Cosmic Rays and Climate

Abstract

Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic field and by the galactic environment of Earth. Two different classes of microphysical mechanisms have been proposed to connect cosmic rays with clouds: firstly, an influence of cosmic rays on the production of cloud condensation nuclei and, secondly, an influence of cosmic rays on the global electrical circuit in the atmosphere and, in turn, on ice nucleation and other cloud microphysical processes. Considerable progress on understanding ion–aerosol–cloud processes has been made in recent years, and the results are suggestive of a physically-plausible link between cosmic rays, clouds and climate. However, a concerted effort is now required to carry out definitive laboratory measurements of the fundamental physical and chemical processes involved, and to evaluate their climatic significance with dedicated field observations and modelling studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Notes

  1. 1.

    Greenhouse gases are not included since, prior to the twentieth century, short-term changes of greenhouse gases, such as occurred during glacial-interglacial transitions, are found to be a feedback of the climate system and not a primary forcing agent (Mudelsee 2001).

  2. 2.

    We do not include here the contribution of cosmic ray showers as the likely trigger for lightning, by injecting MeV-energy electrons into electrified clouds, which can then avalanche and lead to runaway breakdown.

References

  1. Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599

    Google Scholar 

  2. Andreae MO (2007) Aerosols before pollution. Science 315:50–51

    Google Scholar 

  3. Babarykin VK, Bayarevich VV, Stozhkov YI, Charakhchyan TN (1964) Latitude survey of cosmic ray intensity in the stratosphere. Geomagnetizm i Aeronomia 4(3):458–463 (in Russian)

    Google Scholar 

  4. Baker PA, Seltzer GO, Fritz SL, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001) The history of South America tropical precipitation for the past 25,000 years. Science 291:640–643

    Google Scholar 

  5. Bard E, Raisbeck GM, Yiou F, Jouzel J (1997) Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth Planet Sci Lett 150:453. doi:10.1016/S0012-821X(97)00082-4

  6. Barlow AK, Latham J (1983) A laboratory study of the scavenging of sub-micron aerosol by charged raindrops. Quat J R Met Soc 109:763–770

    Google Scholar 

  7. Beck JW et al (2001) Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292:2453–2458

    Google Scholar 

  8. Beer J (2000) Long-term indirect indices of solar variability. Space Sci Rev 94:53–66

    Google Scholar 

  9. Beer J et al (1990) Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347:164–166

    Google Scholar 

  10. Bond GC, Lotti R (1997) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:1005–1010

    Google Scholar 

  11. Bond GC, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    Google Scholar 

  12. Bond GC, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Google Scholar 

  13. Bretherton CS et al (2004) The EPIC 2001 stratocumulus study. Bull Am Meteor Soc 85(7):967–977

    Google Scholar 

  14. Brown ET, Johnson TC (2005) Coherence between tropical East African and South American records of the Little Ice Age. Geochem Geophys Geosyst 6:Q12005. doi:10.1029/2005GC000959

  15. Carslaw KS, Harrison RG, Kirkby J (2002) Cosmic rays, clouds, and climate. Science 298:1732–1737

    Google Scholar 

  16. Channell JET, Hodell DA, McManus J, Lehman B (1998) Orbital modulation of the Earth’s magnetic field intensity. Nature 394:464–468

    Google Scholar 

  17. Chiang JCH, Koutavas A (2004) Tropical flip-flop connections. Nature 432:684–685

    Google Scholar 

  18. Christl M, Strobl C, Mangini A (2003) Beryllium-10 in deep-sea sediments: a tracer for the Earth’s field intensity during the last 200,000 years. Quat Sci Rev 22:725–739

    Google Scholar 

  19. Christl M, Mangini A, Holzkämper S, Spötl C (2004) Evidence for a link between the flux of galactic cosmic rays and Earth’s climate during the past 200,000 years. J Atmos Sol Terr Phys 66:313–322

    Google Scholar 

  20. Clarke AD et al (1998) Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources. Science 282:89–92

    Google Scholar 

  21. CLOUD proposal: a study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS, CERN-SPSC-2000-021, SPSC-P317 (2000); CERN-SPSC-2000-030, SPSC-P317 Add.1 (2000); CERN-SPSC-2000-041, SPSC-P317 Add.2 (2000); CERN-SPSC-2004-023, SPSC-M721 (2004); CERN-SPSC-2006-004, SPSC-P317 Add.3 (2006). http://cloud.web.cern.ch/cloud/

