle atmosphere. Ann Geophys 26:13–27Google Scholar
  59. Engebretson MJ, Posch JL, Halford AJ, Shelburn GA, Smith AJ, Spasojevic M, Inan US, Arnoldy RL (2004) Latitudinal and seasonal variations of quasiperiodic and VLF emissions in the outer magnetosphere. J Geophys Res 109:A05216. doi: 10.1029/2003JA010335 Google Scholar
  60. Fadnavis S, Siingh D, Beig G, Singh RP (2007) Seasonal variation of the Mesospheric inversion layer, thunderstorm and ozone over India. J Geophys Res 112:D15305. doi: 101029/2006JD00837 Google Scholar
  61. Farges T, Blanc E, Le Pichon A, Neubert T, Allin TH (2005) Identification of infrasound produced by sprites during the sprite 2003 campaign. Geophys Res Lett 32:L01813. doi: 10.1029/2004GL021212 Google Scholar
  62. Farrell WM, Desch MD (1992) Cloud-to-stratosphere lightning discharges: a radio emission model. Geophys Res Lett 19:665–668. doi: 10.1029/91GL02955 Google Scholar
  63. Ferencz O (1994) Whistler-mode propagation: solution in homogeneous and weakly inhomogeneous lossy plasma. Period Polytech Ser El Eng 38:267–285Google Scholar
  64. Ferencz C, Ferencz OE, Hamar D, Lichtenberger J (2001) Whistler phenomena: short impulse propagation. Kluwer Academic Publishers, DordrechtGoogle Scholar
  65. Ferencz OE, Ferencz Cs, Steinbach P, Lichtenberger J, Hamar D, Parrot M, Lefeuvre F, Berthelier JJ (2007) The effect of subionospheric propagation on whistlers recorded by the DEMETER satellite-observation and modeling. Ann Geophys 25:1103–1112Google Scholar
  66. Fishman GJ et al (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 164:1313–1317. doi: 10.1126/science.264.5163.1313 Google Scholar
  67. Franz RC, Nemzek RJ, Winckler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51. doi: 10.1126/science.249.4964.48 Google Scholar
  68. Frey HU et al (2005) Beta-type stepped leader of elves producing lightning. Geophys Res Lett 32:L13824. doi: 10.1029/2005GL023080 Google Scholar
  69. Fukunishi HY, Takahashi Y, Kubota M, Sakanoi K, Inan US, Lyons WA (1996) Elves: lightning-induced transient luminous events in the lower ionosphere. Geophys Res Lett 23:2157–2160. doi: 10.1029/96GL01979 Google Scholar
  70. Fukunishi H, Takahashi Y, Sato M, Shono A, Fujito M, Watanabe Y (1997) Ground-based observations of ULF transients excited by strong lightning discharges producing elves and sprites. Geophys Res Lett 24:2973–2976. doi: 10.1029/97GL03022 Google Scholar
  71. Fullekrug M (2004) The contribution of intense lightning discharges to the global atmospheric electric circuit during April 1998. J Atmos Sol Terr Phys 66:1115–1119Google Scholar
  72. Fullekrug M (2006) Elementary model of sprite lightning electric fields. Am J Phys 74:804–805. doi: 10.1119/1.2206573 Google Scholar
  73. Fullekrug M, Fraser-Smith AC (1997) Global lightning and climate variability inferred from ELF magnetic field variations. Geophys Res Lett 24:2411–2414. doi: 10.1029/97GL02358 Google Scholar
  74. Fullekrug M, Rycroft MJ (2006) The contribution of sprites to the global atmospheric electric circuit. Earth Planets Space 58:1193–1196Google Scholar
  75. Fullekrug M, Moudry DR, Dawes G, Sentman DD (2001) Mesospheric sprite current triangulation. J Geophys Res 106:20189–20194. doi: 10.1029/2001JD900075 Google Scholar
  76. Fullekrug M, Mareev EA, Rycroft MJ (2006) Sprites, elves and intense lightning discharges. Springer, Dordrecht, p 398Google Scholar
  77. Galloway JM, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner AG, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vorosmarty C (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226. doi: 10.1007/s10533-004-0370-0 Google Scholar
  78. Gerken E, Inan U, Barrington-Leigh C (2000) Telescopic imaging of sprites. Geophys Res Lett 27:2637–2640. doi: 10.1029/2000GL000035 Google Scholar
  79. Goodman SJ, Buechler DE (1990) Lightning—rainfall relationships. In: Proceedings on AMS conference on operational precipitation estimation and prediction. Anaheim, CA, Am Meteor Soc, Boston, Feb 7–9Google Scholar
  80. Gordillio-Vazquez FJ (2008) Air plasma kinetics under the influence of sprites. J Phys D Appl Phys 41(234016):33. doi: 10.1088/0022-3727/41/23/234016 Google Scholar
  81. Green BD, Fraser ME, Rawlins WT, Jeong L, Blumberg WAM, Mende SB, Swenson GR, Hampton DL, Wescott EM, Sentman DD (1996) Molecular excitation in sprites. Geophys Res Lett 23:2161–2164. doi: 10.1029/96GL02071 Google Scholar
  82. Green JL, Boardsen S, Garcia L, Taylor WWL, Fung SF, Reinisch BW (2005) On the origin of whistler mode radiation in the plasmasphere. J Geophys Res 110:A03201. doi: 10.1029/2004JA010495 Google Scholar
  83. Green JL, Boardsen S, Garcia L, Taylor WW, Fung SF, Reinisch BW (2006) Reply to comment on “On the origin of whistler mode radiation in the plasmasphere” by Green et al. J Geophys Res 111:A09211. doi: 10.1029/2006JA011622 Google Scholar
  84. Gurevich AV, Milikh GM, Roussell-Dupre RA (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett A 165:463–468. doi: 10.1016/0375-9601(92)90348-P Google Scholar
  85. Gurevich AV, Zybin KP, Roussel-Dupre RA (1999) Lightning initiation by simultaneous effect of runway breakdown and cosmic ray showers. Phys Lett A 254:79–87. doi: 10.1016/S0375-9601(99)00091-2 Google Scholar
  86. Gurnett DA, Shawhan SD (1966) Determination of hydrogen ion concentration, electron density and proton gyro-frequency from the dispersion of proton whistler. J Geophys Res 71:741–754Google Scholar
  87. Gurnett DA, Shawhan SD, Brice NM, Smith RL (1965) Ion cyclotron whistlers. J Geophys Res 70:1665–1688. doi: 10.1029/JZ070i007p01665 Google Scholar
  88. Guthart H (1965) Nose whistler dispersion as a measure of magnetosphere electron temperature. Radio Sci 69D:1417–1425Google Scholar
  89. Hale LC, Baginsi ME (1987) Current to the ionosphere following a lightning stroke. Nature 329:814–816. doi: 10.1038/329814a0 Google Scholar
  90. Hamar D, Ferencz C, Lichtenberger J, Tarcsai G, Smith AJ, Yearby KH (1992) Trace splitting of whistlers-a signature of fine structure or mode splitting in magnetospheric ducts. Radio Sci 27:341–346Google Scholar
  91. Hampton DL, Heavner MJH, Wescott EM, Sentman DD (1996) Optical spectral characteristic of sprites. Geophys Res Lett 23:89–92Google Scholar
  92. Hansen HJ, Scourfield MWJ, Rash JPS (1983) Whistler duct lifetimes. J Atmos Terr Phys 45:789–794Google Scholar
  93. Hargreaves JK (1992) The solar terrestrial environment. Cambridge University Press, New YorkGoogle Scholar
  94. Harker HJ, Crawford FW (1969) Nonlinear interaction between extraordinary waves in a cold plasma. J Appl Phys 40:3247–3256. doi: 10.1063/1.1658171 Google Scholar
  95. Harrison RG, Carslaw KS (2003) Ion-aerosol-cloud processes in the lower atmosphere. Rev Geophys 41. doi: 10.1029/2002RG000114
  96. Hattori K, Hayakawa M, Shimakura S, Parrot M, Lefeuvre F (1989) GEOS-1 observation of hiss triggered chorus emissions in the outer magnetosphere and their generation model. Proc NIPR Symp Up Atmos Phys 2:84–95Google Scholar
  97. Hattori K, Hayakawa M, Shimakura S, Parrot M, Lefeuvre F (1991) An experimental study of the role of hiss in the generation of chorus in the outer magnetosphere, as based on spectral analyses and direction finding measurements on board GEOS-1. In: Proceedings in NIPR Symposium Tokyo, Japan, vol 4, pp 20–41Google Scholar
  98. Hayakawa M (1991) Direction finding of magnetospheric VLF/ELF emissions and their generation mechanism. In: Kikuchi H (ed) Environmental and space electromagnetics. Springer, Tokyo, pp 155–167Google Scholar
  99. Hayakawa M (1993) Study of generation mechanisms of magnetospheric VLF/ELF emissions based on the direction finding. Proc Natl Inst Polar Res Symp Up Atmos Phys 6:117–133Google Scholar
  100. Hayakawa M, Sazhin SS (1992) Mid-latitude and plasmaspheric hiss: a review. Planet Space Sci 40:1325–1338. doi: 10.1016/0032-0633(92)90089-7 Google Scholar
  101. Hayakawa M, Tanaka Y, Ohtsu J (1975) Satellite and ground observations of magnetospheric VLF Associated with severe magnetic storm on May 25–27, 1974. J Geophys Res 80:86–92. doi: 10.1029/JA080i001p00086 Google Scholar
  102. Hayakawa M, Tanaka Y, Okada T, Ohtsu J (1983) Time scales for the formation, life time and decay of low latitude whistler ducts. Ann Geophys 1:515–518Google Scholar
  103. Hayakawa M, Tanaka Y, Shimakura S, Iizuka A (1986) Statistical characteristics of medium-latitude VLF emissions (unstructured and structured): the time dependence and the association with geomagnetic disturbances. Planet Space Sci 34:1361–1372. doi: 10.1016/0032-0633(86)90072-3 Google Scholar
