Skip to main content
Log in

Low dilatation pseudo-Anosovs on punctured surfaces and volume.

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For a pseudo-Anosov homeomorphism f on a closed surface of genus \(g\ge 2\), for which the entropy is on the order \(\frac{1}{g}\) (the lowest possible order), Farb-Leininger-Margalit showed that the volume of the mapping torus is bounded, independent of g. We show that the analogous result fails for a surface of fixed genus g with n punctures, by constructing pseudo-Anosov homeomorphism with entropy of the minimal order \(\frac{\log n}{n}\), and volume tending to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Penner, R.C.: Bounds on least dilatations. Proc. Amer. Math. Soc. 113(2), 443–450 (1991). (MR1068128)

    Article  MathSciNet  Google Scholar 

  2. Bauer, M.: An upper bound for the least dilatation. Trans. Amer. Math. Soc. 330(1), 361–370 (1992). (MR1094556)

    Article  MathSciNet  Google Scholar 

  3. Hironaka, E., Kin, E.: A family of pseudo-Anosov braids with small dilatation. Algebr. Geom. Topol. 6, 699–738 (2006). (MR2240913)

    Article  MathSciNet  Google Scholar 

  4. Minakawa, H.: Examples of pseudo-Anosov homeomorphisms with small dilatations. J. Math. Sci. Univ. Tokyo 13(2), 95–111 (2006). (MR2277516)

    MathSciNet  Google Scholar 

  5. John, W.: Aaber and Nathan Dunfield, Closed surface bundles of least volume. Algebr. Geom. Topol. 10(4), 2315–2342 (2010). (MR2745673)

    Article  MathSciNet  Google Scholar 

  6. Kin, E., Takasawa, M.: The boundary of a fibered face of the magic 3-manifold and the asymptotic behavior of minimal pseudo-Anosov dilatations. Hiroshima Math. J. 46(3), 271–287 (2016). (MR3614298)

    Article  MathSciNet  Google Scholar 

  7. Agol, I., Leininger, C.J., Margalit, D.: Pseudo-Anosov stretch factors and homology of mapping tori. J. Lond. Math. Soc.(2) 93(3), 664–682 (2016). (MR3509958)

    Article  MathSciNet  Google Scholar 

  8. Farb, B., Leininger, C.J., Margalit, D.: Small dilatation pseudo-Anosov homeomorphisms and 3-manifolds. Adv. Math. 228(3), 1466–1502 (2011). (MR2824561)

    Article  MathSciNet  Google Scholar 

  9. Ian, A.: Ideal triangulations of pseudo-Anosov mapping tori, Topology and geometry in dimension three, Contemp. Math., vol. 560, Amer. Math. Soc., Providence, RI, 2011, pp. 1–17. MR2866919

  10. Kojima, S., McShane, G.: Normalized entropy versus volume for pseudo-Anosovs. Geom. Topol. 22(4), 2403–2426 (2018). (MR3784525)

    Article  MathSciNet  Google Scholar 

  11. Brock, J.F., Bromberg, K.W.: Inflexibility, Weil-Peterson distance, and volumes of fibered 3-manifolds. Math. Res. Lett. 23(3), 649–674 (2016). (MR3533189)

    Article  MathSciNet  Google Scholar 

  12. Tsai, C.-Y.: The asymptotic behavior of least pseudo-Anosov dilatations. Geom. Topol. 13(4), 2253–2278 (2009). (MR2507119)

    Article  MathSciNet  Google Scholar 

  13. Yazdi, M.: Lower bound for dilatations. J. Topol. 11(3), 602–614 (2018). (MR3830877)

    Article  MathSciNet  Google Scholar 

  14. Mehdi, Y.: Pseudo-anosov maps with small stretch factors on punctured surfaces, (2018)

  15. Aaron, D.: Valdivia, Sequences of pseudo-Anosov mapping classes and their asymptotic behavior. N. Y. J. Math. 18, 609–620 (2012). (MR2967106)

    Google Scholar 

  16. Albert, F., François, L. and Valentin, P.: Thurston’s work on surfaces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012, Translated from the 1979 French original by Kim, D.M. and Margalit, D. MR3053012

  17. Thurston, W.P.: A norm for the homology of \(3\)-manifolds. Mem. Amer. Math. Soc. 59(339), 99–130 (1986). (i–vi and , MR823443)

    MathSciNet  Google Scholar 

  18. David, F.: Fibrations over \(s^1\) with pseudo-anosov monodromy, Travaux de Thurston sur les surfaces - Séminaire Orsay, Astérisque, no. 66-67, Société mathématique de France, 1979, pp. 251–266 (en)

  19. Fried, D.: The geometry of cross sections to flows. Topology 21(4), 353–371 (1982). (MR670741)

    Article  MathSciNet  Google Scholar 

  20. Bestvina, M., Handel, M.: Train-tracks for surface homeomorphisms. Topology 34(1), 109–140 (1995). (MR1308491)

    Article  MathSciNet  Google Scholar 

  21. Gantmacher, F.R.:The theory of matrices. Vols. 1, 2, Translated by Hirsch, K.A. Chelsea Publishing Co., New York, (1959). MR0107649

  22. Agol, I.: Small 3-manifolds of large genus. Geom. Dedicata. 102, 53–64 (2003). (MR2026837)

    Article  MathSciNet  Google Scholar 

  23. Colin, C.: Adams, Thrice-punctured spheres in hyperbolic \(3\)-manifolds. Trans. Amer. Math. Soc. 287(2), 645–656 (1985). (MR768730)

    MathSciNet  Google Scholar 

  24. William P. Thurston, Geometry and topology of \(3\)-manifolds, lecture notes, Princeton University (1978)

  25. Walter, D.: Neumann and Don Zagier, Volumes of hyperbolic three-manifolds. Topology 24(3), 307–332 (1985). (MR815482)

    Article  MathSciNet  Google Scholar 

  26. Stallings, J.R.: Constructions of fibred knots and links, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 55–60. MR520522

  27. Long, D.D., Morton, H.R.: Hyperbolic \(3\)-manifolds and surface automorphisms. Topology 25(4), 575–583 (1986). (MR862441)

    Article  MathSciNet  Google Scholar 

  28. Thurston, W.P.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.) 6(3), 357–381 (1982). (MR648524)

    Article  MathSciNet  Google Scholar 

  29. Morgan, J.W.: On Thurston’s uniformization theorem for three-dimensional manifolds, The Smith conjecture (New York, 1979), Pure Appl. Math., vol. 112, Academic Press, Orlando, FL, 1984, pp. 37–125. MR758464

  30. Otal, J.P.: Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque (1996), no. 235, x+159. MR1402300

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S. Low dilatation pseudo-Anosovs on punctured surfaces and volume.. Geom Dedicata 218, 23 (2024). https://doi.org/10.1007/s10711-023-00860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00860-5

Mathematics Subject Classification (2020)

Navigation