A Survey of Techniques for Predicting Earthquake Ground Motions for Engineering Purposes

Abstract

Over the past four or five decades many advances have been made in earthquake ground-motion prediction and a variety of procedures have been proposed. Some of these procedures are based on explicit physical models of the earthquake source, travel-path and recording site while others lack a strong physical basis and seek only to replicate observations. In addition, there are a number of hybrid methods that seek to combine benefits of different approaches. The various techniques proposed have their adherents and some of them are extensively used to estimate ground motions for engineering design purposes and in seismic hazard research. These methods all have their own advantages and limitations that are not often discussed by their proponents. The purposes of this article are to: summarise existing methods and the most important references, provide a family tree showing the connections between different methods and, most importantly, to discuss the advantages and disadvantages of each method.

This is a preview of subscription content, log in to check access.

Fig. 1

Notes

  1. 1.

    Some of the programs for ground-motion prediction are available for download from the ORFEUS Seismological Software Library http://www.orfeus-eu.org/Software/softwarelib.html

References

  1. Abrahamson NA, Shedlock KM (1997) Overview. Seismological Research Letters 68(1):9–23

    Google Scholar 

  2. Abrahamson NA, Somerville PG, Cornell CA (1990) Uncertainty in numerical strong motion predictions. In: Proceedings of the fourth U.S. national conference on earthquake engineering, vol 1, pp 407–416

  3. Abrahamson N, Atkinson G, Boore D, Bozorgnia Y, Campbell K, Chiou B, Idriss IM, Silva W, Youngs R (2008) Comparisons of the NGA ground-motion relations. Earthq Spectra 24(1):45–66. doi:10.1193/1.2924363

    Article  Google Scholar 

  4. Aki K (1982) Strong motion prediction using mathematical modeling techniques. Bulletin of the Seismological Society of America 72(6):S29–S41

    Google Scholar 

  5. Aki K (2003) A perspective on the history of strong motion seismology. Physics of the Earth and Planetary Interiors 137:5–11

    Article  Google Scholar 

  6. Aki K, Larner KL (1970) Surface motion of a layered medium having an irregular interface due to incident plane SH waves. Journal of Geophysical Research 75(5):933–954

    Article  Google Scholar 

  7. Aki K, Richards PG (2002) Quantitative Seismology. University Science Books, Sausalito, California, USA

    Google Scholar 

  8. Akkar S, Bommer JJ (2006) Influence of long-period filter cut-off on elastic spectral displacements. Earthquake Engineering and Structural Dynamics 35(9):1145–1165

    Article  Google Scholar 

  9. Ambraseys NN (1974) The correlation of intensity with ground motion. In: Advancements in Engineering Seismology in Europe, Trieste

  10. Ambraseys NN, Douglas J, Sigbjörnsson R, Berge-Thierry C, Suhadolc P, Costa G, Smit PM (2004a) Dissemination of European strong-motion data, vol 2. In: Proceedings of thirteenth world conference on earthquake engineering, paper no. 32

  11. Ambraseys NN, Smit P, Douglas J, Margaris B, Sigbjörnsson R, Ólafsson S, Suhadolc P, Costa G (2004b) Internet site for European strong-motion data. Bollettino di Geofisica Teorica ed Applicata 45(3):113–129

    Google Scholar 

  12. Anderson JG (1991) Strong motion seismology. Rev Geophys 29(Part 2):700–720

    Google Scholar 

  13. Anderson JG (1997a) Benefits of scenario ground motion maps. Engineering Geology 48(1–2):43–57

    Article  Google Scholar 

  14. Anderson JG (1997b) Nonparametric description of peak acceleration above a subduction thrust. Seismological Research Letters 68(1):86–93

    Google Scholar 

  15. Anderson JG (2004) Quantitative measure of the goodness-of-fit of synthetic seismograms. In: Proceedings of thirteenth world conference on earthquake engineering, paper no. 243

  16. Anderson G, Aagaard BT, Hudnut K (2003) Fault interactions and large complex earthquakes in the Los Angeles area. Science 302(5652):1946–1949, doi:10.1126/science.1090747

    Article  Google Scholar 

  17. Aochi H, Douglas J (2006) Testing the validity of simulated strong ground motion from the dynamic rupture of a finite fault, by using empirical equations. Bulletin of Earthquake Engineering 4(3):211–229, doi:10.1007/s10518-006-0001-3

    Article  Google Scholar 

  18. Aochi H, Fukuyama E (2002) Three-dimensional nonplanar simulation of the 1992 Landers earthquake. J Geophys Res 107(B2). doi:10.1029/2000JB000061

  19. Aochi H, Madariaga R (2003) The 1999 Izmit, Turkey, earthquake: Nonplanar fault structure, dynamic rupture process, and strong ground motion. Bulletin of the Seismological Society of America 93(3):1249–1266

    Article  Google Scholar 

  20. Aochi H, Cushing M, Scotti O, Berge-Thierry C (2006) Estimating rupture scenario likelihood based on dynamic rupture simulations: The example of the segmented Middle Durance fault, southeastern France. Geophysical Journal International 165(2):436–446, doi:10.1111/j.1365-246X.2006.02842.x

