Skip to main content
Log in

Rigid isotopy classification of generic rational curves of degree 5 in the real projective plane

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this article we obtain the rigid isotopy classification of generic rational curves of degre 5 in \({\mathbb {R}}{\mathbb {P}}^{2}\). In order to study the rigid isotopy classes of nodal rational curves of degree 5 in \({\mathbb {R}}{\mathbb {P}}^{2}\), we associate to every real rational nodal quintic curve with a marked real nodal point a nodal trigonal curve in the Hirzebruch surface \(\Sigma _3\) and the corresponding nodal real dessin on \({\mathbb {C}}{\mathbb {P}}^{1}/(z\mapsto {\bar{z}})\). The dessins are real versions, proposed by Orevkov (Annales de la Faculté des sciences de Toulouse 12(4):517–531, 2003), of Grothendieck’s dessins d’enfants. The dessins are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves \(C\subset \Sigma _n\) in real Hirzebruch surfaces \(\Sigma _n\). Nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk \({\mathbf {D}}^2\), which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in \({\mathbb {R}}{\mathbb {P}}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65

Similar content being viewed by others

References

  1. Alling, N., Greenleaf, N.: Foundations of the Theory of Klein Surfaces. Lecture Notes in Mathematics, vol. 219. Springer, Berlin (1971)

    Book  Google Scholar 

  2. Degtyarev, A.: Topology of Algebraic Curves: An Approach via Dessins d’Enfants. De Gruyter Studies in Mathematics, vol. 44. Walter de Gruyter & Co., Berlin (2012)

    Book  Google Scholar 

  3. Degtyarev, A., Itenberg, I., Kharlamov, V.: On deformation types of real elliptic surfaces. Am. J. Math. 6(130), 1561–1627 (2008)

    Article  MathSciNet  Google Scholar 

  4. Degtyarev, A., Itenberg, I., Zvonilov, V.: Real trigonal curves and real elliptic surfaces of type I. J. Reine Angew. Math. 686, 221–246 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Degtyarev, A., Kharlamov, V.: Topological properties of real algebraic varieties: du côté de chez Rokhlin. Russ. Math. Surv. 55(4), 735–814 (2000)

    Article  Google Scholar 

  6. Golubina, L.V., Gudkov, D.A.: Classification of sets of singular points of unicursal plane fifth-order curves (Russian). Differ. Integral Equ. 6, 126–132 (1982)

    Google Scholar 

  7. Golubina, L.V., Gudkov, D.A., Kubrina, L.G., Zarodova, A.V.: Classification of three-point sets of singular points of fifth-order unicursal curves (Russian). Methods Qual Theory Differ Equ 2, 123–134 (1982)

    MATH  Google Scholar 

  8. Gudkov, D.: Plane real projective quartic curves. In: Topology and Geometry—Rohlin Seminar. vol. 1346 of Lecture Notes in Mathematics, pp. 341–347. Springer, Berlin (1988)

  9. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)

    Article  MathSciNet  Google Scholar 

  10. Itenberg, I., Mikhalkin, G., Rau, J.: Rational quintics in the real plane. Transactions of the AMS (2015, to appear). Preprint, arXiv:1509.05228

  11. Kharlamov, V.: Rigid isotopic classification of real planar curves of degree 5. Funct. Anal. Appl. 15(1), 73–74 (1981)

    Article  Google Scholar 

  12. Orevkov, S.: Riemann existence theorem and construction of real algebraic curves. Annales de la Faculté des sciences de Toulouse 12(4), 517–531 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Rokhlin, V.A.: Complex topological characteristics of real algebraic curves. Russ. Math. Surv. 33(5), 85–98 (1978)

    Article  MathSciNet  Google Scholar 

  14. Schneps, L., Lochak, P. (eds).: Geometric Galois Actions. Volume 1. Around Grothendieck’s Esquisse d’un Programme, volume 242 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Jaramillo Puentes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo Puentes, A. Rigid isotopy classification of generic rational curves of degree 5 in the real projective plane. Geom Dedicata 211, 1–70 (2021). https://doi.org/10.1007/s10711-020-00540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-020-00540-8

Keywords

Mathematics Subject Classification

Navigation