  104. Hayakawa M, Hattori K, Shimakura S, Parrot M, Lefeuvre F (1990) Direction finding of chorus emissions in the outer magnetosphere and their generation and propagation. Planet Space Sci 38:135–141. doi: 10.1016/0032-0633(90)90012-F Google Scholar
  105. Hayakawa M, Ohta K, Baba K (1994) Wave characteristics of tweek atmospherics deduced from the direction finding measurement and theoretical interpretation. J Geophys Res 65:10733–10743. doi: 10.1029/93JD02555 Google Scholar
  106. Hayakawa M, Iudin DI, Trakhtengerts VY (2008) Modeling of thundercloud VHF/UHF radiation on the lightning preliminary breakdown stage. J Atmos Sol Terr Phys 70:1660–1668. doi: 10.1016/j.jastp.2008.06.011 Google Scholar
  107. Heckman SJ, Williams ER, Boldi R (1998) Total global lightning inferred from Schumann resonance measurements. J Geophys Res 103:31,775–31,779. doi: 10.1029/98JD02648 Google Scholar
  108. Hegg DA, Hobbs PV, Radke LF (1980) Observations of the modification of cloud condensation nuclei in wave clouds. J Rech Atmos 14:217–222Google Scholar
  109. Heintzenberg J, Ogren JA, Noone KJ, Gardneus L (1989) The size distribution of submicrometer particles within and about stratocumulus clouds on Mt. Aeskutan. Atmos Res 24:89–101. doi: 10.1016/0169-8095(89)90039-2 Google Scholar
  110. Helliwell RA (1965) Whistler and related ionospheric phenomena. Stanford University Press, StanfordGoogle Scholar
  111. Helliwell RA (1967) A theory of discrete VLF emission from the magnetosphere. J Geophys Res 72:4773–4789. doi: 10.1029/JZ072i019p04773 Google Scholar
  112. Helliwell RA (1969) Low-frequency waves in the magnetosphere. Rev Geophys 7:281–303. doi: 10.1029/RG007i001p00281 Google Scholar
  113. Helliwell RA, Inan US (1982) VLF wave growth and discrete emission triggering in the magnetosphere: a feed back model. J Geophys Res 87:3537–3550. doi: 10.1029/JA087iA05p03537 Google Scholar
  114. Helliwell RA, Katsufrakis JP, Bell TF, Raghuram R (1975) VLF line radiation in the Earth’s magnetosphere and its association with power system radiation. J Geophys Res 80:4249–4258. doi: 10.1029/JA080i031p04249 Google Scholar
  115. Hiraki Y, Lizhu T, Fukunishi H, Nambu K, Fujiwa H (2002) Development of a new numerical model for investigation the energetic of sprites. Eos Tran AGU 83(47) O Fall Meet. Suppl Abstr A11:60105Google Scholar
  116. Hobara Y, Trakhtengerts VY, Demekhov AG, Hayakawa M (1998) Cyclotron amplification of whistler waves by electron beams in an inhomogeneous magnetic field. J Geophys Res 103:20,458–20,499. doi: 10.1029/98JA01746 Google Scholar
  117. Holden DN, Munston CP, Davenport JC (1995) Satellite observations of transionospheric pulse pairs. Geophys Res Lett 22:889–892. doi: 10.1029/95GL00432 Google Scholar
  118. Holzworth RH, Hu H (1995) Global electrodynamics from super pressure balloons. Adv Space Res 16:131–140. doi: 10.1016/0273-1177(95)00182-E Google Scholar
  119. Horne RB, Thorne RM (2003) Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys Res Lett 30(10):1527. doi: 10.1029/2003GL016973 Google Scholar
  120. Horne RB, Glauert SA, Thorne RM (2003) Resonant diffusion of radiation belt electrons by whistler-mode chorus. Geophys Res Lett 30(9):1493. doi: 10.1029/2003GL016963 2003Google Scholar
  121. Horne RB, Thorne RM, Shprits YY, Meredith NP, Glauert SA, Smith AJ, Kanekal SG, Baker DN, Engebretson MJ, Posch JL, Spasojevic M, Inan US, Pickett JS, Decreau PME (2005) Wave acceleration of electrons in the Van Allen radiation belts. Nature 437:227–230. doi: 10.1038/nature03939 Google Scholar
  122. Hoppel WA et al (1994) A cloud chamber study of the effect that nonprecipitaing water clouds have on the aerosol size distribution. Aerosol Sci Technol 20:1–30. doi: 10.1080/02786829408959660 Google Scholar
  123. Hu H, Li Q, Holzworth RH (1989) Thunderstorm related variations in stratospheric conductivity measurements. J Geophys Res 94:16429–16435. doi: 10.1029/JD094iD13p16429 Google Scholar
  124. Hu W, Cummer SA, Lyons WA, Nelson TE (2002) Lightning charge moment changes for the initiation of sprites. Geophys Res Lett 29(8):1279. doi: 10.102912001G2014593 Google Scholar
  125. Huang E, Williams E, Boldi R, Heckman S, Lyons W, Taylor M, Nelson T, Wong C (1999) Criteria for sprites and elves based on Schumann resonance observations. J Geophys Res 104:16943–16964. doi: 10.1029/1999JD900139 Google Scholar
  126. Huntrieser H, Schlager H, Roiger A, Lichtenberger M, Schumann U, Kurz C et al (2007) X over Brazil during TROCCINOX: airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective system. Atmos Chem Phys 7:2987–3013Google Scholar
  127. Ignaccolo M, Farges T, Blanc E, Fullekrug M (2008) Automated chirp detection with diffusion entropy: application to infrasound from sprites. Chaos, Solitons Fractals 38:1039–1050. doi: 10.1016/j.chaos.2007.02.011 Google Scholar
  128. Inan US, Bell TF, Pasko VP, Sentman DD, Wescott EM, Lyons WA (1995) VLF signatures of ionospheric disturbances associated with sprites. Geophys Res Lett 22:3461–3464. doi: 10.1029/95GL03507 Google Scholar
  129. Inan US, Sampson WA, Taranenko YN (1996) Space–time structure of optical flashes and ionization changes produced by lightning EMP. Geophys Res Lett 23:133–136. doi: 10.1029/95GL03816 Google Scholar
  130. Inan US, Piddyachiy D, Peter WB, Sauvaud JA, Parrot M (2007) DEMETER satellite observations of lightning-induced electron precipitation. Geophys Res Lett 34:L07103. doi: 10.1029/2006GL029238 Google Scholar
  131. Jacobson EA, Krider EP (1976) Electrostatic field changes produced by Florida lightning. J Atmos Sci 33:103–117. doi: 10.1175/1520-0469(1976)033<0103:EFCPBF>2.0.CO;2 Google Scholar
  132. Kartalev MD, Rycroft MJ, Papitashvili VO (2004) A quantitative model of the effect of global thunderstorms on the global distribution of ionospheric electrostatic potential. J Atmos Sol Terr Phys 66:1233–1240. doi: 10.1016/j.jastp.2004.05.012 Google Scholar
  133. Kartalev MD, Rycroft MJ, Fullekrug M, Papitashvili VO, Keremidarska VI (2006) A possible explanation for the dominant effect of South American thunderstorms on the Carnegie curve. J Atmos Sol Terr Phys 68:457–468. doi: 10.1016/j.jastp.2005.05.012 Google Scholar
  134. Kasemir HW (1950) Qualitative Uebersicht ueber Potential-Feldund Ladungsverhaltnisse bei einer Blitzentladung in der bvewitterwolke. In: Gewitter D (ed) Hans Israel. Akad Verlags Ges Geest and Portig K-G, Leiprig, GermanyGoogle Scholar
  135. Kasemir HW (1960) A contribution to the electrostatic theory of a lightning discharge. J Geophys Res 65:1873–1878. doi: 10.1029/JZ065i007p01873 Google Scholar
  136. Kasemir HW (1983) Static discharge and triggered lightning. Colorado Scientific Research Corp Berthoud, ReportGoogle Scholar
  137. Kempf NM, Krider EP (2003) Cloud to ground lightning and surface rainfall during great flood of 1993. Mon Weather Rev 131:1140–1149. doi: 10.1175/1520-0493(2003)131<1140:CLASRD>2.0.CO;2 Google Scholar
  138. Kitamura T, Jacobs JA, Watanabe T (1968) Investigation of quasi-periodic VLF emissions and their relation to geomagnetic micropulsations. Nature 220:360–361. doi: 10.1038/220360a0 Google Scholar
  139. Koons HC (1981) The role of hiss in magnetospheric chorus emissions. J Geophys Res 86:6745–6754. doi: 10.1029/JA086iA08p06745 Google Scholar
  140. Kokorowski M et al (2006) Rapid fluctuations of stratospheric electric field following a solar energetic particle event. Geophys Res Lett 33:L20105. doi: 10.1029/2006GL027718 Google Scholar
  141. Krehbiel PR (1986) The electrical structure of thunderstorms. In: The earth’s electrical environment. National Academy Press, Washington, DC, pp 90–113Google Scholar
  142. Krehbiel PR, Brook M, McCrory RA (1979) An analysis of the charge structure of lightning discharges to ground. J Geophys Res 84:2432–2456. doi: 10.1029/JC084iC05p02432 Google Scholar
  143. Krehbiel PL, Riousset JA, Pasko VP, Thomas RJ, Rison W, Stanley MA, Edens HE (2008) Upward electrical discharges from thunderstorms. Nat Geosci 1:233–237. doi: 10.1038/ngeo162 Google Scholar
  144. Krider EP, Musser JA (1982) Maxwell currents under thunderstorms. J Geophys Res 89:11171–11176. doi: 10.1029/JC087iC13p11171 Google Scholar
  145. Kumar S, Dixit SK, Gwal AK (1994) Propagation of tweek atmospherics in the Earth-ionosphere waveguide. Nuovo Cim 17C:275–281Google Scholar