    Article  Google Scholar 

  21. Aoi S, Fujiwara H (1999) 3D finite-difference method using discontinuous grids. Bulletin of the Seismological Society of America 89(4):918–930

    Google Scholar 

  22. Apsel RJ, Luco JE (1983) On the Green’s functions for a layered half-space. Part II. Bulletin of the Seismological Society of America 73(4):931–951

    Google Scholar 

  23. Archuleta RJ, Brune JN (1975) Surface strong motion associated with a stick-slip event in a foam rubber model of earthquakes. Bulletin of the Seismological Society of America 65(5):1059–1071

    Google Scholar 

  24. Atkinson GM (2001) An alternative to stochastic ground-motion relations for use in seismic hazard analysis in eastern North America. Seismological Research Letters 72:299–306

    Google Scholar 

  25. Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bulletin of the Seismological Society of America 96(6):2181–2205. doi:10.1785/0120050245

    Article  Google Scholar 

  26. Atkinson GM, Silva W (2000) Stochastic modeling of California ground motion. Bulletin of the Seismological Society of America 90(2):255–274

    Article  Google Scholar 

  27. Atkinson GM, Somerville PG (1994) Calibration of time history simulation methods. Bulletin of the Seismological Society of America 84(2):400–414

    Google Scholar 

  28. Atkinson GM, Sonley E (2000) Empirical relationships between modified Mercalli intensity and response spectra. Bulletin of the Seismological Society of America 90(2):537–544

    Article  Google Scholar 

  29. Baker JW, Cornell CA (2006) Spectral shape, epsilon and record selection. Earthquake Engineering and Structural Dynamics 35(9):1077–1095, doi:10.1002/eqe.571

    Article  Google Scholar 

  30. Bao HS, Bielak J, Ghattas O, Kallivokas LF, O’Hallaron DR, Shewchuk JR, Xu JF (1998) Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers. Computer Methods in Applied Mechanics and Engineering 152(1–2):85–102

    Article  Google Scholar 

  31. Bazzurro P, Cornell CA (1999) Disaggregation of seismic hazard. Bulletin of the Seismological Society of America 89(2):501–520

    Google Scholar 

  32. Beresnev IA, Atkinson GM (1998) FINSIM: A FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismological Research Letters 69:27–32

    Google Scholar 

  33. Berge C, Gariel JC, Bernard P (1998) A very broad-band stochastic source model used for near source strong motion prediction. Geophysical Research Letters 25(7):1063–1066

    Article  Google Scholar 

  34. Beyer K, Bommer JJ (2007) Selection and scaling of real accelerograms for bi-directional loading: A review of current practice and code provisions. Journal of Earthquake Engineering 11(S1):13–45, doi:10.1080/13632460701280013

    Google Scholar 

  35. Bommer JJ, Acevedo AB (2004) The use of real earthquake accelerograms as input to dynamic analysis. Journal of Earthquake Engineering 8(Special issue 1):43–91

    Article  Google Scholar 

  36. Bommer JJ, Alarcón JE (2006) The prediction and use of peak ground velocity. Journal of Earthquake Engineering 10(1):1–31

    Article  Google Scholar 

  37. Bommer JJ, Ruggeri C (2002) The specification of acceleration time-histories in seismic design codes. European Earthquake Engineering 16(1):3–17

    Google Scholar 

  38. Bommer JJ, Scott SG, Sarma SK (2000) Hazard-consistent earthquake scenarios. Soil Dynamics and Earthquake Engineering 19(4):219–231

    Article  Google Scholar 

  39. Bommer JJ, Abrahamson NA, Strasser FO, Pecker A, Bard PY, Bungum H, Cotton F, Fäh D, Sabetta F, Scherbaum F, Studer J (2004) The challenge of defining upper bounds on earthquake ground motions. Seismological Research Letters 75(1):82–95

    Google Scholar 

  40. Boore DM (1973) The effect of simple topography on seismic waves: Implications for the accelerations recorded at Pacoima Dam, San Fernando valley, California. Bulletin of the Seismological Society of America 63(5):1603–1609

    Google Scholar 

  41. Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America 73(6):1865–1894

    Google Scholar 

  42. Boore DM (2001) Comparisons of ground motions from the 1999 Chi-Chi earthquake with empirical predictions largely based on data from California. Bulletin of the Seismological Society of America 91(5):1212–1217

    Article  Google Scholar 

  43. Boore DM (2003) Simulation of ground motion using the stochastic method. Pure and Applied Geophysics 160(3–4):635–676, doi:10.1007/PL00012553

    Article  Google Scholar 

  44. Boore DM (2005) SMSIM—Fortran programs for simulating ground motions from earthquakes: Version 2.3—A revision of OFR 96-80-A. Open-File Report 00-509, United States Geological Survey, modified version, describing the program as of 15 August 2005 (Version 2.30)

  45. Bouchon M (1981) A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America 71(4):959–971

    Google Scholar 

  46. Bouchon M, Sánchez-Sesma FJ (2007) Boundary integral equations and boundary elements methods in elastodynamics. In: Advances in Geophysics: advances in wave propagation in heterogeneous Earth, vol 48, Chap 3. Academic Press, London, UK, pp 157–189

  47. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research 75(26):4997–5009

