Abstract
In this paper we study holomorphic foliations on \({\mathbb {P}}^2\) with only one singular point. If the singularity has algebraic multiplicity one, we prove that the foliation has no invariant algebraic curve. We also present several examples of such foliations in degree three.
Similar content being viewed by others
Data Availability
Not applicable.
References
Alcántara, C.R.: Foliations on \({\mathbb{C}}{\mathbb{P}}^{2}\) of degree d with a singular point with milnor number \(d^2+d+1\). Revista Matemática Complutense 31(1), 187–199 (2017). https://doi.org/10.1007/s13163-017-0239-0
Alcántara, C.R., Pantaleón-Mondragón, R.: Foliations on \({\mathbb{C}}{\mathbb{P}}^{2}\) with a unique singular point without invariant algebraic curves. Geom. Dedicata. 207(1), 193–200 (2019). https://doi.org/10.1007/s10711-019-00492-8
Berthier, M., Meziani, R., Sad, P.: On the classification of nilpotent singularities. Bulletin des Sciences Mathématiques 123(5), 351–370 (1999). https://doi.org/10.1016/s0007-4497(99)00106-2
Brunella, M.: Some remarks on indices of holomorphic vector fields. Publicacions Matemàtiques 41(2), 527–544 (1997). http://www.jstor.org/stable/43737261
Brunella, M.: Birational Geometry of Foliations. IMPA Monographs. Springer Science+Business Media LLC, New York, NY (2015)
Calvo-Andrade, O.: Irreducible components of the space of holomorphic foliations. Math. Ann. 299(1), 751–767 (1994). https://doi.org/10.1007/bf01459811
Camacho, C., Lins Neto, A., Sad, P.: Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geometry 20(1), 143–174 (1984). https://doi.org/10.4310/jdg/1214438995
Cano, F., Cerveau, D., Déserti, J.: Theéorie élémentaire des feuilletages holomorphes singuliers. Belin, Paris (2013). OCLC: 839673201
Carnicer, M.M.: The poincaré problem in the nondicritical case. The Annals of Mathematics 140(2), 289 (1994). https://doi.org/10.2307/2118601
Cerveau, D., Déserti, J., Garba Belko, D., Meziani, R.: Géométrie classique de certains feuilletages de degré deux. Bulletin of the Brazilian Mathematical Society, New Series 41(2), 161–198 (2010). https://doi.org/10.1007/s00574-010-0008-x
Cerveau, D., Lins Neto, A.: Holomorphic foliations in \(\mathbb{C}\mathbb{P}(2)\) having an invariant algebraic curve. Annales de l’Institut Fourier 41(4), 883–903 (1991). https://doi.org/10.5802/aif.1278. www.numdam.org/articles/10.5802/aif.1278/
Cerveau, D., Lins Neto, A.: Irreducible components of the space of holomorphic foliations of degree two in CP(n), n \(\ge \)3. The Annals of Mathematics 143(3), 577 (1996). https://doi.org/10.2307/2118537
Cerveau, D., Moussu, R.: Groupes d’automorphismes de \(({\mathbb{C}},0)\) et équations différentielles \(ydy+\cdots =0\). Bulletin de la Société Mathématique de France 116(4), 459–488 (1988). https://doi.org/10.24033/bsmf.2108. http://www.numdam.org/articles/10.24033/bsmf.2108/
Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré. Bulletin des Sciences Mathématiques et Astronomiques 2e série, 2(1), 60–96 (1878)
Jouanolou, J.P.: Equations de Pfaff algébriques. Springer, Berlin Heidelberg (1979). https://doi.org/10.1007/bfb0063393
Meziani, R.: Classification analytique d’équations différentielles \(ydy+\ldots =0\) et espace de modules. Bol. Soc. Brasil. Mat. 27(1), 23–53 (1996). https://doi.org/10.1007/bf01246703
Meziani, R., Sad, P.: Singularités nilpotentes et intégrales premières. Publicacions Matemàtiques 51, 143–161 (2007)
Seidenberg, A.: Reduction of singularities of the differential equation \(Ady = Bdx\). American Journal of Mathematics 90(1), 248–269 (1968). http://www.jstor.org/stable/2373435
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fernández, P., Puchuri, L. & Rosas, R. Foliations on \(\mathbb {P}^2\) with only one singular point. Geom Dedicata 216, 59 (2022). https://doi.org/10.1007/s10711-022-00724-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10711-022-00724-4