  22. Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N (1998) Past temperatures directly from the Greenland ice sheet. Science 282:268–271

    Google Scholar 

  23. Dal Maso M, Kulmala M, Lehtinen KEJ, Makela JM, Aalto P, O’Dowd CD (2002) Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J Geophys Res Atmos 107:art no 8097

    Google Scholar 

  24. Damon PE, Laut P (2004) Pattern of strange errors plagues solar activity and terrestrial climatic data. EOS Trans 85:370–374

    Google Scholar 

  25. Dickinson RE (1975) Solar variability and the lower atmosphere. Bull Am Meteor Soc 56:1240

    Google Scholar 

  26. Eddy JA (1976) The Maunder minimum. Science 192:1189–1202

    Google Scholar 

  27. Eichkorn S, Wilhelm S, Aufmhoff H, Wohlfrom KH, Arnold F (2002) Cosmic ray-induced aerosol formation: first observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys Res Lett 29:43

    Google Scholar 

  28. Ermakov VI, Bazilevskaya GA, Pokrevsky PE, Stozhkov YI (1997) Ion balance equation in the atmosphere. J Geophys Res 102:23413

    Google Scholar 

  29. Field CV, Schmidt G, Koch D, Salyk C (2006) Modeling production and climate-related impacts on 10Be concentration in ice cores. J Geophys Res 111:D15107. doi:10.1029/2005JD006410

  30. Fields BD, Ellis J (1999) On deep-ocean 60Fe as a fossil of near-earth supernovae. New Astron 4:419–430

    Google Scholar 

  31. Florinski V, Zank GP (2005) Galactic cosmic ray response to heliospheric environment changes and implications for cosmogenic isotope records. Proceedings of 29th international cosmic ray conference, Pune, India, 2:263–266

  32. Foukal P, North G, Wigley T (2004) A stellar view on solar variations and climate. Science 306:68

    Google Scholar 

  33. Foukal P, Fröhlich C, Spruit H, Wigley T (2006) Variations in solar luminosity and their effect on Earth’s climate. Nature 443:161–166

    Google Scholar 

  34. Freidenreich SM, Ramaswamy V (1993) Solar radiation absorption by carbon dioxide, overlap with water, and a parameterization for general circulation models. J Geophy Res 98:7255–7264

    Google Scholar 

  35. Fröhlich C (2000) Observations of irradiance variability. Space Sci Rev 94:15–24

    Google Scholar 

  36. Frisch P (2000) The galactic environment of the Sun. Am Sci 88(1):52. doi:10.1511/2000.1.52

    Google Scholar 

  37. Froyd KD, Lovejoy ER (2003a) Experimental thermodynamics of cluster ions composed of H2SO4 and H2O 1 positive ions. J Phys Chem A 107:9800–9811

    Google Scholar 

  38. Froyd KD, Lovejoy ER (2003b) Experimental thermodynamics of cluster ions composed of H2SO4 and H2O 2 measurements and ab initio structures of negative ions. J Phys Chem A 107:9812–9824

    Google Scholar 

  39. Gallup CD, Cheng H, Taylor FW, Edwards RL (2002) Direct determination of the timing of sea level change during Termination II. Science 295:310–313

    Google Scholar 

  40. Gies DR, Helsel JW (2005) Ice age epochs and Sun’s path through the galaxy. Astrophys J 626:844–848

    Google Scholar 

  41. Guillou H, Singer BS, Laj C, Kissel C, Scaillet S, Jicha BR (2004) On the age of the Laschamp geomagnetic excursion. Earth Planet Sci Lett 227:331–343

    Google Scholar 

  42. Guyodo Y, Valet J-P (1999) Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature 399:249–252

    Google Scholar 

  43. Haigh JD (2003) The effects of solar variability on the Earth’s climate. Phil Trans R Soc A 361:95–111

    Google Scholar 

  44. Harrison RG (2004) Long-range correlations in measurements of the global atmospheric electric circuit. J Atmos Sol Terr Phys 66:1127–1133

    Google Scholar 

  45. Harrison RG, Carslaw KS (2003) Ion–aerosol–cloud processes in the lower atmosphere. Rev Geophys 41:art no-1012

  46. Harrison RG, Stephenson DB (2006) Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc R Soc A. doi:10.1098/rspa.2005.1628

