Skip to main content
Log in

Embedding non-projective Mori dream space

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

This paper is devoted to extend some Hu–Keel results on Mori dream spaces (MDS) beyond the projective setup. Namely, \(\mathbb {Q}\)-factorial algebraic varieties with finitely generated class group and Cox ring, here called weak Mori dream spaces (wMDS), are considered. Conditions guaranteeing the existence of a neat embedding of a (completion of a) wMDS into a complete toric variety are studied, showing that, on the one hand, those which are complete and admitting low Picard number are always projective, hence Mori dream spaces in the sense of Hu–Keel. On the other hand, an example of a wMDS that does not admit any neat embedded sharp completion (i.e. Picard number preserving) into a complete toric variety is given, on the contrary of what Hu and Keel exhibited for a MDS. Moreover, termination of the Mori minimal model program for every divisor and a classification of rational contractions for a complete wMDS are studied, obtaining analogous conclusions as for a MDS. Finally, we give a characterization of wMDS arising from a small \(\mathbb {Q}\)-factorial modification of a projective weak \(\mathbb {Q}\)-Fano variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. In [30] we assumed \(\mathbb {C}\) as ground field. Actually all techniques and arguments therein employed are completely extendable to a general field \(\mathbb {K}=\overline{\mathbb {K}}\) with \({{\,\mathrm{char}\,}}\mathbb {K}=0\).

References

  1. Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings. Cambridge Studies in Advanced Mathematics, vol. 144. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  2. Batyrev, V.V., Mel’nikov, D.A.: A theorem on nonextendability of toric varieties. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3, 20–24, 118 (1986)

    MathSciNet  Google Scholar 

  3. Berchtold, F., Hausen, J.: Bunches of cones in the divisor class group—a new combinatorial language for toric varieties. Int. Math. Res. Not. 6, 261–302 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Brown, M.V., McKernan, J., Svaldi, R., Zong, H.R.: A geometric characterization of toric varieties. Duke Math. J. 167(5), 923–968 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Casagrande, C.: Mori dream spaces and Fano varieties. Notes for a minicourse given at GAG Géométrie Algébrique et Géométrie Complexe, CIRM, Marseille, 12–16 (2012)

  7. Cox, D.A.: The homogeneous coordinate ring of a toric variety. J. Algebr. Geom. 4(1), 17–50 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  9. Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics, vol. 168. Springer, New York (1996)

    Google Scholar 

  10. Ewald, G., Ishida, M.-N.: Completion of real fans and Zariski–Riemann spaces. Tohoku Math. J. (2) 58(2), 189–218 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Gongyo, Y., Okawa, S., Sannai, A., Takagi, S.: Characterization of varieties of Fano type via singularities of Cox rings. J. Algebr. Geom. 24(1), 159–182 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Hartshorne, R.: Algebraic Geometry. Springer, New York, 1977. In: Graduate Texts in Mathematics, No. 52

  13. Hausen, J., Keicher, S.: Cox ring database. available at http://www.math.uni-tuebingen.de/user/keicher/coxringdb/

  14. Hausen, J., Keicher, S.: A software package for Mori dream spaces. LMS J. Comput. Math. 18(1), 647–659 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Hu, Y., Keel, S.: Mori dream spaces and GIT. Michigan Math. J. 48, 331–348 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Jaczewski, K. Generalized, Euler sequence and toric varieties. In Classification of algebraic varieties (L’Aquila, : vol. 162 of Contemp. Math. Am. Math. Soc. Providence, RI 1994, 227–247 (1992)

  17. Kedzierski, O., Wiśniewski, J.A.: Differentials of Cox rings: Jaczewski’s theorem revisited. J. Math. Soc. Jpn. 67(2), 595–608 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Keicher, S.: Algorithms for Mori Dream Spaces. Ph.D. thesis, Universität Tübingen, available at http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-540614, 2014

  19. Kleinschmidt, P., Sturmfels, B.: Smooth toric varieties with small Picard number are projective. Topology 30(2), 289–299 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Kollár, J., Mori, S.: Birational geometry of algebraic varieties, vol. 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original

  21. Lazarsfeld, R.: Positivity in algebraic geometry. I, vol. 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004

  22. McKernan, J.: Mori dream spaces. Jpn. J. Math. 5(1), 127–151 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Nagata, M.: Imbedding of an abstract variety in a complete variety. J. Math. Kyoto Univ. 2, 1–10 (1962)

    MathSciNet  MATH  Google Scholar 

  24. Oda, T.: Convex bodies and algebraic geometry, vol. 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1988). An introduction to the theory of toric varieties, Translated from the Japanese

  25. Prokhorov, Y.G., Shokurov, V.V.: Towards the second main theorem on complements. J. Algebr. Geom. 18(1), 151–199 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Rohrer, F.: Completions of fans. J. Geom. 100(1–2), 147–169 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Rossi, M., Terracini, L.: A Batyrev type classification of \(\mathbb{Q}\)–factorial projective toric varieties. to appear in Adv. Geom. https://doi.org/10.1515/advgeom-2018-0007, arXiv:1504.06515

  28. Rossi, M., Terracini, L.: Embedding the picard group inside the class group: the case of \({\mathbb{Q}}\)-factorial complete toric varieties. Preprint arXiv:1803.01612

  29. Rossi, M., Terracini, L.: \({\mathbb{Z}}\)-linear gale duality and poly weighted spaces (PWS). Linear Algebra Appl. 495, 256–288 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Rossi, M., Terracini, L.: A \(\mathbb{Q}\)-factorial complete toric variety with Picard number 2 is projective. J. Pure Appl. Algebra 222(9), 2648–2656 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Sumihiro, H.: Equivariant completion. II. J. Math. Kyoto Univ. 15(3), 573–605 (1975)

    MathSciNet  MATH  Google Scholar 

  33. Włodarczyk, J.: Embeddings in toric varieties and prevarieties. J. Algebr. Geom. 2(4), 705–726 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

First of all I would like to thank Lea Terracini, with whom several parts of the present work have been discussed. Her patience, criticism and encouragement have been an invaluable help in realizing this paper. Moreover, I would like to thank Cinzia Casagrande for pointing me out her precious notes [6] and for some useful remark. Finally, many thanks are due to Antonio Laface for several fruitful hints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Rossi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by I.N.D.A.M. (Istituto Nazionale d’Alta Matematica) as a member of the G.N.S.A.G.A. (Gruppo Nazionale per le Strutture Algebriche, Geometriche e loro Applicazioni).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, M. Embedding non-projective Mori dream space. Geom Dedicata 207, 355–393 (2020). https://doi.org/10.1007/s10711-019-00503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00503-8

Keywords

Mathematics Subject Classification (2000)

Navigation