Skip to main content
Log in

Foliations on \(\mathbb {P}^2\) with only one singular point

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we study holomorphic foliations on \({\mathbb {P}}^2\) with only one singular point. If the singularity has algebraic multiplicity one, we prove that the foliation has no invariant algebraic curve. We also present several examples of such foliations in degree three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alcántara, C.R.: Foliations on \({\mathbb{C}}{\mathbb{P}}^{2}\) of degree d with a singular point with milnor number \(d^2+d+1\). Revista Matemática Complutense 31(1), 187–199 (2017). https://doi.org/10.1007/s13163-017-0239-0

  2. Alcántara, C.R., Pantaleón-Mondragón, R.: Foliations on \({\mathbb{C}}{\mathbb{P}}^{2}\) with a unique singular point without invariant algebraic curves. Geom. Dedicata. 207(1), 193–200 (2019). https://doi.org/10.1007/s10711-019-00492-8

    Article  MATH  Google Scholar 

  3. Berthier, M., Meziani, R., Sad, P.: On the classification of nilpotent singularities. Bulletin des Sciences Mathématiques 123(5), 351–370 (1999). https://doi.org/10.1016/s0007-4497(99)00106-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunella, M.: Some remarks on indices of holomorphic vector fields. Publicacions Matemàtiques 41(2), 527–544 (1997). http://www.jstor.org/stable/43737261

  5. Brunella, M.: Birational Geometry of Foliations. IMPA Monographs. Springer Science+Business Media LLC, New York, NY (2015)

    MATH  Google Scholar 

  6. Calvo-Andrade, O.: Irreducible components of the space of holomorphic foliations. Math. Ann. 299(1), 751–767 (1994). https://doi.org/10.1007/bf01459811

    Article  MathSciNet  MATH  Google Scholar 

  7. Camacho, C., Lins Neto, A., Sad, P.: Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geometry 20(1), 143–174 (1984). https://doi.org/10.4310/jdg/1214438995

    Article  MathSciNet  MATH  Google Scholar 

  8. Cano, F., Cerveau, D., Déserti, J.: Theéorie élémentaire des feuilletages holomorphes singuliers. Belin, Paris (2013). OCLC: 839673201

  9. Carnicer, M.M.: The poincaré problem in the nondicritical case. The Annals of Mathematics 140(2), 289 (1994). https://doi.org/10.2307/2118601

    Article  MATH  Google Scholar 

  10. Cerveau, D., Déserti, J., Garba Belko, D., Meziani, R.: Géométrie classique de certains feuilletages de degré deux. Bulletin of the Brazilian Mathematical Society, New Series 41(2), 161–198 (2010). https://doi.org/10.1007/s00574-010-0008-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Cerveau, D., Lins Neto, A.: Holomorphic foliations in \(\mathbb{C}\mathbb{P}(2)\) having an invariant algebraic curve. Annales de l’Institut Fourier 41(4), 883–903 (1991). https://doi.org/10.5802/aif.1278. www.numdam.org/articles/10.5802/aif.1278/

  12. Cerveau, D., Lins Neto, A.: Irreducible components of the space of holomorphic foliations of degree two in CP(n), n \(\ge \)3. The Annals of Mathematics 143(3), 577 (1996). https://doi.org/10.2307/2118537

    Article  MATH  Google Scholar 

  13. Cerveau, D., Moussu, R.: Groupes d’automorphismes de \(({\mathbb{C}},0)\) et équations différentielles \(ydy+\cdots =0\). Bulletin de la Société Mathématique de France 116(4), 459–488 (1988). https://doi.org/10.24033/bsmf.2108. http://www.numdam.org/articles/10.24033/bsmf.2108/

  14. Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré. Bulletin des Sciences Mathématiques et Astronomiques 2e série, 2(1), 60–96 (1878)

    MATH  Google Scholar 

  15. Jouanolou, J.P.: Equations de Pfaff algébriques. Springer, Berlin Heidelberg (1979). https://doi.org/10.1007/bfb0063393

    Book  MATH  Google Scholar 

  16. Meziani, R.: Classification analytique d’équations différentielles \(ydy+\ldots =0\) et espace de modules. Bol. Soc. Brasil. Mat. 27(1), 23–53 (1996). https://doi.org/10.1007/bf01246703

    Article  MathSciNet  MATH  Google Scholar 

  17. Meziani, R., Sad, P.: Singularités nilpotentes et intégrales premières. Publicacions Matemàtiques 51, 143–161 (2007)

    Article  MathSciNet  Google Scholar 

  18. Seidenberg, A.: Reduction of singularities of the differential equation \(Ady = Bdx\). American Journal of Mathematics 90(1), 248–269 (1968). http://www.jstor.org/stable/2373435

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Puchuri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, P., Puchuri, L. & Rosas, R. Foliations on \(\mathbb {P}^2\) with only one singular point. Geom Dedicata 216, 59 (2022). https://doi.org/10.1007/s10711-022-00724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-022-00724-4

Keywords

Mathematics Subject Classification (2020)

Navigation