  47. Hartmann DL (1993) Radiative effects of clouds on Earth’s climate, in aerosol–cloud–climate interactions. In: Hobbs PV (ed) International geophysics series 54. Academic Press Inc., San Diego, pp 151–173

    Google Scholar 

  48. Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308

    Google Scholar 

  49. Henderson GM, Slowey NC (2000) Evidence from U/Th dating against Northern Hemisphere forcing of the penultimate deglaciation. Nature 404:61–66

    Google Scholar 

  50. Hodell DA, Brenner M, Curtis JH, Mendina-Gonzalez R, Can EIC, Albornaz-Pat A, Guilderson TP (2005) Climate change on the Yucatan Peninsula during the Little Ice Age. Quat Res 63:109–121

    Google Scholar 

  51. Hoyt DV, Schatten KH (1998) Group sunspot numbers: a new solar activity reconstruction. Solar Phys 179(1):189–219

    Google Scholar 

  52. Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang Y, Tian J, Bond GC, Clegg B, Brown T (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan sub-Arctic. Science 301:1890–1893

    Google Scholar 

  53. Jorgensen TB, Hansen AW (2000) Comments on “Variation of cosmic ray flux and global cloud coverage––a missing link in solar-climate relationships” by Henrik Svensmark and Eigil Friis-Christensen. J Atm Sol Terr Phys 62:73–77

    Google Scholar 

  54. Kaufman YJ, Koren I, Remer LA, Rosenfeld D, Rudich Y (2005) The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc Natl Acad Sci USA 102(32):11207–11212

    Google Scholar 

  55. Kernthaler SC, Toumi R, Haigh JD (1999) Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys Res Lett 26:863–865

    Google Scholar 

  56. Kirkby J (2001) CLOUD: a particle beam facility to investigate the influence of cosmic rays on clouds, CERN-EP-2002-019 (2002), and proceedings of the workshop on ion–aerosol–cloud interactions, ed. J. Kirkby, CERN, Geneva, CERN 2001-007, 175–248 http://cloud.web.cern.ch/cloud/iaci_workshop/proceedings.html

  57. Kirkby J, Mangini A, Muller RA (2004) The glacial cycles and cosmic rays. CERN-PH-EP/2004-027. http://cdsweb.cern.ch/record/749918

  58. Klein J, Lerman JC, Damon PE, Linick T (1980) Radiocarbon concentrations in the atmosphere: 8000 year record of variations in tree rings. Radiocarbon 22:950–961

    Google Scholar 

  59. Knie K, Korschinek G, Faestermann T, Dorfi EA, Rugel G, Wallner A (2004) 60Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. Phys Rev Lett 93:171103

    Google Scholar 

  60. Kniveton DR, Todd MC (2001) On the relationship of cosmic ray flux and precipitation. Geophys Res Lett 28(8):1527–1530

    Google Scholar 

  61. Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32:L14828, 11207–11212. doi:10.1029/2005GL023187

  62. Kraakevik JH (1961) Measurements of current density in the fair weather atmosphere. J Geophys Res 66:3735–3748

    Google Scholar 

  63. Kristjansson JE, Kristiansen J (2000) Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J Geophys Res 105:11851–11863

    Google Scholar 

  64. Kristjansson JE, Staple A, Kristiansen J (2002) A new look at possible connections between solar activity, clouds and climate. Geophys Res Lett 29:2107–2110. doi:10.1029/2002GL015646

    Google Scholar 

  65. Kulmala M, Vehkamaki H, Petajda T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Atmos Sci 35:143–176

    Google Scholar 

  66. Kulmala M et al (2007) Toward direct measurement of atmospheric nucleation. Science 318:89–92

    Google Scholar 

  67. Laakso L, Mäkelä JM, Pirjola L, Kulmala M (2002) Model studies on ion-induced nucleation in the atmosphere. J Geophys Res D20. doi:10.1029/2002JD002140

  68. Laakso L, Kulmala M, Lehtinen KEJ (2003) Effect of condensation rate enhancement factor on 3-nm (diameter) particle formation in binary ion-induced and homogeneous nucleation. J Geophys Res 108:art no 4574

    Google Scholar 

  69. Laakso L, Anttila T, Lehtinen KEJ, Aalto PP, Kulmala M, Horrak U, Paatero J, Hanke M, Arnold F (2004) Kinetic nucleation and ions in boreal forest particle formation events. Atmos Chem Phys 4:2353–2366