  146. Kumar S, Anil D, Kishor A, Ramachandran V (2007) Whistler observed at lowlatitude ground based VLF facility are Fiji. J Atmos Sol Terr Phys 69:1366–1376. doi: 10.1016/j.jastp.2007.05.001 Google Scholar
  147. LaBelle J, Treumann RA (2002) Auroral radio emissions, 1. Hisses, roars and bursts. Space Sci Rev 101:295–440. doi: 10.1023/A:1020850022070 Google Scholar
  148. Lalmani, Ahmad A, Ahmad MM (1992) Ionosphere plasmasphere coupling electron fluxes from low latitude whistler studies at Nainital during geomagnetic storm. Planet Space Sci 40:1409–1418. doi: 10.1016/0032-0633(92)90096-7
  149. Lang TJ, Rutledge SA (2002) Relationship between convective storm kinematics, microphysics and lightning. Mon Weather Rev 130:2492–2506. doi: 10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2 Google Scholar
  150. Lang TJ et al (2004) The severe thunderstorm electrification and precipitation study. Bull Am Metab Soc 85:1107. doi: 10.1175/BAMS-85-8-1107 Google Scholar
  151. Lauben DS, Inan US, Bell TF, Gurnett DA (2002) Source characteristics of ELF/VLF chorus. J Geophys Res 107(A12):1429. doi: 10.1029/2000JA003019 Google Scholar
  152. Lee ACL (1986a) An operational system for remote location of lightning flashes using a VLF arrival time difference technique. Q J R Meteorol Soc 112:203–229. doi: 10.1002/qj.49711247112 Google Scholar
  153. Lee ACL (1986b) An operational system for remote location of lightning flashes using a VLF arrival time difference technique. J Atmos Ocean Technol 3:630–642. doi: 10.1175/1520-0426(1986)003<0630:AOSFTR>2.0.CO;2 Google Scholar
  154. Lee ACL (1989) “Part B” ground truth confirmation and theoretical limits of an experimental VLF arrival time difference lightning flash location system. Q J R Meteorol Soc 115:1147–1166. doi: 10.1002/qj.49711548908 Google Scholar
  155. Lichtenberger J, Tarcsai G, Pasztor S, Ferencz C, Hamar D, Molchanov OA, Golyavin AM (1996) Whistler doublets and hyperfine structure recorded digitally by the signal analyzer and sampler on the ACTIVE satellite. J Geophys Res 96:21149–21158. doi: 10.1029/91JA01616 Google Scholar
  156. Lichtenberger J, Hamar D, Ferencz Cs, Ferencz OE, Collier A, Hughes A (2005) What are the source of whistlers? URSI XVIII. Gen Ass H.2, New Delhi, IndiaGoogle Scholar
  157. Liszka L (2004) On the possible infrasound generation by sprites. J Low Freq Noise Vib Active Contr 23:85–93. doi: 10.1260/0263092042869838 Google Scholar
  158. Liszka L, Hobara Y (2006) Sprite-attributed infrasonic chirps-their detection, occurrence and properties between 1994 and 2004. J Atmos Sol Terr Phys 68:1179–1188. doi: 10.1016/j.jastp.2006.02.016 Google Scholar
  159. Lucas C, Zipser E, LeMone M (1994) Vertical velocity in oceanic convection off tropical Australia. J Atmos Sci 51:3183–3193. doi: 10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2 Google Scholar
  160. Luette JP, Park CG, Helliwell RA (1979) The control of magnetospheric chorus by power line radiation. J Geophys Res 84:2657–2660. doi: 10.1029/JA084iA06p02657 Google Scholar
  161. Lyons WA (1994) Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video. Geophys Res Lett 21:875–878. doi: 10.1029/94GL00560 Google Scholar
  162. Lyons W (1996) Sprites observations above the US high plains in relation to their parents thunderstorm systems. J Geophys Res 101:29,641–29,652. doi: 10.1029/96JD01866
  163. Lyons WA, Uliasz M, Nelson TE (1998) Large peak current cloud-to-ground lightning flashes during the summer months in the Contiguous United States. Mon Weather Rev 126:2217–2234. doi: 10.1175/1520-0493(1998)126<2217:LPCCTG>2.0.CO;2 Google Scholar
  164. Lyons WA, Cummer SA, Stanley MA, Huffiness GR, Wiens KC, Nelson TE (2008) Supercells and sprites. Am Meteorol Soc BAMS, 1165–1174Google Scholar
  165. MacGorman DR, Burgess DW (1994) Positive cloud-to-ground lightning in tornado storms and hailstorms. Mon Weather Rev 122:1671–1697. doi: 10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2 Google Scholar
  166. Magunia A (1996) The thunderstorm-driven diurnal variation of the ELF electromagnetic activity level. J Atmos Sol Terr Phys 56:1683–1698Google Scholar
  167. Makita M, Fukunishi H (1973) Rep Jpn Antarct Res Expedition 46:172Google Scholar
  168. Marshall JS, Radhakant S (1978) Radar precipitation maps as lightning indicators. J Appl Meteorol 17:206–212. doi: 10.1175/1520-0450(1978)017<0206:RPMALI>2.0.CO;2 Google Scholar
  169. Marshal TC, Rust WD (1993) Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull Am Metab Soc 74:2159–2170. doi: 10.1175/1520-0477(1993)074<2159:TTOVES>2.0.CO;2 Google Scholar
  170. Markson R (1978) Solar modulation of atmospheric electrification and possible implications for the Sun-weather relationship. Nature 273:103–109. doi: 10.1038/273103a0 Google Scholar
  171. Markson R (1986) Tropical convection, ionospheric potential and global circuit variations. Nature 320:588–594. doi: 10.1038/320588a0 Google Scholar
  172. Markson R, Price C (1999) Ionospheric potential as a proxy index for global temperatures. Atmos Res 51:309–314. doi: 10.1016/S0169-8095(99)00015-0 Google Scholar
  173. Massey RS, Holden DN (1995) Phenomenology of transionospheric pulse pairs. Radio Sci 30:1645–1659. doi: 10.1029/95RS01563 Google Scholar
  174. Mazur V, Ruhnke LH (1993) Common physical processes in natural and artificially triggered lightning. J Geophys Res 94:12,913–12,930. doi: 10.1029/93JD00626
  175. Mazur V, Ruhnke LH (1998) Model of electric charges in thunderstorms and associated lightning. J Geophys Res 103:23,299–23,308. doi: 10.1029/98JD02120
  176. Mazur V, Shao XM, Krehbiel PR (1998) Spider, lightning in intracloud and positive cloud-to-ground flashes. J Geophys Res 103(D16):19,811–19,822. doi: 10.1029/98JD02003
  177. McHarg MG, Stenbaek-Nielsen HC, Kammae T (2007) Observation of streamer formation in sprites. Geophys Res Lett 34:L06804. doi: 10.1029/2006GL027854 Google Scholar
  178. Mende SB, Rairden RL, Swenson GR, Lyons WA (1995) Sprite spectra: N2 1 PG band identification. Geophys Res Lett 22:2633–2637. doi: 10.1029/95GL02827 Google Scholar
  179. Mende SB et al (2002) Fine structure of sprites and proposed global observations, Cospar Colloquia Series. In: Liu LH (ed) Space weather study using multipoint techniques, 12, Pergamon Elsevier Science, pp 275–282Google Scholar
  180. Mende SB, Frey HU, Hsu RR, Su HT, Chen AB, Lee LC, Sentman DD, Takahashi Y, Fukunishi H (2005) D region ionization by lightning-induced electromagnetic pulses. J Geophys Res 110:A11312. doi: 10.1029/2005JA011064 Google Scholar
  181. Meredith NP, Horne RB, Anderson RR (2001) Substorm dependence of chorus amplitudes: implications for the acceleration of electrons to relativistic energies. J Geophys Res 106:13165–13178. doi: 10.1029/2000JA900156 Google Scholar
  182. Meredith NP, Horne RB, Iles RHA, Thorne RM, Heynderickx D, Anderson RR (2002) Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus. J Geophys Res 107(A7):1144. doi: 10.1029/2001JA900146 Google Scholar
  183. Meredith NP, Cain M, Horne RB, Thorne RM, Summers D, Anderson RR (2003) Evidence for chorus driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed period. J Geophys Res 108:1248. doi: 10.1029/2002JA009764 Google Scholar
  184. Meredith NP, Horne RB, Clilverd MA, Horsfall D, Thorne RM, Anderson RR (2006) Origin of plasmaspheric hiss. J Geophys Res 111:A09217. doi: 10.1029/2006JA011707 Google Scholar
  185. Meredith NP, Horne RB, Glauert SA, Anderson RR (2007) Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers. J Geophys Res 112:A08214. doi: 10.1029/2007JA012413 Google Scholar
  186. Mika A (2007) Very low frequency EM wave studies of transient lumious events in the lower ionosphere. PhD thesis, University of Crete, MayGoogle Scholar
  187. Mika A, Haldoupis C, Marshall RA, Neubert T, Inan US (2005) Subionospheric VLF signatures and their association with sprites observed during EuroSprite-2003. J Atmos Sol Terr Phys 67:1580–1597. doi: 10.1016/j.jastp.2005.08.011 Google Scholar
  188. Miyoshi Y, Morioka A, Misawa H, Obara T, Nagai T, Kasahara Y (2003a) Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations. J Geophys Res 108(A1):1004. doi: 10.1029/2001JA007542 Google Scholar
  189. Miyasato R, Fukunishi H, Takahashi Y, Taylor MJ (2003b) Energy estimation of electrons producing sprite halos using array photometer data. J Atmos Sol Terr Phys 65:573–581. doi: 10.1016/S1364-6826(02)00322-X Google Scholar