    Article  Google Scholar 

  48. Brune JN (1971) Correction. Journal of Geophysical Research 76(20):5002

    Article  Google Scholar 

  49. Bycroft GN (1960) White noise representation of earthquake. Journal of The Engineering Mechanics Division, ASCE 86(EM2):1–16

    Google Scholar 

  50. Campbell KW (1986) An empirical estimate of near-source ground motion for a major, m b  = 6.8, earthquake in the eastern United States. Bulletin of the Seismological Society of America 76(1):1–17

    Google Scholar 

  51. Campbell KW (2002) A contemporary guide to strong-motion attenuation relations. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, Chap 60. Academic Press, London

  52. Campbell KW (2003) Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America. Bulletin of the Seismological Society of America 93(3):1012–1033

    Article  Google Scholar 

  53. Campbell KW (2007) Validation and update of hybrid empirical ground motion (attenuation) relations for the CEUS. Tech. rep., ABS Consulting, Inc. (EQECAT), Beaverton, USA, Award number: 05HQGR0032

  54. Cancani A (1904) Sur l’emploi d’une double échelle sismique des intensités, empirique et absolue. Gerlands Beitr z Geophys 2:281–283, not seen. Cited in Gutenberg and Richter (1942)

    Google Scholar 

  55. Chaljub E, Komatitsch D, Vilotte JP, Capdeville Y, Valette B, Festa G (2007a) Spectral-element analysis in seismology. In: Advances in geophysics: advances in wave propagation in heterogeneous earth, vol 48, chap 7. Academic Press, London, UK, pp 365–419

  56. Chaljub E, Tsuno S, Bard PY, Cornou C (2007b) Analyse des résultats d’un benchmark numérique de prédiction du mouvement sismique dans la vallée de Grenoble. In: 7ème Colloque National AFPS 2007, in French

  57. Chen XF (2007) Generation and propagation of seismic SH waves in multi-layered media with irregular interfaces. In: Advances in geophysics: advances in wave propagation in heterogeneous earth, vol 48, chap 4. Academic Press, London, UK, pp 191–264

  58. Chen M, Hjörleifsdóttir V, Kientz S, Komatitsch D, Liu Q, Maggi A, Savage B, Strand L, Tape C, Tromp J (2008) SPECFEM 3D: User manual version 1.4.3. Tech. rep., Computational Infrastructure for Geodynamics (CIG), California Institute of Technology (USA); University of Pau (France). URL: http://www.gps.caltech.edu/jtromp/research/downloads.html

  59. Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: Application to central Europe and rock sites. Journal of Seismology 10(2):137–156, DOI: 10.1007/s10950-005-9006-7

    Article  Google Scholar 

  60. Dalguer LA, Irikura K, Riera JD (2003) Simulation of tensile crack generation by three-dimensional dynamic shear rupture propagation during an earthquake. J Geophys Res 108(B3), article 2144

    Google Scholar 

  61. Dan K, Watanabe T, Tanaka T, Sato R (1990) Stability of earthquake ground motion synthesized by using different small-event records as empirical Green’s functions. Bulletin of the Seismological Society of America 80(6):1433–1455

    Google Scholar 

  62. Day SM, Bradley CR (2001) Memory-efficient simulation of anelastic wave propagation. Bulletin of the Seismological Society of America 91(3):520–531

    Article  Google Scholar 

  63. Day SM, Bielak J, Dreger D, Graves R, Larsen S, Olsen KB, Pitarka A (2005) Tests of 3D elastodynamic codes. Final report for Lifelines Project 1A03. Pacific Earthquake Engineering Research Center, University of California, Berkeley, USA

  64. Dormy E, Tarantola A (1995) Numerical simulation of elastic wave propagation using a finite volume method. Journal of Geophysical Research 100(B2):2123–2133

    Article  Google Scholar 

  65. Douglas J (2003) Earthquake ground motion estimation using strong-motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Science Reviews 61(1–2):43–104

    Article  Google Scholar 

  66. Douglas J (2007) On the regional dependence of earthquake response spectra. ISET Journal of Earthquake Technology 44(1):71–99

    Google Scholar 

  67. Douglas J, Suhadolc P, Costa G (2004) On the incorporation of the effect of crustal structure into empirical strong ground motion estimation. Bulletin of Earthquake Engineering 2(1):75–99

    Article  Google Scholar 

  68. Douglas J, Bungum H, Scherbaum F (2006) Ground-motion prediction equations for southern Spain and southern Norway obtained using the composite model perspective. Journal of Earthquake Engineering 10(1):33–72

    Article  Google Scholar 

  69. Dowrick DJ (1977) Earthquake resistant design—a manual for engineers and architects. Wiley, London

  70. Erdik M, Durukal E (2003) Simulation modeling of strong ground motion. In: Earthquake engineering handbook, chap 6, CRC Press LLC, Boca Raton, FL, USA

  71. Esteva L, Rosenblueth E (1964) Espectros de temblores a distancias moderadas y grandes. Boletin Sociedad Mexicana de Ingenieria Sesmica 2:1–18, in Spanish

  72. Faccioli E, Maggio F, Paolucci R, Quarteroni A (1997) 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. Journal of Seismology 1(3):237–251

