Skip to main content
Log in

\({{\,\mathrm{{\mathfrak {L}}}\,}}\)-prolongations of graded Lie algebras

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we translate the necessary and sufficient conditions of Tanaka’s theorem on the finiteness of effective prolongations of a fundamental graded Lie algebras into computationally effective criteria, involving the rank of some matrices that can be explicitly constructed. Our results would apply to geometries, which are defined by assigning a structure algebra on the contact distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D., David, L.: Prolongation of Tanaka structures: an alternative approach. Ann. Mat. Pura Appl. (4) 196(3), 1137–1164 (2017)

    Article  MathSciNet  Google Scholar 

  2. Altomani, A., Medori, C., Nacinovich, M.: The CR structure of minimal orbits in complex flag manifolds. J. Lie Theory 16(3), 483–530 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Aslaksen, H.: Determining summands in tensor products of Lie algebra representations. J. Pure Appl. Algebra 93(2), 135–146 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bourbaki, N.: Commutative Algebra. Springer, Berlin (1989)

    MATH  Google Scholar 

  5. Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 1–3, Elements of Mathematics (Berlin). Springer, Berlin (1989). (Translated from the French. Reprint of the 1975 edition)

  6. Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 4–6, Elements of Mathematics (Berlin). Springer, Berlin (2002). (Translated from the 1968 French original by Andrew Pressley)

  7. Cahn, R.N.: Semi-Simple Lie Algebras and Their Representations, Frontiers in Physics, vol. 59. Benjamin/Cummings, San Francisco (1984)

    MATH  Google Scholar 

  8. Cartan, E.: Les groupes de transformations continus, infinis, simples. Ann. Sci. l’École Norm. supérieure 26, 93–161 (1909). (French)

  9. Dynkin, E.B.: Maximal subgroups of the classical groups. Trudy Moskov. Mat. Obšč 1, 39–166 (1952). (russian)

    MathSciNet  Google Scholar 

  10. Guillemin, V.W.: Infinite dimensional primitive Lie algebras. J. Differ. Geom. 4(3), 257–282 (1970)

    Article  MathSciNet  Google Scholar 

  11. Guillemin, V.W., Quillen, D., Sternberg, S.: The classification of the complex primitive infinite pseudogroups. Proc Natl Acad Sci USA 55(4), 687–690 (1966)

    Article  MathSciNet  Google Scholar 

  12. Guillemin, V.W., Quillen, D., Sternberg, S.: The classification of the irreducible complex algebras of infinite type. J. Anal. Math. 18(1), 107–112 (1967)

    Article  MathSciNet  Google Scholar 

  13. Guillemin, V.W., Sternberg, S.: An algebraic model of transitive differential geometry. Bull. Am. Math. Soc. 70, 16–47 (1964)

    Article  MathSciNet  Google Scholar 

  14. Hartshorne, R.: Algebraic Geometry. Springer, New York (1977). (Graduate Texts in Mathematics, No. 52)

    Book  Google Scholar 

  15. Kac, V.G.: Simple graded Lie algebras of finite height. Funkcional. Anal. i Priložen 1(4), 82–83 (1967)

    MathSciNet  Google Scholar 

  16. Kobayashi, S.: Transformations Groups in Differential Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiet, 70. Springer, Berlin (1972)

    Book  Google Scholar 

  17. Kobayashi, S., Nagano, T.: On filtered Lie algebras and geometric structures I. J. Math. Mech. 13(5), 875–907 (1964)

    MathSciNet  MATH  Google Scholar 

  18. Kobayashi, S., Nagano, T.: A theorem on filtered Lie algebras and its applications. Bull. Am. Math. Soc. 70(3), 401–403 (1964)

    Article  MathSciNet  Google Scholar 

  19. Kobayashi, S., Nagano, T.: On a fundamental theorem of Weyl–Cartan on \(G\)-structures. J. Math. Soc. Jpn. 17(1), 84–101 (1965)

    Article  MathSciNet  Google Scholar 

  20. Kobayashi, S., Nagano, T.: On filtered Lie algebras and geometric structures II. J. Math. Mech. 14(3), 513–521 (1965)

    MathSciNet  MATH  Google Scholar 

  21. Kobayashi, S., Nagano, T.: On filtered Lie algebras and geometric structures III. J. Math. and Mech. 14(4), 679–706 (1965)

    MathSciNet  MATH  Google Scholar 

  22. Kobayashi, S., Nagano, T.: On filtered Lie algebras and geometric structures IV. J. Math. Mech. 15(1), 163–175 (1966)

    MathSciNet  MATH  Google Scholar 

  23. Kruglikov, B.: Finite-dimensionality in Tanaka theory. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 28(1), 75–90 (2011)

    Article  MathSciNet  Google Scholar 

  24. Marini, S., Medori, C., Nacinovich, M., Spiro, A.: On Transitive Contact and CR Algebras. arXiv:1706.03512v1 [math.DG] (2017), to appear in Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. https://doi.org/10.2422/2036-2145.201710_012

  25. Morimoto, T., Tanaka, N.: The classification of the real primitive infinite Lie algebras. J. Math. Kyoto Univ. 10(2), 207–243 (1970)

    Article  MathSciNet  Google Scholar 

  26. Ottazzi, A.: A sufficient condition for nonrigidity of Carnot groups. Math. Z 259(3), 617–629 (2008)

    Article  MathSciNet  Google Scholar 

  27. Ottazzi, A., Warhurst, B.: Algebraic prolongation and rigidity of Carnot groups. Mon. Math. 162(2), 179–195 (2011)

    Article  MathSciNet  Google Scholar 

  28. Ottazzi, A., Warhurst, B.: Contact and 1-quasiconformal maps on Carnot groups. J. Lie Theory 21(4), 787–811 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Reutenauer, C.: Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7. The Clarendon Press, Oxford (1993)

    Google Scholar 

  30. Shnider, S.: The classification of real primitive infinite Lie algebras. J. Differ. Geom. 4(1), 81–89 (1970)

    Article  MathSciNet  Google Scholar 

  31. Spencer, D.C.: Overdetermined systems of linear partial differential equations. Bull. Am. Math. Soc. 75, 179–239 (1969)

    Article  MathSciNet  Google Scholar 

  32. Sternberg, S.: Lectures on Differential Geometry. ChelseaPubl. Co., New York (1983)

  33. Tanaka, N.: On generalized graded Lie algebras and geometric structures. I. J. Math. Soc. Jpn. 19, 215–254 (1967)

    Article  MathSciNet  Google Scholar 

  34. Tanaka, N.: On differential systems, graded Lie algebras and pseudogroups. J. Math. Kyoto Univ. 10, 1–82 (1970)

    Article  MathSciNet  Google Scholar 

  35. Tougeron, J.C.: Ideaux de fonctions differentiables, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, Springer, Berlin (1972)

  36. Warhurst, B.: Tanaka prolongation of free Lie algebras. Geom. Dedic. 130(1), 59–69 (2007)

    Article  MathSciNet  Google Scholar 

  37. Wilson, R.L.: Irreducible Lie algebras of infinite type. Proc. Am. Math. Soc. 29, 243–249 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Marini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, S., Medori, C. & Nacinovich, M. \({{\,\mathrm{{\mathfrak {L}}}\,}}\)-prolongations of graded Lie algebras. Geom Dedicata 208, 61–88 (2020). https://doi.org/10.1007/s10711-020-00510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-020-00510-0

Keywords

Mathematics Subject Classification (2000)

Navigation