  190. Molvig KM, Hilfer G, Miller RH, Myczkowski J (1988) Self-consistent theory of triggered whistler emission. J Geophys Res 93:5665–5683. doi: 10.1029/JA093iA06p05665 Google Scholar
  191. Morrill JS, Bucsela EJ, Pasko VP, Berg SL, Benesch WM, Wescott EM, Heavner MJ (1998) Time resolved N2 triplet state vibrational populations and emissions associated with red sprites. J Atmos Sol Terr Phys 60:811–829. doi: 10.1016/S1364-6826(98)00031-5 Google Scholar
  192. Morrill J et al (2002) Electron energy and electric field estimates in sprites derived from ionized and neutral N2 emissions. Geophys Res Lett 29(10):1462. doi: 10.1029/2001GL014018 Google Scholar
  193. Morgan MG (1980) Some features of proresonance (PR) whistlers. J Geophys Res 85:103–106. doi: 10.1029/JA085iA01p00130 Google Scholar
  194. Moudry D, Stenbaek-Nielsen H, Sentman D, Wescott E (2003) Imaging of elves, halos and sprite initiation at 1 ms time resolution. J Atmos Sol Terr Phys 65:509–518. doi: 10.1016/S1364-6826(02)00323-1 Google Scholar
  195. Muhleisen R (1977) The global circuit and its parameters. In: Dolezalek H, Reiter R (eds) Electrical processes in atmosphere. Steinkopff, Darmstadt, p 467Google Scholar
  196. Murray ND, Orville RE, Huffines GR (2000) Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998. Geophys Res Lett 27:2249–2252. doi: 10.1029/2000GL011656 Google Scholar
  197. Nagano I, Yagitani S, Kojima H, Matsummoto H (1996) Analysis of wave normal and Poynting vectors of the chorus emissions observed on Geotail. J Geomag Geoelectr 48:229–307Google Scholar
  198. Nagano I, Yagitani S, Migamura K, Makino S (2003) Full wave analysis of Elves created by lightning generated electromagnetic pulses. J Atmos Sol Terr Phys 65:615–625. doi: 10.1016/S1364-6826(02)00324-3 Google Scholar
  199. Neubert T, Allin TH, Blanc E, Farges T, Haldoupis C, Mika A et al (2005) Co-ordinated observations of transient luminous events during the Eurosprite 2003 campaign. J Atmos Sol Terr Phys 67:807–820. doi: 10.1016/j.jastp.2005.02.004 Google Scholar
  200. Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell CF, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, Vander Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. doi: 10.1007/s10712-008-9043-1 Google Scholar
  201. Nickolaenko AP, Hayakawa M, Hobara Y (1996) Temporal variation of the global lightning activity deduced from Schumann resonance. J Atmos Terr Phys 58:1699–1709. doi: 10.1016/0021-9169(95)00189-1 Google Scholar
  202. Nickolaenko AP, Satori G, Zieger B, Rabinowicz LM, Kuduntseva IG (1998) Parameters of global thunderstorm activity deduced from the long term Schumann resonance records. J Atmos Sol Terr Phys 60:387–399. doi: 10.1016/S1364-6826(97)00121-1 Google Scholar
  203. Nunn D, Smith AJ (1996) Numerical simulation of whistler-triggered VLF emissions observed in Antarctica. J Geophys Res 101:5261–5277. doi: 10.1029/95JA03143 Google Scholar
  204. Nunn D, Omura Y, Matsumoto H, Nagano I, Yagitani S (1997) The numerical simulation of VLF chorus and discrete emissions observed on Geotail satellite using a Vlasov code. J Geophys Res 102:27,083–27,097. doi: 10.1029/97JA02518 Google Scholar
  205. Nunn D, Rycroft MJ, Trakhtengerts V (2005) A parametric study of the numerical simulations of triggered VLF emissions. Ann Geophys 23:3655–3666CrossRefGoogle Scholar
  206. Ogawa T, Tanaka Y, Fraser-Smith AC, Gendrin R (1967) Worldwide simultaneity of occurrence of a Q-type ELF burst in the Schumann resonance frequency range. J Geomag Geoelectr 19:377–385Google Scholar
  207. Ohta K, Nishimura Y, Kitagawa T (1997) Study of propagation characteristics of very low latitude whistlers by means of three dimensional ray tracing computations. J Geophys Res 102:7537–7546. doi: 10.1029/96JA03633 Google Scholar
  208. Ohkubo A, Fukunishi H, Takahashi Y, Adachi T (2005) VLF/ELF sferic evidence for in-cloud discharge activity producing sprites. Geophys Res Lett 32:L04812. doi: 10.1029/2004GL021943 Google Scholar
  209. Ohya H, Nishino M, Murayama Y, Igarashi K (2003) Equivalent electron densities at reflection heights of tweek atmospherics in the low-middle latitude D-region ionosphere. Earth Planets Space 55:627–635Google Scholar
  210. Ohya H, Nishino M, Murayama Y, Igarashi K, Saito A (2006) Using tweek atmospherics to measure the response of the low-middle latitude D-region ionosphere to a magnetic storm. J Atmos Sol Terr Phys 68:697–709. doi: 10.1016/j.jastp.2005.10.014 Google Scholar
  211. Omura Y, Nunn D, Matsumoto H, Rycroft MJ (1991) A review of observational, theoretical and numerical studies of VLF triggered emissions. J Atmos Terr Phys 53:351–368. doi: 10.1016/0021-9169(91)90031-2 Google Scholar
  212. Ostgaaard N, Gjesteland T, Stadsnes J, Connell PH, Carlson B (2008) Production altitude and time delays of terrestrial gamma flashes: revisiting the burst and transient source experiment spectra. J Geophys Res 113:A02307. doi: 10.1029/2007JA012618 Google Scholar
  213. Outsu J (1960) Numerical study of tweeks based on waveguide mode theory. In: Proceeding research institute atmospheric. Nagoya University, vol 7, pp 58–71Google Scholar
  214. Park CG (1976) Sub-storm electric fields in the evening plasmasphere and their effects on the underlying F-layer. J Geophys Res 81:2283–2288. doi: 10.1029/JA081i013p02283 Google Scholar
  215. Park CG (1978) Whistler observations of substorm electric fields in night side in the plasmasphere. J Geophys Res 83:5773–5777. doi: 10.1029/JA083iA12p05773 Google Scholar
  216. Park CG, Carpenter DL (1978) Very low frequency radio waves in the magnetosphere. In: Park LJ, Lanzerotti CG (eds) Upper atmosphere research in Antarctica, Antarctic research series, vol 29. American Geophysical Union, Washington, DCGoogle Scholar
  217. Park CG, Chang DCD (1978) Transmitter simulation of power line radiation effects in the magnetosphere. Geophys Res Lett 5:861–864. doi: 10.1029/GL005i010p00861 Google Scholar
  218. Park CG, Dejnakarintra M (1973) Penetration of thundercloud electric fields into the ionosphere and magnetosphere. I. Middle and subauroral latitudes. J Geophys Res 78:6623–6632. doi: 10.1029/JA078i028p06623 Google Scholar
  219. Park CG, Carpenter DL, Wiggin DB (1978) Electron density in the plasmasphere: whistler data on solar cycle, annual, and diurnal variations. J Geophys Res 83:3137–3144. doi: 10.1029/JA083iA07p03137 Google Scholar
  220. Parrot M, Santolik O, Cornilleau-Wehrlin N, Maksimovic M, Harvey CC (2003) Source location of chorus emissions observed by Cluster. Ann Geophys 21:473–480CrossRefGoogle Scholar
  221. Parrot M, Santolik O, Gurnett DA et al (2004) Characteristics of magnetospherically reflected chorus wave observed by CLUSTER. Ann Geophys 22:2597–2606Google Scholar
  222. Parrot M, Buzzi A, Santolik O, Berthelier JJ, Sauvaud JA, Lebreton JP (2006) New observations of electromagnetic harmonic ELF emissions in the ionosphere by the DEMETER satellite during large magnetic storms. J Geophys Res 111:A08301. doi: 10.1029/2005JA011583 Google Scholar
  223. Pasko VP (2003) Electric jet. Nature 423:927–929. doi: 10.1038/423927a Google Scholar
  224. Pasko VP (2006) Theoretical modeling of sprites and jets sprites, Elves and intense lightning discharges. In: Fullekrug M et al (eds) NATO science series II: mathematics, physics and chemistry, vol 225. Springer, Heidleberg, pp 253–293Google Scholar
  225. Pasko VP (2007) Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Sci Technol 16:S13–S29. doi: 10.1088/0963-0252/16/1/S02 Google Scholar
  226. Pasko VP, Snively JB (2007) Mechanism of infrasound radiation from sprites. Eos Trans AGU 88(52), Fall Meet. Suppl, Abstract AE23A–0899, San Francisco, CA, 10–14 DecemberGoogle Scholar
  227. Pasko VP, Inan US, Taranenko YN, Bell TF (1995) Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud field. Geophys Res Lett 22:365–368. doi: 10.1029/95GL00008 Google Scholar
  228. Pasko VP, Inan US, Bell TF (1996) Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud field. Geophys Res Lett 23:649. doi: 10.1029/96GL00473 Google Scholar
  229. Pasko VP, Inan US, Bell TF, Taranenko YN (1997) Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J Geophys Res 102:4529. doi: 10.1029/96JA03528 Google Scholar
  230. Pasko VP, Inan US, Bell TF (1998) Spatial structures of sprites. Geophys Res Lett 25:2123–2126. doi: 10.1029/98GL01242 Google Scholar
  231. Pasko VP, Stanley MA, Mathews JD, Inan US, Wood TG (2002) Electrical discharge from a thundercloud top to the ionosphere. Nature 416:152–154. doi: 10.1038/416152a Google Scholar
