Skip to main content
Log in

A note on invariant constant curvature immersions in Minkowski space

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let S be a compact, orientable surface of hyperbolic type. Let \((k_+,k_-)\) be a pair of negative numbers and let \((g_+, g_-)\) be a pair of marked metrics over S of constant curvature equal to \(k_+\) and \(k_-\) respectively. Using a functional introduced by Bonsante, Mondello and Schlenker, we show that there exists a unique affine deformation \(\Gamma :=(\rho ,\tau )\) of a Fuchsian group such that \((S,g_+)\) and \((S, g_-)\) embed isometrically as locally strictly convex Cauchy surfaces in the future and past complete components respectively of the quotient by \(\Gamma \) of an open subset \(\Omega \) of Minkowski space. Such quotients are known as Globally Hyperbolic, Maximal, Cauchy compact Minkowski spacetimes and are naturally dual to the half-pipe spaces introduced by Danciger. When translated into this latter framework, our result states that there exists a unique, marked, quasi-Fuchsian half-pipe space in which \((S, g_+)\) and \((S, g_-)\) are realised as the third fundamental forms of future- and past-oriented, locally strictly convex graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Barbot, T., Benedetti, R., Bonsante, F., Goldman, W.M., Labourie, F., Scannell, K.P., Schlenker, J.M.: Notes on: “Lorentz spacetimes of constant curvature”. Geom. Dedicata 126, 47–70 (2007)

    Article  MathSciNet  Google Scholar 

  2. Barbot, T., Béguin, F., Zeghib, A.: Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space. Ann. Inst. Fourier 61(2), 511–591 (2011)

    Article  MathSciNet  Google Scholar 

  3. Barbot, T., Fillastre, F.: Quasi-Fuchsian co-Minkowski manifolds. arXiv:1801.10429

  4. Bonsante, F., Mondello, G., Schlenker, J.M.: A cyclic extension of the earthquake flow II. Ann. Sci. Éc. Norm. Supér. 48(4), 811–859 (2015)

    Article  MathSciNet  Google Scholar 

  5. Danciger, J.: A Geometric transition from hyperbolic to anti de Sitter geometry. Geom. Topol. 17(5), 3077–3134 (2013)

    Article  MathSciNet  Google Scholar 

  6. Fillastre, F., Seppi, A.: Spherical, hyperbolic and other projective geometries. In: Eighteen Essays on Non-commutative Geometry, IRMA, Mathematical and Theoretical Physics, vol. 29, European Mathematical Society, Zürich (2019)

  7. Fillastre, F., Smith, G.: Group actions and scattering problems in Teichmüller theory. In: Handbook of Group Action IV, Advanced Lectures in Mathematics, vol. 40, pp. 359–417 (2018)

  8. Goldman, W.: The symplectic nature of the fundamental group of surfaces. Adv. Math. 54(2), 200–225 (1984)

    Article  MathSciNet  Google Scholar 

  9. Labourie, F.: Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques. Bull. Soc. Math. Fr. 119, 307–325 (1991)

    Article  Google Scholar 

  10. Labourie, F.: Surfaces convexes dans l’espace hyperbolique et \(\mathbb{CP}^1\)-structures. J. Lond. Math. Soc. 45(3), 549–565 (1992)

    Article  MathSciNet  Google Scholar 

  11. Labourie, F.: Métriques prescrites sur le bord des variétés hyperboliques de dimension 3. J. Differ. Geom. 35(3), 609–626 (1992)

    Article  MathSciNet  Google Scholar 

  12. Mess, G.: Lorentz spacetimes of constant curvature. Geom. Dedicata 126, 3–45 (2007)

    Article  MathSciNet  Google Scholar 

  13. Schlenker, J.M.: Hyperbolic manifolds with convex boundary. Invent. Math. 163, 109–169 (2006)

    Article  MathSciNet  Google Scholar 

  14. Tamburelli, A.: Prescribing metrics on the boundary of anti-de Sitter 3-manifolds. Int. Math. Res. Not. 5, 1281–1313 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Tromba, A.J.: Teichmüller theory in Riemannian geometry. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fillastre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillastre, F., Smith, G. A note on invariant constant curvature immersions in Minkowski space. Geom Dedicata 206, 75–82 (2020). https://doi.org/10.1007/s10711-019-00477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00477-7

Keywords

Mathematics Subject Classification

Navigation