Skip to main content
Log in

Mirror stabilizers for lattice complex hyperbolic triangle groups

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For each lattice complex hyperbolic triangle group, we study the Fuchsian stabilizers of (reprentatives of each group orbit of) mirrors of complex reflections. We give explicit generators for the stabilizers, and compute their signature in the sense of Fuchsian groups. For some groups, we also find explicit pairs of complex lines such that the union of their stabilizers generate the ambient lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Barthel, G., Hirzebruch, F., Höfer, T.: Geradenkonfigurationen und algebraische Flächen. Aspects of Mathematics, vol. D4. Springer, Wiesbaden (1987)

  2. Beardon, A.F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics, vol. 91. Springer, New York (1983)

    Book  Google Scholar 

  3. Borel, A., Harish-Chandra: Arithmetic subgroups of algebraic groups. Ann. Math. 2(75), 485–535 (1962)

    Article  MathSciNet  Google Scholar 

  4. Chen, S.S., Greenberg, L.: Hyperbolic Spaces. Contribution to Analysis, Collection of Papers Dedicated to Lipman Bers, pp. 49–87 (1974)

  5. Couwenberg, W., Heckman, G., Looijenga, E.: Geometric structures on the complement of a projective arrangement. Publ. Math. Inst. Hautes Étud. Sci. 101, 69–161 (2005)

    Article  MathSciNet  Google Scholar 

  6. de Rham, G.: Sur les polygones générateurs de groupes fuchsiens. Enseign. Math. 2(17), 49–61 (1971)

    Google Scholar 

  7. Deligne, P., Mostow, G.D.: Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. Inst. Hautes Étud. Sci. 63, 5–89 (1986)

    Article  Google Scholar 

  8. Deraux, M.: Spocheck (2019). https://hal.archives-ouvertes.fr/hal-02398953

  9. Deraux, M.: gitlab project neat subgroups. https://plmlab.math.cnrs.fr/deraux/neat-subs

  10. Deraux, M.: Non-arithmetic ball quotients from a configuration of elliptic curves in an Abelian surface. Comment. Math. Helv. 93(3), 533–554 (2018)

    Article  MathSciNet  Google Scholar 

  11. Deraux, M.: Non-arithmetic lattices and the Klein quartic. J. Reine Angew. Math. 754, 253–279 (2019)

    Article  MathSciNet  Google Scholar 

  12. Deraux, M., Parker, J.R., Paupert, J.: Census of the complex hyperbolic sporadic triangle groups. Exp. Math. 20(4), 467–486 (2011)

    Article  MathSciNet  Google Scholar 

  13. Deraux, M., Parker, J.R., Paupert, J.: New nonarithmetic complex hyperbolic lattices. Invent. Math. 203(3), 681–771 (2016)

    Article  MathSciNet  Google Scholar 

  14. Deraux, M., Parker, J.R., Paupert, J.: New nonarithmetic complex hyperbolic lattices II. Mich. Math. J. 70(1), 133–205 (2021)

    Article  MathSciNet  Google Scholar 

  15. Erlandsson, V., Parkkonen, J., Paulin, F., Souto, J.: Counting and equidistribution of reciprocal closed geodesic in negative curvature (in preparation)

  16. Falbel, E., Pasquinelli, I.: Complex hyperbolic orbifolds and Lefschetz fibrations. Preprint (2020). arXiv:2003.06466

  17. Goldman, W.M.: Complex Hyperbolic Geometry. Clarendon Press, Oxford (1999)

    Book  Google Scholar 

  18. Jiang, Y., Wang, J., Yang, F.: Arithmeticity of \(\mathbb{C}\)-fuchsian subgroups of some non-arithmetic lattices. Preprint (2022). https://doi.org/10.21203/rs.3.rs-2366924/v1

  19. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. II, Volume 15 of Interscience. Pure and Applied Mathematics. Interscience Publishers, New York (1969)

  20. Mostow, G.D.: On a remarkable class of polyhedra in complex hyperbolic space. Pac. J. Math. 86, 171–276 (1980)

    Article  MathSciNet  Google Scholar 

  21. Sun, L.: C-Fuchsian subgroups of some non-arithmetic lattices. Korean J. Math. 30(2), 315–333 (2022)

    MathSciNet  Google Scholar 

  22. Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. In: The Epstein Birthday Schrift Dedicated to David Epstein on the Occasion of his 60th Birthday, pp. 511–549. Institute of Mathematics, University of Warwick, Warwick (1998)

  23. Wells, J.: Non-arithmetic hybrid lattices in \(\text{ PU }(2,1)\). Geom. Dedic. 208, 1–11 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Deraux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deraux, M. Mirror stabilizers for lattice complex hyperbolic triangle groups. Geom Dedicata 218, 58 (2024). https://doi.org/10.1007/s10711-024-00910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-024-00910-6

Keywords

Mathematics Subject Classification

Navigation