    Article  Google Scholar 

  73. Field EH, Jordan TH, Cornell CA (2003) OpenSHA: A developing community-modeling environment for seismic hazard analysis. Seismological Research Letters 74(4):406–419

    Google Scholar 

  74. Florsch N, Fäh D, Suhadolc P, Panza GF (1991) Complete synthetic seismograms for high-frequency multimode SH-waves. Pure and Applied Geophysics 136:529–560

    Article  Google Scholar 

  75. Frankel A (1995) Simulating strong motions of large earthquakes using recordings of small earthquakes: The Loma Prieta mainshock as a test case. Bulletin of the Seismological Society of America 85(4):1144–1160

    Google Scholar 

  76. Frankel A, Clayton RW (1986) Finite-difference simulations of seismic scattering—Implications for the propagation of short-period seismic-waves in the crust and models of crustal heterogeneity. Journal of Geophysical Research 91(B6):6465–6489

    Article  Google Scholar 

  77. Gallovič F, Brokešová J (2007) Hybrid k-squared source model for strong ground motion simulations: Introduction. Physics of the Earth and Planetary Interiors 160(1):34–50, DOI: 10.1016/j.pepi.2006.09.002

    Article  Google Scholar 

  78. Goda K, Hong HP (2008) Spatial correlation of peak ground motions and response spectra. Bulletin of the Seismological Society of America 98(1):354–365, doi:10.1785/0120070078

    Article  Google Scholar 

  79. Graves RWJ (1996) Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America 86(4):1091–1106

    Google Scholar 

  80. Guatteri M, Mai PM, Beroza GC, Boatwright J (2003) Strong ground motion prediction from stochastic-dynamic source models. Bulletin of the Seismological Society of America 93(1):301–313, DOI: 10.1785/0120020006

    Article  Google Scholar 

  81. Guatteri M, Mai PM, Beroza GC (2004) A pseudo-dynamic approximation to dynamic rupture models for strong ground motion prediction. Bulletin of the Seismological Society of America 94(6):2051–2063, DOI: 10.1785/0120040037

    Article  Google Scholar 

  82. Gusev AA (1983) Descriptive statistical model of earthquake source radiation and its application to an estimation of short-period strong motion. Geophysical Journal of the Royal Astronomical Society 74:787–808

    Google Scholar 

  83. Gutenberg G, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological Society of America 32(3):163–191

    Google Scholar 

  84. Guzman RA, Jennings PC (1976) Design spectra for nuclear power plants. Journal of The Power Division, ASCE 102(2):165–178

    Google Scholar 

  85. Hadley DM, Helmberger DV (1980) Simulation of strong ground motions. Bulletin of the Seismological Society of America 70(2):617–630

    Google Scholar 

  86. Hancock J, Watson-Lamprey J, Abrahamson NA, Bommer JJ, Markatis A, McCoy E, Mendis R (2006) An improved method of matching response spectra of recorded earthquake ground motion using wavelets. Journal of Earthquake Engineering 10(Special issue 1):67–89

    Article  Google Scholar 

  87. Hancock J, Bommer JJ, Stafford PJ (2008) Numbers of scaled and matched accelerograms required for inelastic dynamic analyses. Earthquake Engineering and Structural Dynamics DOI: 10.1002/eqe.827, in press

  88. Hanks TC (1979) b values and ω−γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. Journal of Geophysical Research 84(B5):2235–2242

    Article  Google Scholar 

  89. Hanks TC, McGuire RK (1981) The character of high-frequency strong ground motion. Bulletin of the Seismological Society of America 71(6):2071–2095

    Google Scholar 

  90. Hartzell SH (1978) Earthquake aftershocks as Green’s functions. Geophysical Research Letters 5(1):1–4

    Article  Google Scholar 

  91. Hartzell S, Leeds A, Frankel A, Williams RA, Odum J, Stephenson W, Silva S (2002) Simulation of broadband ground motion including nonlinear soil effects for a magnitude 6.5 earthquake on the Seattle fault, Seattle, Washington. Bulletin of the Seismological Society of America 92(2):831–853

    Article  Google Scholar 

  92. Haskell NA (1969) Elastic displacements in the near-field of a propagating fault. Bulletin of the Seismological Society of America 59(2):865–908

    Google Scholar 

  93. Hays WW (1980) Procedures for estimating earthquake ground motions. Geological Survey Professional Paper 1114, US Geological Survey

  94. Heaton TH, Helmberger DV (1977) A study of the strong ground motion of the Borrego Mountain, California, earthquake. Bulletin of the Seismological Society of America 67(2):315–330

    Google Scholar 

  95. Herrero A, Bernard P (1994) A kinematic self-similar rupture process for earthquakes. Bulletin of the Seismological Society of America 84(4):1216–1228

    Google Scholar 

  96. Hershberger J (1956) A comparison of earthquake accelerations with intensity ratings. Bulletin of the Seismological Society of America 46(4):317–320

    Google Scholar 

  97. Heuze F, Archuleta R, Bonilla F, Day S, Doroudian M, Elgamal A, Gonzales S, Hoehler M, Lai T, Lavallee D, Lawrence B, Liu PC, Martin A, Matesic L, Minster B, Mellors R, Oglesby D, Park S, Riemer M, Steidl J, Vernon F, Vucetic M, Wagoner J, Yang Z (2004) Estimating site-specific strong earthquake motions. Soil Dynamics and Earthquake Engineering 24(3):199–223, DOI: 10.1016/j.soildyn.2003.11.002