  232. Pasmanik DL, Trakhtengerts VY (2005) Dispersion properties of ducted whistlers, generated by lightning discharge. Ann Geophys 23:1433–1439Google Scholar
  233. Pasmanik DL, Titova EE, Demekhov AG, Trakhtengerts VY, Santolik O, Jiricek F, Kudela K, Parrot M (2004) Quasi-periodic ELF/VLF wave emissions in the Earth’s magnetosphere: comparison of satellite observations and modeling. Ann Geophys 22:4351–4361CrossRefGoogle Scholar
  234. Pessi A, Kenneth SB, Cummins L, Turner T (2004) On the relationship between lightning and convective rainfall over the central Pacific Ocean. In: 18th international lightning detection conferences, University of Helsinki, Helsinki, Finland, 7–9 June 2004Google Scholar
  235. Petersen WA, Rutledge SA (1998) On the relationship between cloud-to ground lightning and convective rainfall. J Geophys Res 103:14025–14040. doi: 10.1029/97JD02064 Google Scholar
  236. Pickett JS, Santolik O, Kahler SW, Masson A, Adrian ML, Gurnet DA, Bell TF, Laakso H, Parrot M, Decreau P, Fazakerley A, Cornilleau-Wehrlin N, Balogh A, Andre M (2004) Multi-point cluster observations of VLF risers, fallers and hooks at and near the plasmapause. Multiscale Processes in the Earth’s Magnetosphere 307–328Google Scholar
  237. Piepgrass MV, Krider EP (1982) Lightning and surface rainfall during Florida thunderstorms. J Geophys Res 87:193–201. doi: 10.1029/JC087iC13p11193 Google Scholar
  238. Polk C (1982) Schumann resonance. In: CRC handbook of atmospherics, vol I, pp 11–117Google Scholar
  239. Price C (1993) Global surface temperature and the atmospheric electric circuit. Geophys Res Lett 20:1363–1366. doi: 10.1029/93GL01774 Google Scholar
  240. Price C (2000) Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature 406:290–293. doi: 10.1038/35018543 Google Scholar
  241. Price C, Rind D (1994) Possible implication of global climate change and global lightning distributions and frequencies. J Geophys Res 99:10823–10831. doi: 10.1029/94JD00019 Google Scholar
  242. Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, Cambridge, p 697Google Scholar
  243. Reeve CD, Rycroft MJ (1976a) A mechanism for precursors to whistlers. J Geophys Res 81:5900–5910. doi: 10.1029/JA081i034p05900 Google Scholar
  244. Reeve CD, Rycroft MJ (1976b) Unducted VLF energy from tropical lightning as a possible source of mid latitude VLF emissions and electron precipitation. J Geophys Res 81:6201–6202. doi: 10.1029/JA081i034p06201 Google Scholar
  245. Reeve N, Toumi R (1999) Lightning activity as an indicator of climate change. Q J R Soc 125:893–903CrossRefGoogle Scholar
  246. Reid GC (1986) In: Krider EP, Roble G (eds) Electrical structure of middle atmosphere, study in geophysics: the earth electrical environment. National Academy Press, Washington, DC, pp 183–194Google Scholar
  247. Reiter R (1972) Case study concerning the impact of solar activity upon potential gradient and air earth current in low troposphere. Pure Appl Geophys 94:218–225. doi: 10.1007/BF00875682 Google Scholar
  248. Rison W, Thomas RJ, Krehbiel PR, Hamlin T, Harlin J (1999) A GPS based three dimensional lightning mapping system: initial observations in central New Mexico. Geophys Res Lett 26:3573–3576. doi: 10.1029/1999GL010856 Google Scholar
  249. Roble RG (1985) On solar-terrestrial relation in atmospheric electricity. J Geophys Res 90:6000–6012. doi: 10.1029/JD090iD04p06000 Google Scholar
  250. Roble RG, Tzur I (1986) The global atmospheric electrical circuit. In: Study in geophysics- the earth’s electrical environment. National Academy Press, Washington, DC, pp 206–231Google Scholar
  251. Rodger CJ (1999) Red sprites, upward lightning and VLF perturbations. Rev Geophys 37:317–336. doi: 10.1029/1999RG900006 Google Scholar
  252. Rodger CJ, Clilvered MA (2008) Hiss from the chorus. Nature 452:41–42. doi: 10.1038/452041a Google Scholar
  253. Rodger CJ, Wait JR, Dowden RL (1998) VLF scattering from red sprites theory. J Atmos Sol Terr Phys 60:755–763. doi: 10.1016/S1364-6826(98)00015-7 Google Scholar
  254. Rodger CJ, Enell CF, Turunen E, Clilverd MA, Thomson NR, Verronen PT (2007) Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionization-levels and neutral chemistry. Ann Geophys 25:1745–1757CrossRefGoogle Scholar
  255. Rodger CJ, Seppala A, Clilverd MA (2008) Significance of transient luminous events to neutral chemistry: experimental measurements. Geophys Res Lett 35:L07803. doi: 10.1029/2008GL033221 Google Scholar
  256. Rosenberg TJ, Wei R, Detrick DL, Inan US (1990) Observations and modeling of wave induced microburst electron precipitation. J Geophys Res 95:6467–6475. doi: 10.1029/JA095iA05p06467 Google Scholar
  257. Roux A, Pellat R (1978) A theory of triggered emissions. J Geophys Res 83:1433–1441. doi: 10.1029/JA083iA04p01433 Google Scholar
  258. Roussel-Dupre RA, Gurevich AV (1996) On runaway break-down and upward propagating discharges. J Geophys Res 101:2297. doi: 10.1029/95JA03278 Google Scholar
  259. Roussel-Dupre RA, Gurevich AV, Tunnell T, Milikh GM (1994) Kinetic theory of runaway air breakdown. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49:2257. doi: 10.1103/PhysRevE.49.2257 Google Scholar
  260. Rowland HL (1998) Theories and simulations of elves, sprites and blue jets. J Atmos Sol Terr Phys 60:831–844. doi: 10.1016/S1364-6826(98)00034-0 Google Scholar
  261. Rowland HL, Fernsler RF, Huba JD, Bernhardt PA (1995) Lightning driven EMP in the upper atmosphere. Geophys Res Lett 22:361–364. doi: 10.1029/95GL00012 Google Scholar
  262. Rutledge SA, Williams ER, Keenan TD (1992) The Down Under Doppler and Electricity Experiment (DUNDEE) overview and preliminary results. Bull Am Meteorol Soc 73:3–16. doi: 10.1175/1520-0477(1992)073<0003:TDUDAE>2.0.CO;2 Google Scholar
  263. Rycroft MJ (1972) VLF emissions in the magnetosphere. Radio Sci 7:811–830. doi: 10.1029/RS007i008p00811 Google Scholar
  264. Rycroft MJ (1973) Enhanced energetic electron intensities at 100 km altitude and a whistler propagating through the plasmsphere. Planet Space Sci 21:239–251. doi: 10.1016/0032-0633(73)90009-3 Google Scholar
  265. Rycroft MJ (2006) Electrical process coupling the atmosphere and ionosphere: an overview. J Atmos Sol Terr Phys 68:445–456. doi: 10.1016/j.jastp.2005.04.009 Google Scholar
  266. Rycroft MJ, Cho M (1998) Modeling electric and magnetic field due to thundercloud and lightning from cloud tops to ionosphere. J Atmos Sol Terr Phys 60:889–893. doi: 10.1016/S1364-6826(98)00037-6 Google Scholar
  267. Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol Terr Phys 62:1563–1576. doi: 10.1016/S1364-6826(00)00112-7 Google Scholar
  268. Rycroft MJ, Odzimek A, Arnold NF, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the role of lightning and sprites. J Atmos Sol Terr Phys 69:445–456. doi: 10.1016/j.jastp.2007.09.004 Google Scholar
  269. Sagredo JL, Bullough K (1973) VLF goniometer observations at Halley Bay, Antartica. II magnetospheric structure deduced from whistler observations. Planet Space Sci 21:913–926. doi: 10.1016/0032-0633(73)90139-6 Google Scholar
  270. Saetre C et al (2007) Thermospheric nitric oxide at higher latitudes: model calculations with auroral energy input. J Geophys Res 112:A08306. doi: 10.1029/2006JA012203 Google Scholar
  271. Santolik O (2008) New results of investigations of whistler-mode chorus emissions. Nonlinear Process Geophys 15:621–630Google Scholar
  272. Santolik O, Gurnett DA (2002) Propagation of auroral hiss at high altitudes. Geophys Res Lett 29(10):1481. doi: 10.1029/2001GL013666 Google Scholar
  273. Santolik O, Parrot M, Storey LRO, Pickett JS, Gurnett DA (2001) Propagation analysis of plasmaspheric hiss using polar PWI measurements. Geophys Res Lett 28(6):1127–1130. doi: 10.1029/2000GL012239 Google Scholar
  274. Santolik O, Parrot M, Lefeuvre F (2003) Singular value decomposition methods for wave propagation analysis. Radio Sci 38(1):1010. doi: 10.1029/2000RS002523 Google Scholar
  275. Santolik O, Gurnett DA, Pickett JS, Parrot M, Cornilleau-Wehrlin N (2005) Central position of the source region of storm-time chorus. Planet Space Sci 53:299–305. doi: 10.1016/j.pss.2004.09.056 Google Scholar
  276. Santolik O, Chum J, Parrot M, Gurnett DA, Pickett JS, Cornilleau-Wehrlin N (2006) Propagation of whistler mode chorus to low altitudes: spacecraft observations of structured ELF hiss. J Geophys Res 111:A10208. doi: 10.1029/2005JA011462 Google Scholar
