Abstract
Let S be a compact, orientable surface of hyperbolic type. Let \((k_+,k_-)\) be a pair of negative numbers and let \((g_+, g_-)\) be a pair of marked metrics over S of constant curvature equal to \(k_+\) and \(k_-\) respectively. Using a functional introduced by Bonsante, Mondello and Schlenker, we show that there exists a unique affine deformation \(\Gamma :=(\rho ,\tau )\) of a Fuchsian group such that \((S,g_+)\) and \((S, g_-)\) embed isometrically as locally strictly convex Cauchy surfaces in the future and past complete components respectively of the quotient by \(\Gamma \) of an open subset \(\Omega \) of Minkowski space. Such quotients are known as Globally Hyperbolic, Maximal, Cauchy compact Minkowski spacetimes and are naturally dual to the half-pipe spaces introduced by Danciger. When translated into this latter framework, our result states that there exists a unique, marked, quasi-Fuchsian half-pipe space in which \((S, g_+)\) and \((S, g_-)\) are realised as the third fundamental forms of future- and past-oriented, locally strictly convex graphs.
Similar content being viewed by others
References
Andersson, L., Barbot, T., Benedetti, R., Bonsante, F., Goldman, W.M., Labourie, F., Scannell, K.P., Schlenker, J.M.: Notes on: “Lorentz spacetimes of constant curvature”. Geom. Dedicata 126, 47–70 (2007)
Barbot, T., Béguin, F., Zeghib, A.: Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space. Ann. Inst. Fourier 61(2), 511–591 (2011)
Barbot, T., Fillastre, F.: Quasi-Fuchsian co-Minkowski manifolds. arXiv:1801.10429
Bonsante, F., Mondello, G., Schlenker, J.M.: A cyclic extension of the earthquake flow II. Ann. Sci. Éc. Norm. Supér. 48(4), 811–859 (2015)
Danciger, J.: A Geometric transition from hyperbolic to anti de Sitter geometry. Geom. Topol. 17(5), 3077–3134 (2013)
Fillastre, F., Seppi, A.: Spherical, hyperbolic and other projective geometries. In: Eighteen Essays on Non-commutative Geometry, IRMA, Mathematical and Theoretical Physics, vol. 29, European Mathematical Society, Zürich (2019)
Fillastre, F., Smith, G.: Group actions and scattering problems in Teichmüller theory. In: Handbook of Group Action IV, Advanced Lectures in Mathematics, vol. 40, pp. 359–417 (2018)
Goldman, W.: The symplectic nature of the fundamental group of surfaces. Adv. Math. 54(2), 200–225 (1984)
Labourie, F.: Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques. Bull. Soc. Math. Fr. 119, 307–325 (1991)
Labourie, F.: Surfaces convexes dans l’espace hyperbolique et \(\mathbb{CP}^1\)-structures. J. Lond. Math. Soc. 45(3), 549–565 (1992)
Labourie, F.: Métriques prescrites sur le bord des variétés hyperboliques de dimension 3. J. Differ. Geom. 35(3), 609–626 (1992)
Mess, G.: Lorentz spacetimes of constant curvature. Geom. Dedicata 126, 3–45 (2007)
Schlenker, J.M.: Hyperbolic manifolds with convex boundary. Invent. Math. 163, 109–169 (2006)
Tamburelli, A.: Prescribing metrics on the boundary of anti-de Sitter 3-manifolds. Int. Math. Res. Not. 5, 1281–1313 (2018)
Tromba, A.J.: Teichmüller theory in Riemannian geometry. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (1992)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fillastre, F., Smith, G. A note on invariant constant curvature immersions in Minkowski space. Geom Dedicata 206, 75–82 (2020). https://doi.org/10.1007/s10711-019-00477-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-019-00477-7