    Article  Google Scholar 

  98. Hisada Y (2008) Broadband strong motion simulation in layered half-space using stochastic Green’s function technique. Journal of Seismology 12(2):265–279, DOI:10.1007/s10950-008-9090-6

    Article  Google Scholar 

  99. Housner GW (1947) Characteristics of strong-motion earthquakes. Bulletin of the Seismological Society of America 37(1):19–31

    Google Scholar 

  100. Housner GW (1955) Properties of strong-ground motion earthquakes. Bulletin of the Seismological Society of America 45(3):197–218

    Google Scholar 

  101. Housner GW, Jennings PC (1964) Generation of artificial earthquakes. Journal of The Engineering Mechanics Division, ASCE 90:113–150

    Google Scholar 

  102. Irikura K, Kamae K (1994) Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique. Annali di Geofisica XXXVII(6):1721–1743

    Google Scholar 

  103. Jennings PC, Housner GW, Tsai NC (1968) Simulated earthquake motions. Tech. rep., Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California, USA

  104. Joyner WB (1984) A scaling law for the spectra of large earthquakes. Bulletin of the Seismological Society of America 74(4):1167–1188

    Google Scholar 

  105. Joyner WB, Boore DM (1986) On simulating large earthquake by Green’s function addition of smaller earthquakes. In: Das S, Boatwright J, Scholtz CH (eds) Earthquake source mechanics, Maurice Ewing Series 6, vol 37. American Geophysical Union, Washington, D.C., USA

  106. Joyner WB, Boore DM (1988) Measurement, characterization, and prediction of strong ground motion. In: Proceedings of earthquake engineering & soil dynamics II, Geotechnical division, ASCE, pp 43–102

  107. Jurkevics A, Ulrych TJ (1978) Representing and simulating strong ground motion. Bulletin of the Seismological Society of America 68(3):781–801

    Google Scholar 

  108. Kaka SI, Atkinson GM (2004) Relationships between instrumental ground-motion parameters and modified Mercalli intensity in eastern North America. Bulletin of the Seismological Society of America 94(5):1728–1736

    Article  Google Scholar 

  109. Kamae K, Irikura K, Pitarka A (1998) A technique for simulating strong ground motion using hybrid Green’s functions. Bulletin of the Seismological Society of America 88(2):357–367

    Google Scholar 

  110. Kanamori H (1979) A semi-empirical approach to prediction of long-period ground motions from great earthquakes. Bulletin of the Seismological Society of America 69(6):1645–1670

    Google Scholar 

  111. Käser M, Iske A (2005) ADER schemes on adaptive triangular meshes for scalar conservations laws. Journal of Computational Physics 205(2):486–508

    Article  Google Scholar 

  112. Kaul MK (1978) Spectrum-consistent time-history generation. Journal of The Engineering Mechanics Division, ASCE 104(ME4):781–788

    Google Scholar 

  113. Kennett BLN, Kerry NJ (1979) Seismic waves in a stratified half-space. Geophysical Journal of the Royal Astronomical Society 57:557–583

    Google Scholar 

  114. Kohrs-Sansorny C, Courboulex F, Bour M, Deschamps A (2005) A two-stage method for ground-motion simulation using stochastic summation of small earthquakes. Bulletin of the Seismological Society of America 95(4):1387–1400, DOI: 10.1785/0120040211

    Article  Google Scholar 

  115. Koketsu K (1985) The extended reflectivity method for synthetic near-field seismograms. Journal of the Physics of the Earth 33:121–131

    Google Scholar 

  116. Komatitsch D, Martin R (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5):SM155–SM167

    Article  Google Scholar 

  117. Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International 139(3):806–822

    Article  Google Scholar 

  118. Komatitsch D, Vilotte JP (1998) The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America 88(2):368–392

    Google Scholar 

  119. Komatitsch D, Liu Q, Tromp J, Süss P, Stidham C, Shaw JH (2004) Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bulletin of the Seismological Society of America 94(1):187–206

    Article  Google Scholar 

  120. Kristeková M, Kristek J, Moczo P, Day SM (2006) Misfit criteria for quantitative comparison of seismograms. Bulletin of the Seismological Society of America 96(5):1836–1850, DOI: 10.1785/0120060012

    Article  Google Scholar 

  121. Lee VW, Trifunac MD (1985) Torsional accelerograms. Soil Dynamics and Earthquake Engineering 4(3):132–139

    Article  Google Scholar 

  122. Lee VW, Trifunac MD (1987) Rocking strong earthquake accelerations. Soil Dynamics and Earthquake Engineering 6(2):75–89

    Article  Google Scholar 

  123. Lee Y, Anderson JG, Zeng Y (2000) Evaluation of empirical ground-motion relations in southern California. Bulletin of the Seismological Society of America 90(6B):S136–S148

    Article  Google Scholar 

  124. Levander AR (1988) Fourth-order finite-difference P-SV seismograms. Geophysics 53(11):1425–1436

    Article  Google Scholar 

  125. LeVeque RJ (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK

    Google Scholar 

  126. Luco JE, Apsel RJ (1983) On the Green’s functions for a layered half-space. Part I. Bulletin of the Seismological Society of America 73(4):909–929