  277. Sato M et al (2002) Charge moment differences in winter of Japan and summer of the United States. EOS 83:A11C–0103Google Scholar
  278. Sato M, Takahashi Y, Yoshida A, Adachi T (2008) Global distribution of intense lightning discharges and their seasonal variations. J Phys D Appl Phys 41(234011):10. doi: 10.1088/0022-3727/41/23/234011 Google Scholar
  279. Satori G (1996) Monitoring Schumann resonance-II. Daily and seasonal frequency variations. J Atmos Terr Phys 58:1483–1488. doi: 10.1016/0021-9169(95)00146-8 Google Scholar
  280. Saunders C (2008) Charge separation mechanisms in clouds. Space Sci Rev 137:335–353. doi: 10.1007/s11214-008-9345-0 Google Scholar
  281. Sazhin SS, Hayakawa M (1992) Magnetospheric chorus emissions: a review. Planet Space Sci 40:681–697. doi: 10.1016/0032-0633(92)90009-D Google Scholar
  282. Sazhin SS, Hayakawa M (1994) Periodic and quasiperiodic emissions. J Atmos Terr Phys 56:735–753. doi: 10.1016/0021-9169(94)90130-9 Google Scholar
  283. Sazhin SS, Smith AJ, Sazhin EM (1990) Can magnetospheric electron temperature be inferred from whistler dispersion measurements? Ann Geophys 8:273–285Google Scholar
  284. Sazhin SS, Hayakawa M, Bullough K (1992) Whistler diagnostics of magnetospheric parameters, a review. Ann Geophys 10:293–308Google Scholar
  285. Sazhin SS, Bullough K, Hayakawa M (1993) Auroral hiss, a review. Planet Space Sci 41:153–166. doi: 10.1016/0032-0633(93)90045-4 Google Scholar
  286. Scarf FL (1962) Landau damping and the attenuation of whistlers. Phys Fluids 5:6–13. doi: 10.1063/1.1706494 Google Scholar
  287. Schlegel K, Fullekrug M (1999) Schuman resonance parameter changes during high energy particle precipitation. J Geophys Res 104:10,111–10,118. doi: 10.1029/1999JA900056
  288. Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides source. Atmos Chem Phys 7:3823–3907CrossRefGoogle Scholar
  289. Seity Y, Soula S, Sauvageot H (2001) Lightning and precipitation relationship in costal thunderstorms. J Geophys Res 106:22,801–22,816. doi: 10.1029/2001JD900244
  290. Sentman DD (1995) Schumann resonance. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 1. SRC Press, Boca RatonGoogle Scholar
  291. Sentmann DD, Fraser BJ (1999) Simultaneous observations at Schumann resonance in California and Australia: evidence for intensity modulation by the local height of the D-region. J Geophys Res 96:15973–15984. doi: 10.1029/91JA01085 Google Scholar
  292. Sentman DD, Wescott EM, Osborne DL, Hampton DL, Heavner MJ (1995) Preliminary results from the sprites 94 aircraft campaign: 1 Red sprites. Geophys Res Lett 22:1205. doi: 10.1029/95GL00583 Google Scholar
  293. Sentman DD, Heavner MJ, Baker DN, Cayton TE, Fraser BJ (1996) Effect of solar storm on the Schumann resonance in late 1989. In: Paper presented in 10th annual conferences on Atmospheric electricity, Soc of Atmos Electr of Japan, Osaka, JapanGoogle Scholar
  294. Sentmann DD, Wescott EM, Picard RH, Winick JR, Stenback-Nielsen HC, Dewom ER, Moudry DR, Sao Sabbas FT, Heavener MJ, Morrill J (2003) Simultaneous observations of mesospheric gravity waves and sprites generated by a mid western thunderstorm. J Atmos Sol Terr Phys 65:537–550. doi: 10.1016/S1364-6826(02)00328-0 Google Scholar
  295. Sentman DD, Stenbaek-Nielsen HC, McHarg MG, Morill JC (2008) Plasma chemistry of sprite streamers. J Geophys Res 113:D11112. doi: 10.1029/2007JD008941 Google Scholar
  296. Shawhan SD, Gurnett D (1966) Fractional concentration of hydrogen ions in the ionosphere from VLF proton whistler measurements. J Geophys Res 11:47–59Google Scholar
  297. Shepherd TR, Rust WD, Marshall TC (1996) Electric fields and charges near 0°C in stratiform clouds. Mon Weather Rev 124:920–938. doi: 10.1175/1520-0493(1996)124<0919:EFACNI>2.0.CO;2 Google Scholar
  298. Siingh D, Singh RP, Kamra AK, Gupta PN, Singh R, Gopalakrishnan V, Singh AK (2005a) Review of electromagnetic coupling between the Earth’s atmosphere and the space environment. J Atmos Sol Terr Phys 67:637–658. doi: 10.1016/j.jastp.2004.09.006 Google Scholar
  299. Siingh D, Singh S, Singh RP (2005b) Study of wave–particle interaction in the disturbed magnetosphere. Indian J Radio Space Phys 34:305–313Google Scholar
  300. Siingh D, Gopalakrishnan V, Singh RP, Kamra AK, Singh Shubha, Pant V, Singh R, Singh AK (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110. doi: 10.1016/j.atmosres.2006.05.005 Google Scholar
  301. Simoes F, Grard R, Hamelin M, Lopez-Moreno JJ, Schwingenschuh K, Beghin C, Berthlier JJ, Lebreton JP, Molina-Cuberos GJ, Tokano T (2008) The Schumann resonance: a tool for exploring the atmospheric environment and the subsurface of the planets and their satellites. Icarus 194:30–41. doi: 10.1016/j.icarus.2007.09.020 Google Scholar
  302. Singh B (1976) On the ground observation of whistlers at low latitudes. J Geophys Res 81:2429–2434. doi: 10.1029/JA081i013p02429 Google Scholar
  303. Singh RP (1993) Whistler studies at low latitudes, a review. Indian J Radio Space Phys 22:139–155Google Scholar
  304. Singh DK (1999) Study of whistler waves & VLF emissions at Varanasi, India. PhD thesis, Banaras Hindu University, IndiaGoogle Scholar
  305. Singh RP, Patel RP (2004) Hiss triggered chorus emissions at Indian stations. J Atmos Sol Terr Phys 66:1027–1033. doi: 10.1016/j.jastp.2004.03.013 Google Scholar
  306. Singh AK, Ronnmark K (2004) Generation mechanism for VLF chorus emissions observed at a low latitude ground station. Ann Geophys 22:2067–2072CrossRefGoogle Scholar
  307. Singh R, Singh RP (1997) Ray tracing explanation of whistler precursors observed at low latitude ground station Gulmarg. Indian J Radio Space Phys 26:293–300Google Scholar
  308. Singh AK, Singh RP (1999) Duct life times at mid latitudes. Period Polytech Ser El Eng 43:43–52Google Scholar
  309. Singh DK, Singh RP (2002) Hiss emissions during quiet and disturbed period. Pramana J Phys 59(4):563–573. doi: 10.1007/s12043-002-0068-6 Google Scholar
  310. Singh K, Singh RP (2005a) Excitation of electromagnetic waves by a current source in the inhomogeneous lossy magnetoplasma. IEEE Trans Plasma Sci 33:1984–1994. doi: 10.1109/TPS.2005.860107 Google Scholar
  311. Singh K, Singh RP (2005b) Simulation of transionospheric pulse pairs In: Proceeding of XXVIIIth general assembly of international union of radio science (URSI), New Delhi, 23–29 October 2005, HGEP.13(0256)Google Scholar
  312. Singh K, Singh RP (2005c) Simulation of electromagnetic signals propagating through magnetosphere. Curr Sci 88:1562–1572Google Scholar
  313. Singh UP, Singh AK, Lalmani Singh RP, Singh RN (1992) Hybrid mode propagation of whistlers at low latitudes. Indian J Radio Space Phys 21:246–249Google Scholar
  314. Singh RP, Lalmani, Singh UP (1993) Electron density distribution derived from low latitude whistler studies. Ann Geophys 11:1011–1017Google Scholar
  315. Singh RP, Singh AK, Singh DK (1998a) Plasmaspheric parameters as determined from whistler spectrograms, a review. J Atmos Sol Terr Phys 60:495–508. doi: 10.1016/S1364-6826(98)00001-7 Google Scholar
  316. Singh AK, Singh AK, Singh DK, Singh RP (1998b) The effect of temperature on the dispersion of proton whistler. J Atmos Sol Terr Phys 60:551–561. doi: 10.1016/S1364-6826(97)00129-6 Google Scholar
  317. Singh RP, Singh DK, Singh AK, Hamar D, Lichtenberger J (1999a) Application of matched filtering and parameter estimation technique to low latitude whistlers. J Atmos Sol Terr Phys 61:1082–1092. doi: 10.1016/S1364-6826(99)00033-4 Google Scholar
  318. Singh DK, Singh AK, Patel RP, Singh RP, Singh AK (1999b) Two types of ELF hiss observed at Varanasi India. Ann Geophys 17:1260–1267. doi: 10.1007/s00585-999-1260-5 Google Scholar
  319. Singh R, Patel RP, Singh RP, Lalmani (2000) An experimental study of hiss-triggered chorus emission at low latitudes. Earth Planets Space 52:37–40Google Scholar
  320. Singh DK, Patel RP, Singh RP (2001) Auroral and low latitude VLF hiss. Indian J Radio Space Phys 30:24–30Google Scholar
  321. Singh RP, Patel RP, Singh AK, Das IML (2002) Lightning generated ELF/VLF, optical waves and their diagnostic features. Indian J Phys 76B(3):235–249Google Scholar
  322. Singh RP, Patel RP, Singh DK (2003) Triggered emissions observed at Varanasi (India). Planet Space Sci 51:495–503. doi: 10.1016/S0032-0633(03)00045-X Google Scholar
  323. Singh DK, Singh RP, Kamra AK (2004a) The electrical environment of the Earth’s atmosphere: a review. Space Sci Rev 113:375–408Google Scholar