    Article  Google Scholar 

  70. Laj C, Kissel C, Mazaud A, Channell JET, Beer J (2000) North Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Phil Trans R Soc A 358:1009–1025

    Google Scholar 

  71. Landscheidt T (2000) Solar forcing of El Niño and La Niña. Proceedings of the solar cycle and terrestrial climate, Santa Cruz de Tenerife, Tenerife, Spain, ESA SP-463

  72. Laut P (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J Atmos Sol Terr Phys 65:801–812

    Google Scholar 

  73. Lean JL, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climatic change. Geophys Res Lett 22:3195–3198

    Google Scholar 

  74. Lean JL, Wang Y-M, Sheeley NR (2002) The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: implications for solar forcing of climate. Geophys Res Lett 29:2224

    Google Scholar 

  75. Lee SH, Reeves JM, Wilson JC, Hunton DE, Viggiano AA, Miller TM, Ballenthin JO, Lait LR (2003) Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301:1886–1889

    Google Scholar 

  76. Linsley BK, Dunbar RB, Wellington GM, Mucciarone DA (1994) A coral-based reconstruction of intertropical convergence zone variability over Central America since 1707. J Geophys Res 99:9977–9994

    Google Scholar 

  77. Liu Z, Herbert TD (2004) High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427:720–723

    Google Scholar 

  78. Lockwood M, Stamper R, Wild MN (1999) A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399:437

    Google Scholar 

  79. Lovejoy ER, Curtius J, Froyd KD (2004) Atmospheric ion-induced nucleation of sulphuric acid and water. J Geophys Res 109:D08204. doi:10.1029/2003JD004460

  80. Lund DC, Curry W (2006) Florida Current surface temperature and salinity variability during the last millennium. Paleoceanography 21. doi:10.1029/2005PA001218

  81. Malkus WVR (1968) Precession of the Earth as a cause of geomagnetism. Science 160:259–264

    Google Scholar 

  82. Mangini A, Spötl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet Sci Lett 235:741–751

    Google Scholar 

  83. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Google Scholar 

  84. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762

    Google Scholar 

  85. Markson R (1981) Modulation of the Earth’s electric-field by cosmic-radiation. Nature 291:304–308

    Google Scholar 

  86. Marsh ND, Svensmark H (2000) Low cloud properties influenced by cosmic rays. Phys Rev Lett 85(23):5004–5007

    Google Scholar 

  87. Marsh ND, Svensmark H (2003) Galactic cosmic ray and El Niño-Southern oscillation trends in international satellite cloud climatology project D2 low-cloud properties. J Geophys Res 108(D6):4195

    Google Scholar 

  88. McIntyre S, McKitrick R (2005) Hockey sticks, principal components and spurious significance. Geophys Res Lett. doi:2004GL012750

  89. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–618

    Google Scholar 

  90. Mudelsee M (2001) The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Quat Sci Rev 20:583–589

    Google Scholar 

  91. Muller RA, MacDonald GJ (2000) Ice ages and astronomical causes. Springer Praxis, Chichester, UK

    Google Scholar 

  92. Muscheler R et al (2004) Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth Planet Sci Lett 219:325–340

    Google Scholar 

  93. Neff U et al (2001) Strong coincidence between solar variability and the monsoon in Oman between 9 and 6 ky ago. Nature 411:290–293

    Google Scholar 

  94. Newton A, Thunell R, Stott L (2006) Climate and hydrographic variability in the Indo-Pacific warm pool during the last millennium. Geophys Res Lett 33:L19710. doi:10.1029/2006GL027234

  95. Ney EP (1959) Cosmic radiation and the weather. Nature 183:451–452

    Google Scholar 

  96. Palle E, Butler CJ, O’Brien K (2004) The possible connection between ionization in the atmosphere by cosmic rays and low level clouds. J Atmos Sol Terr Phys 66:1779–1790

    Google Scholar 

  97. Pavlov AA, Toon OB, Pavlov AK, Bally J, Pollard D (2005) Passing through a giant molecular cloud: “snowball” glaciations produced by interstellar dust. Geophys Res Lett 32:L03705. doi:10.1029/2004GL021890

  98. Piotrowski AM, Goldstein SL, Hemming SR, Fairbanks RG (2005) Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 307:1933–1938