    Google Scholar 

  127. Lysmer J, Drake LA (1972) A finite element method for seismology. In: Bolt BA (eds) Methods in Computational Physics. Academic Press Inc., New York, USA

    Google Scholar 

  128. Ma S, Archuleta RJ, Page MT (2007) Effects of large-scale surface topography on ground motions as demonstrated by a study of the San Gabriel Mountains, Los Angeles, California. Bulletin of the Seismological Society of America 97(6):2066–2079, DOI: 10.1785/0120070040

    Article  Google Scholar 

  129. Mai PM, Beroza GC (2003) A hybrid method for calculating near-source, broadband seismograms: Application to strong motion prediction. Physics of the Earth and Planetary Interiors 137(1–4):183–199, DOI: 10.1016/S0031-9201(03)00014-1

    Google Scholar 

  130. Maupin V (2007) Introduction to mode coupling methods for surface waves. In: Advances in geophysics: advances in wave propagation in heterogeneous earth, vol 48, chap 2. Academic Press, London, UK, pp 127–155

  131. McGuire RK (2004) Seismic Hazard and Risk Analysis. Earthquake Engineering Research Institute (EERI), Oakland, California, USA

    Google Scholar 

  132. Miyake H, Iwata T, Irikura K (2003) Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bulletin of the Seismological Society of America 93(6):2531–2545, DOI: 10.1785/0120020183

    Article  Google Scholar 

  133. Moczo P, Kristek J, Galis M, Pazak P, Balazovjech M (2007a) The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion. Acta Physica Slovaca 57(2):177–406

    Google Scholar 

  134. Moczo P, Robertsson JOA, Eisner L (2007b) The finite-difference time-domain method for modeling of seismic wave propagation. In: Advances in geophysics: advances in wave propagation in heterogeneous Earth, vol 48, chap 8. Academic Press, London, UK, pp 421–516

  135. Montaldo V, Kiremidjian AS, Thráinsson H, Zonno G (2003) Simulation of the Fourier phase spectrum for the generation of synthetic accelerograms. Journal of Earthquake Engineering 7(3):427–445

    Article  Google Scholar 

  136. Mora P, Place D (1994) Simulation of the frictional stick-slip instability. Pure and Applied Geophysics 143(1–3):61–87

    Article  Google Scholar 

  137. Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America 95(3):995–1010, DOI: 10.1785/0120030207

    Article  Google Scholar 

  138. Mukherjee S, Gupta VK (2002) Wavelet-based generation of spectrum-compatible time-histories. Soil Dynamics and Earthquake Engineering 22(9–12):799–804

    Article  Google Scholar 

  139. Murphy JR, O’Brien LJ (1977) The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters. Bulletin of the Seismological Society of America 67(3):877–915

    Google Scholar 

  140. Naeim F, Lew M (1995) On the use of design spectrum compatible time histories. Earthquake Spectra 11(1):111–127

    Article  Google Scholar 

  141. Nau RF, Oliver RM, Pister KS (1982) Simulating and analyzing artificial nonstationary earthquake ground motions. Bulletin of the Seismological Society of America 72(2):615–636

    Google Scholar 

  142. Ólafsson S, Sigbjörnsson R (1995) Application of ARMA models to estimate earthquake ground motion and structural response. Earthquake Engineering and Structural Dynamics 24(7):951–966

    Article  Google Scholar 

  143. Ólafsson S, Remseth S, Sigbjörnsson R (2001) Stochastic models for simulation of strong ground motion in Iceland. Earthquake Engineering and Structural Dynamics 30(9):1305–1331

    Article  Google Scholar 

  144. Olsen K, Madariaga R, Archuleta RJ (1997) Three-dimensional dynamic simulation of the 1992 Landers earthquake. Science 278:834–838

    Article  Google Scholar 

  145. Olsen KB, Day SM, Minster JB, Cui Y, Chourasia A, Faerman M, Moore R, Maechling P, Jordan T (2006) Strong shaking in Los Angeles expected from southern San Andreas earthquake. Geophys Res Lett 33(L07305). doi:10.1029/2005GL025472

  146. Oprsal I, Zahradnik J (2002) Three-dimensional finite difference method and hybrid modeling of earthquake ground motion. J Geophys Res 107(B8). doi:10.1029/2000JB000082

  147. Ordaz M, Arboleda J, Singh SK (1995) A scheme of random summation of an empirical Green’s function to estimate ground motions from future large earthquakes. Bulletin of the Seismological Society of America 85(6):1635–1647

    Google Scholar 

  148. Panza GF (1985) Synthetic seismograms: The Rayleigh waves modal summation. Journal of Geophysics 58:125–145

    Google Scholar 

  149. Panza GF, Suhadolc P (1987) Complete strong motion synthetics. In: Bolt BA (eds) Seismic strong motion synthetics. Academic Press, Orlando, pp. 153–204

    Google Scholar 

  150. Papageorgiou AS, Aki K (1983) A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. Part I. Description of the model. Bulletin of the Seismological Society of America 73(3):693–702

