Skip to main content
Log in

Construction and characterisation of the varieties of the third row of the Freudenthal–Tits magic square

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We characterise the varieties appearing in the third row of the Freudenthal–Tits magic square over an arbitrary field, in both the split and non-split version, as originally presented by Jacques Tits in his Habilitation thesis. In particular, we characterise the variety related to the 56-dimensional module of a Chevalley group of exceptional type \(\mathsf {E_7}\) over an arbitrary field. We use an elementary axiom system which is the natural continuation of the one characterising the varieties of the second row of the magic square. We provide an explicit common construction of all characterised varieties as the quadratic Zariski closure of the image of a newly defined affine dual polar Veronese map. We also provide a construction of each of these varieties as the common null set of quadratic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bourbaki, N.: Algèbre, Chapitre 9 in Éléments de mathématique. Springer, New York (1959)

    Google Scholar 

  2. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs, Ergebnisse der Mathematik 3. Folge, Band 18. Springer, Berlin (1989)

  3. Buekenhout, F., Cohen, A.: Diagram Geometries Related to Classical Groups and Buildings, EA Series of Modern Surveys in Mathematics, vol. 57. Springer, Heidelberg (2013)

    Book  Google Scholar 

  4. Carter, R.: Simple Groups of Lie Type. Wiley, New York (1972)

    Google Scholar 

  5. Chevalley, C.: The Algebraic Theory of Spinors. Columbia University Press, New York (1954)

    Book  Google Scholar 

  6. Cohen, A.M.: On a theorem of Cooperstein. Eur. J. Combin. 4, 107–126 (1983)

    Article  MathSciNet  Google Scholar 

  7. Cohen, A.M.: Point-Line Spaces Related to Buildings in Handbook of Incidence Geometry. Elsevier, New York (1995)

    Google Scholar 

  8. Cohen, A.M., Cooperstein, B.: A characterization of some geometries of Lie type. Geom. Dedic. 15, 73–105 (1983)

    Article  MathSciNet  Google Scholar 

  9. Cohen, A.M., Cooperstein, B.: On the local recognition of finite metasymplectic spaces. J. Algebra 124, 348–366 (1989)

    Article  MathSciNet  Google Scholar 

  10. Cohen, A.M., De Schepper, A., Schillewaert, J., Van Maldeghem, H.: On Shult’s haircut theorem. Eur. J. Combin. 102, Paper No. 103503 (2022)

  11. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Oxford (1985)

    Google Scholar 

  12. Cooperstein, B.N.: A characterization of some Lie incidence structures. Geom. Dedic. 6, 205–258 (1977)

    Article  MathSciNet  Google Scholar 

  13. Cooperstein, B.: On the generation of some embeddable \({\sf GF} (2)\) geometries. J. Algebraic Combin. 13, 15–28 (2001)

    Article  MathSciNet  Google Scholar 

  14. De Bruyn, B.: The pseudo-hyperplanes and homogeneous pseudo-embeddings of \({\sf AG}(n,4)\) and \({\sf PG}(n,4)\). Des. Codes Cryptogr. 65, 127–156 (2012)

    Article  MathSciNet  Google Scholar 

  15. De Bruyn, B.: Pseudo-embeddings and pseudo-hyperplanes. Adv. Geom. 13, 71–95 (2013)

    Article  MathSciNet  Google Scholar 

  16. De Bruyn, B., Van Maldeghem, H.: Universal homogeneous embeddings of dual polar spaces of rank 3 defined over quadratic alternative division algebras. J. Reine. Angew. Math. 715, 39–74 (2016)

    Article  MathSciNet  Google Scholar 

  17. Dembowski, P.: Finite Geometries. Springer, New York (1968)

    Book  Google Scholar 

  18. De Schepper, A., Schillewaert, J., Van Maldeghem, H.: A uniform characterisation of the varieties of the second row of the Freudenthal-Tits Magic Square over arbitrary fields. J. Combin. Algebra 7, 227–282 (2023)

  19. De Schepper, A., Schillewaert, J., Van Maldeghem, H., Victoor, M.: On exceptional Lie geometries. Forum Math. Sigma 9, paper No e2 (2021)

  20. De Schepper, A., Schillewaert, J., Van Maldeghem, H., Victoor, M.: A geometric characterisation of Hjelmslev–Moufang planes. Q. J. Math. 73, 369–394 (2022)