    Google Scholar 

  99. Polissar PJ, Abbott MB, Wolfe AP, Bezada M, Rull V, Bradley RS (2006) Solar modulation of Little Ice Age climate in the tropical Andes. Proc Natl Acad Sci USA 103(24):8937–8942

    Google Scholar 

  100. Pollack HN, Smerdon JE (2004) Borehole climate reconstructions: spatial structure and hemispheric averages. J Geophys Res 109. doi:10.1029/2003JD004163

  101. Pudovkin MI, Veretenenko SV (1997) Effects of the galactic cosmic ray variations on the solar radiation input in the lower atmosphere. J Atmos Sol Terr Phys 59(14):1739–1746

    Google Scholar 

  102. Rahmstorf S et al (2004) Cosmic rays, carbon dioxide, and climate. Eos 85(4):38–40

    Google Scholar 

  103. Raisbeck GM, Yiou F, Jouzel J, Petit J-R (1990) 10Be and 2H in polar ice cores as a probe of the solar variability’s influence on climate. Phil Trans R Soc Lond A 300:463–470

    Google Scholar 

  104. Ram M, Stolz M, Koenig G (1997) Eleven year cycle of dust concentration variability observed in the dust profile of the GSP2 ice core from Central Greenland; Possible solar cycle connection. Geophys Res Lett 24(19):2259–2362

    Google Scholar 

  105. Randall DA (1980) Conditional instability of the first kind upside-down. J Atmos Sci 37(1):125–130

    Google Scholar 

  106. Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434:208–210

    Google Scholar 

  107. Rohrer F, Berresheim H (2006) Strong correlation between levels of tropospheric hydroxyl radicals and solar ultra violet radiation. Nature 442:184–187

    Google Scholar 

  108. Rosenfeld D (2006) Private communication

  109. Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International Satellite Cloud Climatology Project (ISCCP): documentation of new cloud datasets, WMO/TD 737, World Meteorological Organization, Geneva http://isccp.giss.nasa.gov/

  110. Royer DL et al (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14(3):4–10

    Google Scholar 

  111. Rudiman WF (2001) Earth’s climate, past and future. WH Freeman, New York

    Google Scholar 

  112. Russell JM, Johnson TC (2005) Late Holocene climate change in North Atlantic and equatorial Africa: millennial-scale ITCZ migration. Geophys Res Lett 32. doi:10.1029/2005GL023295

  113. Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol Terr Phys 62:1563–1576

    Google Scholar 

  114. Salomonson VV, Barnes WL, Maymon PW, Montgomery HE, Ostrow H (1989) MODIS: advanced facility instrument for studies of the Earth as a system. IEEE Trans Geosci Remote Sens 27:145–153

    Google Scholar 

  115. Sastry S (2005) Ins and outs of ice nucleation. Nature 438:746–747

    Google Scholar 

  116. Shaviv NJ (2002) Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection. Phys Rev Lett 89:051102

    Google Scholar 

  117. Shaviv NJ, Veizer J (2003) Celestial driver of Phanerozoic climate? GSA Today, Geol Soc Am 4–10

  118. Sinha A et al (2007) A 900-year (600 to 1500 AD) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys Res Lett 34:L16707. doi:10.1029/2007GL030431

  119. Spötl C, Mangini A, Frank N, Eichstädter R, Burns SJ (2002) Start of the last interglacial period at 135 ka: evidence from a high Alpine speleothem. Geology 30(9):815–818

    Google Scholar 

  120. Stevens B et al (2005) Pockets of open cells and drizzle in marine stratocumulus. Bull Am Meteor Soc 86(1):51–57

    Google Scholar 

  121. Stozhkov YI, Svirzhevsky NS, Makhmutov VS (2001) Cosmic ray measurements in the atmosphere. In: Kirkby J (ed) Proceedings of the workshop on ion–aerosol–cloud interactions. CERN, Geneva, CERN 2001-007, 41–62 http://cloud.web.cern.ch/cloud/iaci_workshop/proceedings.html

  122. Stuiver M, Quay PD (1980) Changes in atmospheric carbon-14 attributed to a variable Sun. Science 207:11–19

    Google Scholar 

  123. Sun B, Bradley RS (2002) Solar influences on cosmic rays and cloud formation: a reassessment. J Geophys Res 107:D14. doi:10.1029/2001JD000560