    Google Scholar 

  151. Pavic R, Koller MG, Bard PY, Lacave-Lachet C (2000) Ground motion prediction with the empirical Green’s function technique: an assessment of uncertainties and confidence level. Journal of Seismology 4(1):59–77

    Article  Google Scholar 

  152. Pitarka A, Irikura K, Iwata T, Sekiguchi H (1998) Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake. Bulletin of the Seismological Society of America 88(2):428–440

    Google Scholar 

  153. Pitarka A, Somerville P, Fukushima Y, Uetake T, Irikura K (2000) Simulation of near-fault strong-ground motion using hybrid Green’s functions. Bulletin of the Seismological Society of America 90(3):566–586

    Article  Google Scholar 

  154. Place D, Mora P (1999) The lattice solid model to simulate the physics of rocks and earthquakes: Incorporation of friction. Journal of Computational Physics 150(2):332–372

    Article  Google Scholar 

  155. Pousse G, Bonilla LF, Cotton F, Margerin L (2006) Non stationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database. Bulletin of the Seismological Society of America 96(6):2103–2117, DOI: 10.1785/0120050134

    Article  Google Scholar 

  156. Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T, Roblee C (2008) An overview of the NGA project. Earthquake Spectra 24(1):3–21, DOI: 10.1193/1.2894833

    Article  Google Scholar 

  157. Reiter L (1990) Earthquake Hazard Analysis: Issues and Insights. Columbia University Press, New York

    Google Scholar 

  158. Ripperger J, Mai PM, Ampuero JP (2008) Variability of near-field ground motion from dynamic earthquake rupture simulations. Bulletin of the Seismological Society of America 98(3):1207–1228, DOI: 10.1785/0120070076

    Article  Google Scholar 

  159. Ruiz J, Baumont D, Bernard P, , Berge-Thierry C (2007) New approach in the kinematic k 2 source model for generating physical slip velocity functions. Geophysical Journal International 171(2):739–754, DOI: 10.1111/j.1365-246X.2007.03503.x

    Article  Google Scholar 

  160. Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bulletin of the Seismological Society of America 86(2):337–352

    Google Scholar 

  161. Scherbaum F, Cotton F, Smit P (2004) On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: The case of rock motion. Bulletin of the Seismological Society of America 94(6):2164–2185, DOI: 10.1785/0120030147

    Article  Google Scholar 

  162. Scherbaum F, Cotton F, Staedtke H (2006) The estimation of minimum-misfit stochastic models from empirical ground-motion prediction equations. Bulletin of the Seismological Society of America 96(2):427–445, DOI: 10.1785/0120050015

    Article  Google Scholar 

  163. Shi B, Brune JN (2005) Characteristics of near-fault ground motions by dynamic thrust faulting: Two-dimensional lattice particle approaches. Bulletin of the Seismological Society of America 95(6):2525–2533, DOI: 10.1785/0120040227

    Article  Google Scholar 

  164. Shinozuka M (1988) Engineering modeling of ground motion. In: Proceedings of ninth world conference on earthquake engineering, vol VIII, pp 51–62

  165. Shome N, Cornell CA, Bazzurro P, Carballo JE (1998) Earthquakes, records and nonlinear responses. Earthquake Spectra 14(3):469–500

    Article  Google Scholar 

  166. Silva WJ, Lee K (1987) State-of-the-art for assessing earthquake hazards in the United States; report 24: WES RASCAL code for synthesizing earthquake ground motions. Miscellaneous Paper S-73-1, US Army Corps of Engineers

  167. Silva W, Gregor N, Darragh B (1999) Near fault ground motions. Tech. rep., Pacific Engineering and Analysis, El Cerrito, USA, PG & E PEER—Task 5.A

  168. Sokolov V, Wald DJ (2002) Instrumental intensity distribution for the Hector Mine, California, and the Chi-Chi, Taiwan, earthquakes: Comparison of two methods. Bulletin of the Seismological Society of America 92(6):2145–2162

    Article  Google Scholar 

  169. Souriau A (2006) Quantifying felt events: A joint analysis of intensities, accelerations and dominant frequencies. Journal of Seismology 10(1):23–38, DOI: 10.1007/s10950-006-2843-1

    Article  Google Scholar 

  170. Spudich P, Xu L (2003) Software for calculating earthquake ground motions from finite faults in vertically varying media. In: IASPEI handbook of earthquake and engineering seismology, chap 85.14. Academic Press, Amsterdam, The Netherlands, pp 1633–1634

  171. Spudich P, Joyner WB, Lindh AG, Boore DM, Margaris BM, Fletcher JB (1999) SEA99: A revised ground motion prediction relation for use in extensional tectonic regimes. Bulletin of the Seismological Society of America 89(5):1156–1170

    Google Scholar 

  172. Strasser FO, Bommer JJ, Abrahamson NA (2008) Truncation of the distribution of ground-motion residuals. Journal of Seismology 12(1):79–105, DOI: 10.1007/s10950-007-9073-z

    Article  Google Scholar 

  173. Swanger HJ, Boore DM (1978) Simulation of strong-motion displacements using surface-wave modal superposition. Bulletin of the Seismological Society of America 68(4):907–922

