Abstract
We show that word hyperbolicity of automorphism groups of graph products \(G_\Gamma \) and of Coxeter groups \(W_\Gamma \) depends strongly on the shape of the defining graph \(\Gamma \). We also characterize those \(\mathrm{Aut}(G_\Gamma )\) and \(\mathrm{Aut}(W_\Gamma )\) in terms of \(\Gamma \) that are virtually free.
This is a preview of subscription content, access via your institution.
Notes
For definition see 3.1.
References
Baudisch, A.: Subgroups of Semifree Groups. Akademie der Wissenschaften der DDR Zentralinstitutfur Mathematik und Mechanik (1979)
Bridson, M.: A condition that prevents groups from acting nontrivially on trees. The Zieschang Gedenkschrift. Geom. Topol. Monogr. 14, 129–133 (2008)
Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)
Charney, R., Ruane, K., Stambaugh, N., Vijayan, A.: The automorphism group of a graph product with no SIL. Ill. J. Math. 54(1), 249–262 (2010)
Clay, M., Margalit, D. (eds.): Office Hours with a Geometric Group Theorist. Princeton University Press, Princeton, NJ (2017)
Davis, M.W.: The Geometry and Topology of Coxeter GroupsLondon Mathematical Society Monographs Series, vol. 32. Princeton University Press, Princeton, NJ (2008)
Dicks, W., Dunwoody, M.J.: Groups Acting on Graphs. Cambridge Studies in Advanced Mathematics, vol. 17. Cambridge University Press, Cambridge (1989)
Genevois, A., Martin, A.: Automorphisms of graph products of groups from a geometric perspective. arXiv:1809.08091v2 (2019)
Ghys, E., de la Harpe, P.: Sur les groupes hyperboliques d’aprs Mikhael Gromov. (French) [Hyperbolicgroups in the theory of Mikhael Gromov] Papers from the Swiss Seminar on Hyperbolic Groups held inBern, 1988. Progress in Mathematics, 83. Birkh auser Boston, Inc., Boston, MA (1990)
Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, New York (1987)
Green, E.R.: Graph products of groups. Ph.D. thesis, University of Leeds (1990)
Gutierrez, M., Piggott, A., Ruane, K.: On the automorphisms of a graph product of abelian groups. Groups Geom. Dyn. 6(1), 125–153 (2012)
Hosaka, T.: On the center of a Coxeter group. arXiv:math/0510510 (2005)
Howlett, R.B., Rowley, P.J., Taylor, D.E.: On outer automorphism groups of Coxeter groups. Manuscr. Math. 93(4), 499–513 (1997)
Humphreys, J.E.: Reflection Groups and Coxeter GroupsCambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)
Karrass, P., Pietrowski, A., Solitar, D.: Automorphisms of a free product with an amalgamated subgroup, from: contributions to group theory. Contemp. Math. 33, 328–340 (1980)
Kharlampovich, O., Myasnikov, A.: Hyperbolic groups and free constructions. Trans. Am. Math. Soc. 350(2), 571–613 (1998)
Leder, N.: Serre’s Property FA for automorphism groups of free products. arXiv:1810.06287 (2018)
Lohrey, M., Senizergues, G.: When is a graph product of groups virtually-free? Commun. Algebra 35(2), 617–621 (2007)
Meier, J.: When is the graph product of hyperbolic groups hyperbolic? Geom. Dedic. 61(1), 29–41 (1996)
Mihalik, M., Tschantz, S.: Visual decompositions of Coxeter groups. Groups Geom. Dyn. 3(1), 173–198 (2009)
Moussong, G.: Hyperbolic Coxeter groups. Ph.D. thesis, Ohio State University (1988)
Paulin, F.: Outer automorphisms of hyperbolic groups and small actions on \({\mathbb{R}}\)-trees. In: Alperin, R.C. (ed.) Arboreal Group Theory (Berkeley, CA, 1988). Mathematical Sciences Research Institute Publications, vol. 19, pp. 331–343. Springer, New York (1991)
Pettet, M.R.: Finitely generated groups with virtually free automorphism groups. Proc. Edinb. Math. Soc. (2) 38(3), 475–484 (1995)
Serre, J.-P.: Trees. Translated from the French Original by John Stillwell. Corrected 2nd Printing of the 1980 English Translation. Springer Monographs in Mathematics. Springer, Berlin (2003)
Struyve, K.: (Non)-completeness of \({\mathbb{R}}\)-buildings and fixed point theorems. Groups Geom. Dyn. 5(1), 177–188 (2011)
Varghese, O.: Actions of \({\rm Aut}(F_{n})\). Ph.D. thesis, Münster University (2014)
Varghese, O.: The automorphism group of the universal Coxeter group. arXiv:1805.06748 (2018)
Acknowledgements
The author thanks the referee for careful reading of the manuscript and many helpful remarks.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics-Geometry-Structure.
Rights and permissions
About this article
Cite this article
Varghese, O. On hyperbolicity and virtual freeness of automorphism groups. Geom Dedicata 207, 51–60 (2020). https://doi.org/10.1007/s10711-019-00486-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-019-00486-6