    Google Scholar 

  124. Svensmark H (2006a) Imprint of galactic dynamics on Earth’s climate. Astron Nachr 327(9):866–870

    Google Scholar 

  125. Svensmark H (2006b) Cosmic rays and the biosphere over 4 billion years. Astron Nachr 327(9):871–875

    Google Scholar 

  126. Svensmark H, Friis-Christensen E (1997) Variation in cosmic ray flux and global cloud coverage—a missing link in solar–climate relationships. J Atmos Sol Terr Phys 59:1225

    Google Scholar 

  127. Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhoj UI (2006) Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc R Soc A. doi:10.1098/rspa.2006.1773

  128. Thompson WG, Goldstein SL (2005) Open-system coral ages reveal persistent suborbital sea-level cycles. Science 308:401–404

    Google Scholar 

  129. Tinsley BA (2000) Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci Rev 94:231–258

    Google Scholar 

  130. Tinsley BA, Yu F (2004) Atmospheric ionization and clouds as links between solar activity and climate, in Solar variability and its effects on climate. In: Pap J, Fox P (eds) Geophysical monograph 141. AGU Press, Washington, DC, pp 321–339

    Google Scholar 

  131. Tinsley BA, Rohrbaugh RP, Hei M, Beard KV (2000) Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. Atmos Res 57:2118–2134

    Google Scholar 

  132. Tinsley BA, Zhou L, Plemmons A (2006) Changes in scavenging of particles by droplets due to weak electrification in clouds. Atmos Res 79:266–295

    Google Scholar 

  133. Todd MC, Kniveton DR (2001) Changes in cloud cover associated with Forbush decreases of galactic cosmic rays. J Geophys Res 106(D23):32031–32041

    Google Scholar 

  134. Todd MC, Kniveton DR (2004) Short-term variability in satellite-derived cloud cover and galactic cosmic rays: an update. J Atmos Sol Terr Phys 66:1205–1211

    Google Scholar 

  135. Treydte KS, Schleser AH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182

    Google Scholar 

  136. Troshichev O, Egorova L, Janzhura A, Vovk V (2005) Influence of the disturbed solar wind on atmospheric processes in Antarctica and El-Niño Southern Oscillation (ENSO). Mem S A It 76:890–898

    Google Scholar 

  137. Turner SM, Harvey MJ, Law CS, Nightingale PD, Liss PS (2004) Iron-induced changes in oceanic sulfur biogeochemistry. Geophys Res Lett 31:L14307. doi:10.1029/2004GL020296

  138. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34(7):1149–1154

    Google Scholar 

  139. Usoskin IG, Mursula K, Solanki SK, Schüssler M, Kovaltsov GA (2002) A physical reconstruction of cosmic ray intensity since 1610. J Geophys Res 107. doi:10.1029/2002JA009343

  140. Usoskin IG, Marsh ND, Kovaltsov GA, Mursula K, Gladysheva OG (2004) Latitudinal dependence of low cloud amount on cosmic ray induced ionisation. Geophys Res Lett 31:L16109. doi:10.1029/2004GL019507

  141. van Loon H, Meehl GA, Arblaster JM (2004) A decadel solar effect in the tropics in July–August. J Atmos Sol Terr Phys 66:1767–1778

    Google Scholar 

  142. Veizer J, Godderis Y, François LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic Eon. Nature 408:698–701

    Google Scholar 

  143. Veretenenko S, Thejll P (2004) Effects of energetic solar proton events on the cyclone development in the North Atlantic. J Atmos Sol Terr Phys 66:393–405

    Google Scholar 

  144. Verschuren D, Laird K, Cumming B (2000) Rainfall and drought in equatorial East Africa during the past 1100 years. Nature 403:410–414

    Google Scholar 

  145. Vieira LEA, da Silva LA (2006) Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray effects. Geophys Res Lett 33:L14802. doi:10.1029/2006GL026389

  146. Visser K, Thunell R, Stott L (2003) Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421:152–155

    Google Scholar 

  147. Vohra KG, Subba Ramu MC, Vasudevan KN (1969) Role of natural ionisation in the formation of condensation nuclei in the atmospheric air. In: Coroniti SC, Hughes J (eds) Planetary electrodynamics. Gordon and Breach Science Publishers

  148. Vohra KG, Subba Ramu MC, Muraleedharan TS (1984) An experimental study of the role of radon and its daughter products in the conversion of sulphur dioxide into aerosol particles in the atmosphere. Atmos Environ 18:1653