    Google Scholar 

  174. Takeo M (1985) Near-field synthetic seismograms taking into account the effects of anelasticity: The effects of anelastic attenuation on seismograms caused by a sedimentary layer. Meteorology & Geophysics 36(4):245–257

    Article  Google Scholar 

  175. Tavakoli B, Pezeshk S (2005) Empirical-stochastic ground-motion prediction for eastern North America. Bulletin of the Seismological Society of America 95(6):2283–2296, DOI: 10.1785/0120050030

    Article  Google Scholar 

  176. Tinti E, Fukuyama E, Piatanesi A, Cocco M (2005) A kinematic source-time function compatible with earthquake dynamics. Bulletin of the Seismological Society of America 95(4):1211–1223, DOI: 10.1785/0120040177

    Article  Google Scholar 

  177. Trifunac MD (1971) A method for synthesizing realistic strong ground motion. Bulletin of the Seismological Society of America 61(6):1739–1753

    Google Scholar 

  178. Trifunac MD (1976) Preliminary analysis of the peaks of strong earthquake ground motion – dependence of peaks on earthquake magnitude, epicentral distance, and recording site conditions. Bulletin of the Seismological Society of America 66(1):189–219

    Google Scholar 

  179. Trifunac MD (1990) Curvograms of strong ground motion. Journal of The Engineering Mechanics Division, ASCE 116:1426–32

    Article  Google Scholar 

  180. Trifunac MD (2007) Recording strong earthquake motion—instruments, recording strategies and data processing. Tech. Rep. CE 07-03. Department of Civil Engineering, University of Southern California

  181. Trifunac MD, Brady AG (1975) On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bulletin of the Seismological Society of America 65(1):139–162

    Google Scholar 

  182. Tufte ER (2006) Beautiful Evidence. Graphics Press, Cheshire, Connecticut, USA

    Google Scholar 

  183. Tumarkin A, Archuleta R (1994) Empirical ground motion prediction. Annali di Geofisica XXXVII(6):1691–1720

    Google Scholar 

  184. Vanmarcke EH (1979) Representation of earthquake ground motion: Scaled accelerograms and equivalent response spectra. State-of-the-Art for Assessing Earthquake Hazards in the United States 14, Miscellaneous Paper S-73-1, U.S. Army Corps of Engineers, Vicksburg, Mississippi, USA

  185. Vanmarcke EH, Gasparini DA (1976) Simulated earthquake motions compatible with prescribed response spectra. Tech. Rep. R76-4. Dept. of Civil Engineering, Massachusetts Inst. of Technology, Cambridge, USA

  186. Virieux J, Madariaga R (1982) Dynamic faulting studied by a finite difference method. Bulletin of the Seismological Society of America 72(2):345–369

    Google Scholar 

  187. Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthquake Spectra 15(3):557–564

    Article  Google Scholar 

  188. Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bulletin of the Seismological Society of America 89(3):733–741

    Google Scholar 

  189. Wang GQ, Boore DM, Tang G, Zhou X (2007) Comparisons of ground motions from collocated and closely-spaced 1-sample-per-second Global Positioning System (GPS) and accelerograph recordings of the 2003, M6.5 San Simeon, California, earthquake in the Parkfield Region. Bull Seismol Soc Am 97(1B):76–90. doi:10.1785/0120060053

    Google Scholar 

  190. Watson-Lamprey J, Abrahamson N (2006) Selection of ground motion time series and limits on scaling. Soil Dynamics and Earthquake Engineering 26(5):477–482

    Article  Google Scholar 

  191. Wennerberg L (1990) Stochastic summation of empirical Green’s functions. Bulletin of the Seismological Society of America 80(6):1418–1432

    Google Scholar 

  192. Wong HL, Trifunac MD (1978) Synthesizing realistic ground motion accelerograms. Tech. Rep. CE 78-07. Department of Civil Engineering, University of Southern California

  193. Woodhouse JH (1974) Surface waves in a laterally varying layered structure. Geophysical Journal of the Royal Astronomical Society 37:461–490

    Google Scholar 

  194. Zeng Y, Anderson JG (1995) A method for direct computation of the differential seismogram with respect to the velocity change in a layered elastic solid. Bulletin of the Seismological Society of America 85(1):300–307

    Google Scholar 

  195. Zeng T, Anderson JG, Yu G (1994) A composite source model for computing realistic synthetic strong ground motions. Geophysical Research Letters 21(8):725–728

    Article  Google Scholar 

Download references

Acknowledgements

The design of the diagram in this article has benefited from advice contained in the book by Tufte (2006). Some of the work presented in this article was funded by the ANR project ‘Quantitative Seismic Hazard Assessment’ (QSHA). The rest was funded by internal BRGM research projects. We thank the rest of the BRGM Seismic Risks unit for numerous discussions on the topics discussed in this article. Finally, we thank two anonymous reviewers for their careful and detailed reviews, which led to significant improvements to this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Douglas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Douglas, J., Aochi, H. A Survey of Techniques for Predicting Earthquake Ground Motions for Engineering Purposes. Surv Geophys 29, 187 (2008). https://doi.org/10.1007/s10712-008-9046-y

Download citation

Keywords

  • Earthquake
  • Earthquake scenario
  • Seismic hazard assessment
  • Strong ground motion
  • Ground-motion prediction