    Article  MathSciNet  Google Scholar 

  21. De Schepper, A., Van Maldegem, H.: Veronese representation of Hjelmslev planes of level 2 over Cayley–Dickson algebras. Res. Math. 75, paper No.9 (2020)

  22. Krauss, O., Schillewaert, J., Van Maldeghem, H.: Veronesean representations of Moufang planes. Mich. Math. J. 64, 819–847 (2015)

    Article  MathSciNet  Google Scholar 

  23. Mazzocca, F., Melone, N.: Caps and Veronese varieties in projective Galois spaces. Discrete Math. 48, 243–252 (1984)

    Article  MathSciNet  Google Scholar 

  24. Ronan, M.A., Smith, S.D.: Sheaves on buildings and modular representations of Chevalley groups. J. Algebra 96, 319–346 (1985)

    Article  MathSciNet  Google Scholar 

  25. Schillewaert, J., Van Maldeghem, H.: A combinatorial characterization of the Lagrangian Grassmannian LG\((3,6)\). Glasgow Math. J. 58, 293–311 (2016)

    Article  MathSciNet  Google Scholar 

  26. Schillewaert, J., Van Maldeghem, H.: Projective planes over quadratic two-dimensional algebras. Adv. Math. 262, 784–822 (2014)

    Article  MathSciNet  Google Scholar 

  27. Schillewaert, J., Van Maldeghem, H.: On the varieties of the second row of the split Freudenthal–Tits Magic Square. Ann. Inst. Fourier 67, 2265–2305 (2017)

    Article  MathSciNet  Google Scholar 

  28. Shult, E.E.: Points and Lines, Characterizing the Classical Geometries. Universitext. Springer, Berlin (2011)

    Book  Google Scholar 

  29. Shult, E.E.: Parapolar spaces with the “Haircut’’ axiom. Innov. Incid. Geom. 15, 265–286 (2017)

    Article  MathSciNet  Google Scholar 

  30. Tits, J.: Buildings of Spherical Type and Finite BN-Pairs, Springer Lecture Notes in Mathematics, vol. 386. Springer, New York (1974)

    Google Scholar 

  31. Van Maldeghem, H., Victoor, M.: Combinatorial and geometric constructions of spherical buildings. In: Lo, A., et al. (eds.) Surveys in Combinatorics 2019. London Mathematical Society Lecture Note Series, vol. 456, pp. 237–265. Cambridge University Press, Cambridge (2019)

    Chapter  Google Scholar 

  32. Vavilov, N.A., Luzgarev, A.Yu.: The normalizer of Chevalley groups of type \(E_6\). Algebra i Analiz 19, 37–64 (2007) (in Russian); English transl.: St. Petersb. Math. J. 19, 699–718 (2008)

  33. Vavilov, N.A., Luzgarev, AYu.: Normalizer of the Chevalley group of type \(E_7\). St. Petersb. Math. J. 27, 899–921 (2015)

    Article  Google Scholar 

  34. Wells, A.L., Jr.: Universal projective embeddings of the Grassmannian, half spinor, and dual orthogonal geometries. Q. J. Math. Oxf. 34, 375–386 (1983)

    Article  MathSciNet  Google Scholar 

  35. Zak, F.: Tangents and Secants of Algebraic Varieties. Translation of Mathematical Monographs. AMS, Providence (1983)

    Google Scholar 

  36. Zorn, M.: Theorie der alternativen Ringe. Abh. Math. Sem. Univ. Hambg. 8, 123–147 (1930)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research leading to the first part of this paper was carried out in Auckland while the first and third author were trapped in their accommodation by lockdown due to COVID-19, still graciously enjoying the help and hospitality of the second author. Our gratitude also goes to the referee for their willingness and courage to read in detail through this long paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneleen De Schepper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Anneleen De Schepper: supported by the Fund for Scientific Research Flanders—FWO Vlaanderen. Jeroen Schillewaert: supported by UoA FRDF grant and by New Zealand Marsden Fund grant MFP-UOA-2122.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Schepper, A., Schillewaert, J., Van Maldeghem, H. et al. Construction and characterisation of the varieties of the third row of the Freudenthal–Tits magic square. Geom Dedicata 218, 20 (2024). https://doi.org/10.1007/s10711-023-00864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00864-1

Keywords

Mathematics Subject Classification

Navigation