    Google Scholar 

  149. Voiculescu M, Usoskin IG, Mursula K (2006) Different response of clouds at the solar input. Geophys Res Lett 33:L21802

    Google Scholar 

  150. Voiculescu M, Usoskin IG, Mursula K (2007) Effect of ENSO and volcanic events on the Sun-cloud link. Adv Space Res 40:1140–1145

    Google Scholar 

  151. Wagner G, Masarik J, Beer J, Baumgartner S, Imboden D, Kubik PW, Synal H-A, Suter M (2000) Reconstruction of the geomagnetic field between 20 and 60 ky BP from cosmogenic radionuclides in the GRIP ice core. Nucl Instrum Methods Phys Res B172:597–604

    Google Scholar 

  152. Wagner G, Livingstone DM, Masarik J, Muscheler R, Beer J (2001) Some results relevant to the discussion of a possible link between cosmic rays and the Earth’s climate. J Geophys Res 106(D4):3381–3387

    Google Scholar 

  153. Wallmann K (2004) Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record. Geochemistry Geophysics Geosystems 5: doi:10.1029/2003GC000683

  154. Wang L, Sarnthein M, Erlenkeuser H, Grootes PM, Grimalt JO, Pelejero C, Linck G (1999) Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea. Geophys Res Lett 26:2889–2892

    Google Scholar 

  155. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Doral JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348

    Google Scholar 

  156. Wang X, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen C-C (2004) Wet periods in northeastern Brazil over the past 210 ky linked to distant climate anomalies. Nature 432:740–743

    Google Scholar 

  157. Wang Y et al (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Google Scholar 

  158. Wantanabe T, Winter A, Oba T (2001) Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios. Mar Geol 173:21–35

    Google Scholar 

  159. Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235

    Google Scholar 

  160. Williams ER (2005) Lightning and climate: a review. Atm Res 76:272–287

    Google Scholar 

  161. Williams ER, Stanfill S (2002) The physical origin of the land-ocean contrast in lightning activity. CR Phys 3:1277–1292

    Google Scholar 

  162. Williams ER et al (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res, LBA Special Issue 107(D20):8082. doi:10.1029/2001JD000380

  163. Williams ER, Chan T, Boccippio D (2004) Islands as miniature continents: another look at the land-ocean lightning contrast. J Geophys Res 109:D16206. doi:10.1029/2003JD003833

  164. Wilson CTR (1912) Expansion apparatus. Proc R Soc Lond A 87:277

    Google Scholar 

  165. Winograd IJ, Coplen TB, Landwehr JM, Riggs AC, Ludwig KR, Szabo BJ, Kolesar PT, Revesz KM (1992) Continuous 500,000-year climate record from vein calcite in Devil’s Hole, Nevada. Science 258:255–260

    Google Scholar 

  166. Wood R (2005) Drizzle in stratiform boundary layer clouds. Part I: vertical and horizontal structure. J Atmos Sci 62(9):3011

    Google Scholar 

  167. Wood R, Hartmann DL (2006) Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection. J Clim 19(9):1748–1764

    Google Scholar 

  168. Yamazaki T, Oda H (2002) Orbital influence on Earth’s magnetic field: 100,000-year periodicity in inclination. Science 295:2435–2438

    Google Scholar 

  169. Yu FQ, Turco RP (2000) Ultrafine aerosol formation via ion-mediated nucleation. Geophys Res Lett 27:883–886

    Google Scholar 

  170. Yu F, Turco RP (2001) From molecular clusters to nanoparticles: the role of ambient ionisation in tropospheric aerosol formation. J Geophys Res 106:4797–4814

    Google Scholar 

Download references

Acknowledgements

I warmly thank my colleagues in the CLOUD collaboration for many stimulating discussions. I would also like to acknowledge Daniel Rosenfeld for suggesting the possible importance of cosmic rays for marine stratocumulus clouds. Finally I thank two anonymous referees for their helpful comments on the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jasper Kirkby.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirkby, J. Cosmic Rays and Climate. Surv Geophys 28, 333–375 (2007). https://doi.org/10.1007/s10712-008-9030-6

Download citation

Keywords

  • Aerosols
  • Clouds
  • Climate
  • Solar-climate variability
  • Cosmic rays
  • Ions
  • Global electrical circuit
  • CERN CLOUD facility