  324. Singh KK, Singh R, Singh RP, Shyampati (2004b) Hisslers: quasi periodic VLF noise forms observed at low latitude ground station Jammu (L = 1.17). Geophys Res Lett 31:L19802. doi: 10.1029/2004GL020468
  325. Singh K, Singh RP, Ferencz OE (2004c) Simulation of whistler mode propagation for low latitude stations. Earth Planets Space 56:979–987Google Scholar
  326. Singh RP, Patel RP, Singh R, Singh RN (2005) Lightning produced nitrogen oxides in the lower atmosphere-an overview. Indian J Radio Space Phys 34:248–254Google Scholar
  327. Singh RP, Singh K, Singh AK, Hamar D, Lichtenberger J (2006a) Matched filtering analysis of diffused whistlers and their propagation at low latitudes. J Atmos Sol Terr Phys 68:710–714. doi: 10.1016/j.jastp.2005.10.018 Google Scholar
  328. Singh K, Singh RP, Singh AK, Singh RN (2006b) Simulation of nose whistler: an application to low latitude whistlers. Planet Space Sci 54:594–598. doi: 10.1016/j.pss.2005.12.018 Google Scholar
  329. Singh S, Patel RP, Singh KK, Singh AK, Singh RP (2007a) Role of geomagnetic disturbances on VLF whistler wave activity at low latitudes. Planet Space Sci 55:1218–1224. doi: 10.1016/j.pss.2007.02.001 Google Scholar
  330. Singh R, Singh K, Singh AK, Singh RP (2007b) Propagation characteristic and generation mechanism of ELF/VLF hiss observed at low latitude Jammu. Earth Moon Planets 100:17–29. doi: 10.1007/s11038-006-9070-1 Google Scholar
  331. Singh KK, Patel RP, Singh J, Kumar B, Singh AK, Singh RP, Koul BL, Lalmani (2008a) Observations of unusual whistlers during daytime at Jammu. J Earth Syst Sci 117(3):1–7. doi: 10.1007/s12040-008-0026-x Google Scholar
  332. Singh AK, Singh R, Singh K, Singh RP (2008b) An explanation of the observation of pulsing hiss at low latitude. Adv Space Res 41:1695–1698. doi: 10.1016/j.asr.2008.01.008 Google Scholar
  333. Smith IG (1969) Langmuir probes in the ionosphere. Elsevier, New York, p 261Google Scholar
  334. Smith RL, Angerami JJ (1968) Magnetospheric properties deduced from OGO-1 observations of ducted and nonducted whistlers. J Geophys Res 73:1–20. doi: 10.1029/JA073i001p00001 Google Scholar
  335. Smith AJ, Nunn D (1998) Numerical simulation of VLF riser, fallers and hooks observed in Antarctica. J Geophys Res 103:6771–6784. doi: 10.1029/97JA03396 Google Scholar
  336. Smith AJ, Engebretson MJ, Klatt EM, Inan US, Arnoldy RL, Fukunishi H (1998) Periodic and quasi-periodic ELF/VLF emissions observed by an array of Antarctic stations. J Geophys Res 103:23,611–23,622. doi: 10.1029/98JA01955
  337. Smith DA, Eack KB, Harlin J, Heavner MJ, Jacobson AR, Massey RS, Shao XM, Wiens KC (2002) The Los Almos sferic array: a research tool for lightning investigation. J Geophys Res 107(13):4183. doi: 1029/2001JD00502 Google Scholar
  338. Smith AJ, Horne RB, Meredith NP (2004) Ground observations of chorus following geomagnetic storms. J Geophys Res 109:A02205. doi: 10.1029/2003JA010204 Google Scholar
  339. Smith DM, Lopez LI, Lin RP, Barrington-Leigh CP (2005) Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307:1085–1088. doi: 10.1126/oiscience.1107466 Google Scholar
  340. Solomon J, Cornilleau-Wehrlin N, Korth A, Kremser G (1988) An experimental study of ELF/VLF hiss generation in the Earth’s magnetosphere. J Geophys Res 93:1839–1842. doi: 10.1029/JA093iA03p01839 Google Scholar
  341. Somayajulu VV, Rao M, Tantry BAP (1972) Whistlers at low latitudes. Indian J Radio Space Phys 1:102–118Google Scholar
  342. Sonwalker VS, Harikumar J (2000) An explanation of ground observations of auroral hiss: role of density depletion and meter-scale irregularities. J Geophys Res 105:18867–18883. doi: 10.1029/1999JA000302 Google Scholar
  343. Sonwalkar VS, Inan US (1989) Lightning as an embryonic source of VLF Hiss. J Geophys Res 94:6986–6994. doi: 10.1029/JA094iA06p06986 Google Scholar
  344. Stanley M, Krehbiel P, Max B, More C, Rison W, Abrahams B (1999) High speed video of initial sprite development. Geophys Res Lett 26:3201–3204. doi: 10.1029/1999GL010673 Google Scholar
  345. Stanley M, Brooks M, Krehbiel P (2000) Detection of daytime sprites via a unique sprite ELF signature. Geophys Res Lett 27:871–874. doi: 10.1029/1999GL010769 Google Scholar
  346. Stenbaek-Nielsen HC, McHarg MG, Kammae T, Sentmann DD (2007) Observed emission rates in sprite streamer heads. Geophys Res Lett 34(11):L11105. doi: 10.1029/2007GL029881 Google Scholar
  347. Stix TH (1992) Waves in plasmas. American Inst Physics, New YorkGoogle Scholar
  348. Storey LRO (1953) An investigation of whistling atmospherics. Phil Trans R Soc (London) A(246):113–141Google Scholar
  349. Stolzenburg M (1994) Observations of high ground flash densities of positive lightning in summertime thunderstorms. Mon Weather Rev 122:1740–1750. doi: 10.1175/1520-0493(1994)122<1740:OOHGFD>2.0.CO;2 Google Scholar
  350. Stolzenburg M, Marshall TC (2008) Charge structure and dynamics in thunderstorms. Space Sci Rev 137:355–372. doi: 10.1007/s11214-008-9338-z Google Scholar
  351. Strangeways HJ (1999) Lightning induced enhancements of D-region ionization and whistler ducts. J Atmos Sol Terr Phys 61:1067–1080. doi: 10.1016/S1364-6826(99)00074-7 Google Scholar
  352. Streltsov AV, Lampe M, Manheimer W, Ganguli G, Joyce G (2006) Whistler propagation in inhomogeneous plasma. J Geophys Res 111:A03216. doi: 10.1029/2005JA011357 Google Scholar
  353. Su HT, Hsu RR, Chen AB, Wang YC, Hsiao WS, Lai WC, Sato M, Fukunishi H (2003) Gigantic jet between a thundercloud and the ionosphere. Nature 423:974–976. doi: 10.1038/nature01759 Google Scholar
  354. Summers D, Ma C, Meredith NP, Horne RB, Thorne RM, Heynderickx D, Anderson RR (2002) Model of the energization of outer zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophys Res Lett 29(24):2174. doi: 10.1029/2002GL016039 Google Scholar
  355. Suszcynsky DN, Russel-Dupre R, Lyons WA, Armstrong A (1998) Blue-light imaging and photometry of sprites. J Atmos Sol Terr Phys 60:801–803. doi: 10.1016/S1364-6826(98)00027-3 Google Scholar
  356. Suszcynsky DM et al (1999) Video and photometric observations of a sprite in coincidence with a meteor-triggered jet events. J Geophys Res 104(24):31361–31367. doi: 10.1029/1999JD900962 Google Scholar
  357. Swenson GR, Rairden R (1998) What is the source of sprite seed electrons? In: AGU fall meeting, A41C-14, San FranciscoGoogle Scholar
  358. Symbalisty EMD, Roussel-Dupre RA, ReVelle DO, Suszcynsky DM, Yukhimuk VA, Taylor MJ (2000) Meteor trails and columniform sprites. Icarus 148(1):65–79. doi: 10.1006/icar.2000.6517 Google Scholar
  359. Tapia A, Smith JA, Dixon M (1998) Estimation of convective rainfall from lightning observations. J Appl Meteorol 37:1497–1509. doi: 10.1175/1520-0450(1998)037<1497:EOCRFL>2.0.CO;2 Google Scholar
  360. Takahashi T, Sweeney C, Sulherled SC, Chipman DW, Godded J, Rubin SI (2000) Method of underway PCO2 measurements surface water and the atmosphere during the AESOP Expedition, 1996–1998 in the Pacific sector of the south ocean and the ROSS sea, UJJCOFS Data Center. Woods Hole Oceanographic Institute, Woods Hole, MAGoogle Scholar
  361. Taranenko Y, Roussel-Dupre R (1996) High altitude discharges and gamma ray flashes: a manifestation of runaway air breakdown. Geophys Res Lett 23:571–574. doi: 10.1029/95GL03502 Google Scholar
  362. Taranenko YN, Inan US, Bell TF (1993) Interaction with the lower ionosphere of electromagnetic pulses from lightning: heating, attachment, and ionization. Geophys Res Lett 20:1539–1542. doi: 10.1029/93GL01696 Google Scholar
  363. Taylor MJ et al (2008) Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina. Geophys Res Lett 35:L14812. doi: 10.1029/2008GL033984 Google Scholar
  364. Thomas RJ, Krehbiel PR, Rison W, Hamlin T, Boccippio DJ, Goodman SJ, Christian HJ (2000) Comparison of ground based 3-dimensional lightning mapping observations with satellite based LIS observations in Oklahoma. Geophys Res Lett 27:1703–1706. doi: 10.1029/1999GL010845 Google Scholar
  365. Thorne RM, Horne RB, Meredith NP (2006) Comment on “On the origin of whistler mode radiation in the plasmasphere” by Green et al. J Geophys Res 111:A09210. doi: 10.1029/2005JA011477 Google Scholar
  366. Tinsley BA (2004) Scavenging of condensation nuclei in clouds: dependence of sign of electroscavenging effect on droplet and CCN sizes. In: Proceedings on international conference on clouds and precipitation, p 248, IAMAS, Bologna, 18–23 July 2004Google Scholar
