Abstract
We introduce a new fundamental domain \(\mathscr {R}_n\) for a cusp stabilizer of a Hilbert modular group \(\Gamma \) over a real quadratic field \(K=\mathbb {Q}(\sqrt{n})\). This is constructed as the union of Dirichlet domains for the maximal unipotent group, over the leaves in a foliation of \(\mathcal {H}^2\times \mathcal {H}^2\). The region \(\mathscr {R}_n\) is the product of \(\mathbb {R}^+\) with a 3-dimensional tower \(\mathcal {T}_n\) formed by deformations of lattices in the ring of integers \(\mathbb {Z}_K\), and makes explicit the cusp cross section’s Sol 3-manifold structure and Anosov diffeomorphism. We include computer generated images and data illustrating various examples.
Similar content being viewed by others
References
Azuhata, T.: On the fundamental units and the class numbers of real quadratic fields. Nagoya Math. J. 95, 125–135 (1984)
Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces, vol. 4. Springer, Berlin (2015)
Blumenthal, O.: Über modulfunktionen von mehreren veränderlichen (Erste Hälfte). Mathematische Annalen 56, 509–548 (1903)
Blumenthal, O.: Über modulfunktionen von mehreren veränderlichen (Zweite Hälfte). Mathematische Annalen 58, 497–527 (1904)
Desmos Graphing Calculator. Available at https://www.desmos.com/calculator (2017) . Accessed 27 June 2017
Cohn, H.: A numerical survey of the floors of various Hilbert fundamental domains. Math. Comput. 19(92), 594–605 (1965)
Cohn, H.: On the shape of the fundamental domain of the Hilbert modular group. Proc. Symp. Pure Math 8, 190–202 (1965)
Cohn, H.: Note on how Hilbert modular domains become increasingly complicated. J. Math. Anal. Appl. 15(1), 55–59 (1966)
Cohn, H.: Some computer-assisted topological models of Hilbert fundamental domains. Math. Comput. 23(107), 475–487 (1969)
Deutsch, J.I.: Conjectures on the fundamental domain of the Hilbert modular group. Comput. Math. Appl. 59(2), 700–705 (2010)
Engel, P.: Dirichlet domains. In: Engel, P. (ed.) Geometric Crystallography, pp. 13–21. Springer, Berlin (1986)
Götzky, F.: Über eine zahlentheoretische anwendung von modulfunktionen zweier veränderlicher. Mathematische Annalen 100(1), 411–437 (1928)
Hirzebruch, F.: The Hilbert modular group, resolution of the singularities at the cusps and related problems. In: Heidelberg, A.D., Zürich B.E. (eds.) Séminaire Bourbaki vol. 1970/71 Exposés 382–399. Lecture Notes in Mathematics, vol. 244, pp. 275–288. Springer, Berlin (1971)
Maass, H.: Über Gruppen von hyperabelschen Transformationen. Weiss (1940)
McMullen, C.T.: Foliations of Hilbert modular surfaces. Am. J. Math. 129, 183–215 (2007)
McReynolds, D.B.: Cusps of arithmetic orbifolds. arXiv preprint arXiv:math/0606571 (2006)
McReynolds, D.B.: Cusps of Hilbert modular varieties. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 144, pp. 749–759. Cambridge University Press (2008)
Siegel, C.L.: On Advanced Analytic Number Theory. Tata Institute for Fundamental Research, Bombay (1961)
Van Der Geer, G.: Hilbert Modular Surfaces, vol. 16. Springer, Berlin (2012)
Wolfram Research, Inc.: Mathematica, Version 11.1.10. Champaign, IL (2017)
Acknowledgements
This research paper has been made possible thanks to the financial support generously given by the FORDECyT-CONACyT (Mexico) Grant #265667, Universidad Nacional Autónoma de México. The second author was financed by Grant IN106817, PAPIIT, DGAPA, Universidad Nacional Autónoma de México. The authors also express their gratitude to Ian Agol, Kathleen Byrne, Jesse Ira Deutsch, Paul Garrett, Ben McReynolds, Jorge Millan and Walter Neumann for helpful suggestions and discussion; to the reviewer for their detailed comments and corrections; and to Dennis Ryan and Simon Woods for help with creating the computer generated images.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Quinn, J., Verjovsky, A. Cusp shapes of Hilbert–Blumenthal surfaces. Geom Dedicata 206, 27–42 (2020). https://doi.org/10.1007/s10711-019-00474-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-019-00474-w
Keywords
- Hilbert modular surfaces
- Topological manifolds
- Geometric structures on manifolds
- Algebraic numbers
- Rings of algebraic integers
- Real and complex geometry
- Geometric constructions