  367. Tinsley BA (2008) The global atmospheric electric circuit and its effects on cloud microphysics. Rep Prog Phys 71(066801):31. doi: 10.1088/0034-4885/71/6/066801 Google Scholar
  368. Tinsley BA, Deen GW (1991) Apparent tropospheric response to MeV-GeV particle flux variations, a connection via electrofreezing of supercooled water in high level clouds. J Geophys Res 96:2283–2296. doi: 10.1029/91JD02473 Google Scholar
  369. Tinsley BA, Rohrbaugh RP, Hei M (2001) Electroscavenging in clouds with broad droplets size distributions and weak electrification. Atmos Res 115:59–60Google Scholar
  370. Tinsley BA, Burns GB, Zhou L (2007) The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv Space Res 40:1126–1139. doi: 10.1016/j.asr.2007.01.071 Google Scholar
  371. Titova EE, Kozelov BV, Jiricek F, Smilauer J, Demekhov AG, Trakhtengerts VY (2003) Verification of backwards wave oscillator model of VLF chorus generation using data from MAGION 5 satellite. Ann Geophys 21:1073–1081CrossRefGoogle Scholar
  372. Trakhtengerts VY (1995) Magnetospheric cyclotron maser: backward wave oscillator generation regime. J Geophys Res 100:17,205–17,210. doi: 10.1029/95JA00843
  373. Trakhtengerts VY (1999) A generation mechanism for chorus emissions. Ann Geophys 17:95–100. doi: 10.1007/s005850050739 Google Scholar
  374. Trakhtengerts VY, Rycroft MJ (1998) Sounding the magnetosphere by signals from VLF radio transmitters. J Atmos Sol Terr Phys 60:545–549. doi: 10.1016/S1364-6826(97)00128-4 Google Scholar
  375. Trakhtengerts VY, Rycroft MJ, Demekhov AG (1996) Interaction of noiselike and discrete ELF/VLF emissions generated by cyclotron interactions. J Geophys Res 101:13,293–13,301. doi: 10.1029/95JA03515
  376. Trakhtengerts VY, Demekhov AV, Hobara Y, Hayakawa M (2003) Phase-bunching effects in triggered VLF emissions: antenna effect. J Geophys Res 108(4A):1160. doi: 10.1029/2002JA009415 Google Scholar
  377. Trakhtengerts VY, Demekhov AG, Titova EE, Kozelov BV, Santolik O, Macusova E, Gurnett D, Pickett JS, Rycroft MJ, Nunn D (2007) Formation of VLF chorus frequency spectrum: cluster data and comparison with the backward wave oscillator model. Geophys Res Lett 34:L02104. doi: 10.1029/2006GL027953 Google Scholar
  378. Twomey S, Wojciechowski TA (1969) Observations of the geographical variations of cloud nuclei. J Atmos Sci 26:684–688. doi: 10.1175/1520-0469(1969)26<648:OOTGVO>2.0.CO;2 Google Scholar
  379. Valdivia JA, Milikh GM, Papadopoulos K (1998) Model of red sprites due to intracloud fractal lightning discharges. Radio Sci 33:1655. doi: 10.1029/98RS02201 Google Scholar
  380. Veronis G, Pasko VP, Inan US (1999) Characteristics of mesosphere optical emissions produced by lightning discharges. J Geophys Res 104:12645–12656. doi: 10.1029/1999JA900129 Google Scholar
  381. Vohra KG, Nair PV (1970) Recent thinking on the chemical formation of aerosols in the air by gas phase reaction. J Aerosol Sci 1:127–133. doi: 10.1016/0021-8502(70)90016-9
  382. Vohra KG, Vasudevan KN, Nair PV (1970) Mechanisms of nucleus forming reactions in the atmosphere. J Geophys Res 75:2951–2960. doi: 10.1029/JC075i015p02951 Google Scholar
  383. Walker ADM (1976) The theory of whistler propagation. Rev Geophys Space Phys 14:629–638. doi: 10.1029/RG014i004p00629 Google Scholar
  384. Walter P, Angerami JJ (1969) Nonducted mode of VLF propagation between conjugate hemisphere; observations on OGO’s 2 and 4 of the walking trace whistlers and of dipolar shifts in fined frequency transmissions. J Geophys Res 74:6952–6970. doi: 10.1029/JA074i026p06352 Google Scholar
  385. Wescott EM, Sentman D, Osborne D, Hampton D, Heavner M (1995) Preliminary results from the sprites 94 aircraft campaign: 2, blue jets. Geophys Res Lett 22:1209–1212. doi: 10.1029/95GL00582 Google Scholar
  386. Wescott EM, Sentman D, Heavner M, Hampton D, Lyons WA, Nelson T (1998) Observations of ‘Columniform’ sprites. J Atmos Terr Phys 60:733–740. doi: 10.1016/S1364-6826(98)00029-7 Google Scholar
  387. Wescott EN, Stenback-Mielsen HC, Sentman DD, Heavmer MJ, Moudry DR, Sabbas FTS (2001) Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. J Geophys Res 106:10467–10478. doi: 10.1029/2000JA000182 Google Scholar
  388. Williams ER (1989) The tripolar structure of thunderstorms. J Geophys Res 94:13151–13167. doi: 10.1029/JD094iD11p13151 Google Scholar
  389. Williams ER (1992) The Schumann resonance: a global thermometer. Science 256:1184–1187. doi: 10.1126/science.256.5060.1184 Google Scholar
  390. Williams ER (2005) Lightning and climate: a review. Atmos Res 76:272–287. doi: 10.1016/j.atmosres.2004.11.014 Google Scholar
  391. Williams ER (2009) The global electrical circuit: a review. Atmos Res 91:140–152. doi: 10.10161j.atmosres.2008.05.018 Google Scholar
  392. Williams ER, Renno NO (1993) An analysis of the conditional instability for the tropical atmosphere. Mon Weather Rev 121:21–36. doi: 10.1175/1520-0493(1993)121<0021:AAOTCI>2.0.CO;2 Google Scholar
  393. Williams ER, Satori G (2004) Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J Atmos Sol Terr Phys 66:1213–1231. doi: 10.1016/j.jastp.2004.05.015 Google Scholar
  394. Williams ER, Stanfill S (2002) The physical origin of the land-ocean contrast in lightning activity. C R Phys 3:1277–1292. doi: 10.1016/S1631-0705(02)01407-X Google Scholar
  395. Williams ER, Geotis SG, Bhattacharya AB (1989) A radar study of plasma and geometry of lightening. J Atmos Sci 46:1173–1185. doi: 10.1175/1520-0469(1989)046<1173:ARSOTP>2.0.CO;2 Google Scholar
  396. Williams ER et al (2002) Contrasting convective regions over the Amazon: implications for cloud electrification. J Geophy Res 107(20):8082. doi: 101029/2001JD000380 Google Scholar
  397. Williams ER, Mushtak VC, Rosenfeld D, Goodman SJ, Boccippio DJ (2005) Thermodynamics conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos Res 76:288–306. doi: 10.1016/j.atmosres.2004.11.009 Google Scholar
  398. Williams ER, Downes E, Boldi R, Lyons WA, Heckman S (2007a) Polarity asymmetry of sprite-producing lightning: a paradox? Radio Sci 42:RS2S17. doi: 10.1029/2006RS003488 Google Scholar
  399. Williams ER, Mushtak VC, Boldi R, Dowden RL, Kawasaki ZI (2007b) Sprite lightning heard round the world by Schumann resonance methods. Radio Sci 42:RS2S20. doi: 10.1029/2006RS003498 Google Scholar
  400. Wilson CTR (1925) The electric field of a thunderstorm and some of its effects. Proc R Soc Lond 37:32DGoogle Scholar
  401. Winckler JR, Lyons WA, Nelson TE, Nemzek RJ (1996) New high-resolution ground-based studies of sprites. J Geophys Res 101:6997–7004. doi: 10.1029/95JD03443 Google Scholar
  402. Wood TG, Inan US (2002) Long range tracking of thunderstorms using sferic measurements. J Geophys Res 107(21):4553. doi: 10.1029/2001JD002008 Google Scholar
  403. Yair Y (2008) Charge generation and separation processes. Space Sci Rev 137:119–131. doi: 10.1007/s11214-008-9348-x Google Scholar
  404. Yamashita M (1978) Propagation of tweek atmospherics. J Atmos Terr Phys 40:151–156. doi: 10.1016/0021-9169(78)90019-3 Google Scholar
  405. Yano S, Ogawa T, Hagino H (1989) Waveform analysis of tweek atmospheric. Res Lett Atmos Electr 9:31–42Google Scholar
  406. Yedemsky D, Ryabov BS, Shchokotov A, Yarotsky VS (1992) Experimental investigation of the tweek field structure. Adv Space Res 12:251–254. doi: 10.1016/0273-1177(92)90066-7 Google Scholar
  407. Ziegler CL, MacGorman R (1994) Observed lightning morphology relative to modeled space charge and electric field distributions in a tornedic storm. J Atmos Sci 51:833–851. doi: 10.1175/1520-0469(1994)051<0833:OLMRTM>2.0.CO;2 Google Scholar
  408. Zipser EJ (1994) Deep cumulonimbus cloud system in the tropics with and without lightning. Mon Weather Rev 122:1837–1851. doi: 10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2 Google Scholar
  409. Zhou L, Tinsley BA (2007) The production of space charge at the boundaries of layer clouds. J Geophys Res 112:D11203. doi: 10.1029/2006JD007998 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Devendraa Siingh
    • 1
  • A. K. Singh
    • 2
    Email author
  • R. P. Patel
    • 2
  • Rajesh Singh
    • 3
  • R. P. Singh
    • 2
    • 4
  • B. Veenadhari
    • 3
  • Madhuparna Mukherjee
    • 1
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Atmospheric Research Laboratory, Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  3. 3.Indian Institute of GeomagnetismNew Panvel, Navi MumbaiIndia
  4. 4.Veer Kunwar Singh UniversityAraIndia

Personalised recommendations